
To Dream the Impossible Dream:!
Toward Security Analysis for

JavaScript

Julian Dolby!
IBM Thomas J. Watson Research Center!

Seoul National University, Korea, October 16, 2014

Based on [ECOOP12], [PLDI13], [ICSE13], ongoing work

Many Colleagues

Satish Chandra (Samsung)!
Asger Feldhaus (Aarhus)!

Salvatore Guarneri (Google) !
Manu Sridharan (Samsung)!

Max Schaefer (Semmle)!
Frank Tip (Samsung)

Work done at IBM Thomas J. Watson Research Center

Some software works…

…and some does not

Two Classes of Software

“Important” software!

Avionics, Antilock brakes, Medical, Financial!

Deaths or major losses when it breaks!

Other software!

Inflight entertainment, Social media!

Mostly just causes annoyance

“Important” software…

…has changed

JavaScript is “Important”

Web sites dominate life!

banking, healthcare, shopping, communication…!

important data and transactions!

Modern Web sites are implemented in JavaScript!

rich client applications embody business logic!

heavy use of rich frameworks, notably jQuery

Improve Software Quality
program analysis based on call graphs

Traditional Call Graphs

Approximates targets at all call sites!

Type-based graphs simple but imprecise!

!

!

Dataflow-based graphs more precise, complex!

!

class Foo { void fun(); }
class Bar extends Foo { void fun(); }
Foo x = new Bar(); x.fun();

class Foo { void fun(); }
class Bar extends Foo { void fun(); }
Foo x = new Bar(); x.fun();

Foo.fun, Bar.fun

Bar.fun

Traditional Call Graphs

Dynamic languages complicate analysis!

Type-based graphs not applicable without static types!

!

!

Dataflow-based graphs can track function objects!

!

x.fun = function foo {… }
var fun = x.f;
fun();

x.fun = function foo {… }
var fun = x.f;
fun();

Traditional Call Graphs

JavaScript further challenges program analysis!

heavy use of reflection, i.e. eval!

first-class property names!

!

!

!

Dynamism worsens asymptotic complexity

Statement Constraint

x = {}i {oi} ✓ pt(x) [Alloc]

v = “name” {name} ✓ pt(v) [StrConst]

x = y pt(y) ✓ pt(x) [Assign]

x.s = y
o 2 pt(x)

pt(y) ✓ pt(o.s)
[StoreField]

y = x[v]
o 2 pt(x) s 2 pt(v)

pt(o.s) ✓ pt(y)
[LoadField]

x[v] = y
o 2 pt(x) s 2 pt(v)

pt(y) ✓ pt(o.s)
[StoreField]

y = x[v]
o 2 pt(x) s 2 pt(v)

pt(o.s) ✓ pt(y)
[LoadField]

v = x.nextProp()
o 2 pt(x) o.s exists

{s} ✓ pt(v)
[PropIter]

Table 1. Our formulation of field-sensitive Andersen’s points-to analysis in the pres-
ence of first-class fields

3 Field-Sensitive Points-To Analysis for JavaScript

In this section, we formulate a field-sensitive points-to analysis for a core lan-
guage based on the object model of JavaScript. This formulation describes the
existing points-to analysis implementation in WALA [?], which we use as our
baseline. Then, we show that a standard implementation of Andersen’s analysis
runs in worst-case O(N4) time for this formulation, where N is the size of the
program, due to computed property names. Finally, we give a minimal example
illustrating the imprecision that our techniques address.

Formulation The relevant core language features of JavaScript are shown in
the leftmost column of Table ??. Note that property stores and loads act much
like array stores and loads in a language like Java, where the equivalent of array
indices are string constants.4 Property names are first class, so they can be copied
between variables and stored and retrieved from data structures. As discussed
4 In full JavaScript, not all string values originate from constants in the program text;

as discussed further in Section ??, we handle this by introducing a special “unknown”
property name that is assumed to alias all other property names.

8

Statement Constraint

x = {}i {oi} ✓ pt(x) [Alloc]

v = “name” {name} ✓ pt(v) [StrConst]

x = y pt(y) ✓ pt(x) [Assign]

x.s = y
o 2 pt(x)

pt(y) ✓ pt(o.s)
[StoreField]

y = x[v]
o 2 pt(x) s 2 pt(v)

pt(o.s) ✓ pt(y)
[LoadField]

x[v] = y
o 2 pt(x) s 2 pt(v)

pt(y) ✓ pt(o.s)
[StoreField]

y = x[v]
o 2 pt(x) s 2 pt(v)

pt(o.s) ✓ pt(y)
[LoadField]

v = x.nextProp()
o 2 pt(x) o.s exists

{s} ✓ pt(v)
[PropIter]

Table 1. Our formulation of field-sensitive Andersen’s points-to analysis in the pres-
ence of first-class fields

3 Field-Sensitive Points-To Analysis for JavaScript

In this section, we formulate a field-sensitive points-to analysis for a core lan-
guage based on the object model of JavaScript. This formulation describes the
existing points-to analysis implementation in WALA [?], which we use as our
baseline. Then, we show that a standard implementation of Andersen’s analysis
runs in worst-case O(N4) time for this formulation, where N is the size of the
program, due to computed property names. Finally, we give a minimal example
illustrating the imprecision that our techniques address.

