
Analyzing ARM Native Code for
Tracking Information Flow

Woo-Yeon Lee, Seo-Yoon Choi, Tae-Hun Kim, Byung-Gon Chun,
Cloud and Mobile System (CMS) Laboratory, Seoul National University (SNU)

1. Introduction

CMS Labs Seoul National University

Operation
Type	

Assembly
Representation	

Action	

 Taint
Propagation	

Description	

ADD <immediate>	

 ADD Rd, Rn, <immediate>	

 Rd := Rn + <immediate>	

 τ(Rd)←τ(Rn)	

 Set Rd taint to Rn taint	

ADD <register>	

 ADD Rd, Rn, Rm	

 Rd := Rn + Rm	

 τ(Rd)←τ(Rn)∪τ(Rm)	

 Set Rd taint to	

Rn taint OR Rm taint	

MOV <immediate>	

 MOV Rd, <immediate>	

 Rd := <immediate>	

 τ(Rd)←Ø	

 Clear Rd taint	

MOV <register>	

 MOV Rd, Rn	

 Rd := Rn	

 τ(Rd)←τ(Rn)	

 Set Rd taint to Rn taint	

5. Dynamic Binary Instrumentation(DBI)

4. Dynamic Taint Tracking

•  Taint Tracking is a technique used to track
information dependencies from an origin	

	

•  Three Factors	

- Taint Source	

- Taint Propagation	

- Taint Sink	

•  Third-party “apps” may leak users’ privacy-sensitive data or manifest
malicious behavior.	

•  Why ARM native code?	

•  More and more apps use ARM native code.	

 - Android : 49% of the apps are packaged with third-party native library	

 - Tizen : Native apps are written as ARM native code.	

•  Lots of studies about information flow tracking, but not in ARM-instruction level.	

	

•  Taint Propagation Logic	

•  We handle over 800 instructions	

 - Taint Map Function τ()	

	

 :τ(A) retrieves the taint tag for ‘A’ from Taint Map. 	

v1 = taint_source()	

…	

v3 = v2 + v1	

…	

taint_sink(v3)	

Taint Tracking with DBI,	

- Low overhead enables real-time tracking	

	

•  Implementation	

- Code Injector inserts initial code into
application to load analysis modules into
application’s memory space	

- Taint Map is implemented with Shadow
Memory, which is consisted of shadow bytes
mapping to bytes in main memory	

•  What is DBI?	

DBI manipulates executing
binary at runtime and controls
process’s behavior.	

	

Main challenge is an Application
Transparency, keeping
application behaving same as
before instrumentation.	

Before
Instrumentation	

After
Instrumentation	

ADD Rd, Rn, <immediate>	

 ADD Rd, Rn, <immediate>	

	

MOV τ(Rd),τ(Rn)	

ADD Rd, Rn, Rm	

 ADD Rd, Rn, Rm	

	

OR τ(Rd), τ(Rn), τ(Rm)	

MOV Rd, <immediate>	

 MOV Rd, <immediate>	

	

MOV τ(Rd), 0	

MOV Rd, Rn	

 MOV Rd, Rn	

	

MOV τ(Rd), τ(Rn)	

3. System Architecture

A
pp

lic
at

io
n

 	

Code Cache	

Code Injector	

JIT Interpreter	

Binary Instrumentation	

Taint
Source/Sink
Detector	

Taint	

Map	

Taint Tracking	

Taint
Propagation
Logic Table	

2. ARM Architecture

•  Advanced RISC architecture	

 - 32bit-fixed instruction length	

 - PC as a general register 	

 - Single execution cycle	

 - Conditional execution	

•  Extension	

 - Thumb / Thumb-2 mode (16bit)	

	

Some of these features are challenging to handle.	

 Taint Map	

 Taint Source	

 Taint Propagation	

 Taint Sink	

•  Update Taint map during execution	