Formulation The relevant core language features of JavaScript are shown in
the leftmost column of Table ??. Note that property stores and loads act much
like array stores and loads in a language like Java, where the equivalent of array
indices are string constants.4 Property names are first class, so they can be copied
between variables and stored and retrieved from data structures. As discussed
4 In full JavaScript, not all string values originate from constants in the program text;

as discussed further in Section ??, we handle this by introducing a special “unknown”
property name that is assumed to alias all other property names.

8

Traditional Call Graphs
Much first-class property access in frameworks

1 (function() {
2 function jQuery(n) {
3 var res = Object.create(jQuery.fn);
4 var elts = document.getElementsByTagName(n);
5 for(var i=0;i<elts.length;++i)
6 res[i] = elts[i];
7 res.length = elts.length;
8 return res;
9 }

10
11 jQuery.fn = {
12 extend: function ext(obj) {
13 for(var p in obj)
14 jQuery.fn[p] = obj[p];
15 }
16 };
17
18 jQuery.fn.extend({
19 each: function(cb) {
20 for(var i=0;i<this.length;++i)
21 cb(this[i], i);
22 }
23 });
24
25 window.jQuery = jQuery;
26 })();

Fig. 2. A small subset of jQuery

The result of such a query is a special jQuery result object,
which provides array-like access to the result elements through
numerical indices and offers many utility methods, some of
them defined by jQuery itself, and others defined by plugins.

Our simplified version of jQuery, shown in Fig. 2, im-
plements a jQuery function as well. Following a common
pattern, it is first defined as a local function within a surround-
ing closure (lines 2–9), and later stored in a global variable
to make it accessible to client code (line 25). Our jQuery
function only provides a very simple form of querying: when
passed a string argument, it finds all DOM elements with this
tag name (line 4), stores them into the result object, sets its
length property to indicate how many elements were found,
and returns it. For instance, jQuery(’tbody’) returns all
table body elements in the document.

The result object itself is created on line 3 using the built-
in function Object.create, which takes as its argument an
object p and returns a new object o that has p as its prototype.
In this case, the prototype object will be jQuery.fn, which is
defined on line 11. Thus, any property defined on jQuery.fn
is available on all jQuery result objects via JavaScript’s
prototype-based inheritance mechanism.

Initially, the jQuery.fn object contains a single property:
a method extend that adds all property-value pairs of its
argument object obj to jQuery.fn. This is done through a
for-in loop (lines 13–14) that iterates over all properties p
of obj, and uses dynamic property reads and writes to copy
the value of property p on obj into a property of the same
name on jQuery.fn. If no such property exists yet, it will be
created; otherwise, its previous value will be overwritten.

27 (function($) {
28 $.fn.highlightAlt = function(c) {
29 this.each(function(elt) {
30 for(var i=1;i<elt.children.length;i+=2)
31 elt.children[i].style.backgroundColor = c;
32 });
33 };
34
35 window.highlightAltRows = function() {
36 $(’tbody’).highlightAlt(’#A9D0F5’);
37 };
38 })(jQuery);

Fig. 3. A jQuery plugin to highlight alternating children of DOM elements

On line 18, the extend method is used to add a method
each to jQuery.fn, which iterates over all elements con-
tained in a result object and invokes the given callback function
cb on it, passing both the element and its index as arguments.

The plugin, shown in Fig. 3, uses the each method, passing
it a callback that in turn iterates over all the children of every
result element, and sets the background color of every second
element to a given color c (line 31). This functionality is
exposed as a method highlightAlt added to the jQuery.fn
object, and hence available on every jQuery result object. The
plugin also defines a global function highlightAltRows that
clients can invoke to apply highlighting to all tables in the
document: it uses the jQuery function to find all table bodies,
and then invokes highlightAlt on each of them. Notice that
a closure is used to make the global jQuery variable available
as a local variable $.

Our example illustrates several important features of
JavaScript: variables have no static types and may, in general,
hold values of different types over the course of program
execution. Objects in JavaScript do not have a fixed set of
properties; instead, properties can be created simply by assign-
ing to them (e.g., the plugin adds a method highlightAlt
to jQuery.fn), and can even be deleted (not shown in the
example). Functions are first-class objects that can be passed
as arguments (as with the each function), stored in object
properties to serve as methods, and even have properties
themselves. Finally, dynamic property reads and writes allow
accessing properties by computed names.

B. Challenges for Call Graph Construction
As discussed in Section I, call graphs are widely useful

in IDEs, for example to implement “Jump to Declaration” or
to perform lightweight analysis tasks. Unfortunately, neither
standard coarse approaches nor more precise flow analyses
work well for building JavaScript call graphs, as we shall
explain using our running example.

Java IDEs take a type-based approach to call-graph con-
struction [6]: the possible targets of a method call are simply
those admitted by the program’s class hierarchy. Since vari-
ables and properties are not statically typed in JavaScript, type-
based call graph construction algorithms are not immediately
applicable. While prototype objects are superficially similar

p: fields of obj, e.g. “x”,”y”, “z”
obj[p]: values of field, e.g. obj[x]=4,obj[y]=“a”
jQuery.fn[p] = obj[p] assigns to all fields in p

Correlation Tracking
Correlated first-class property reads and writes

1 (function() {
2 function jQuery(n) {
3 var res = Object.create(jQuery.fn);
4 var elts = document.getElementsByTagName(n);
5 for(var i=0;i<elts.length;++i)
6 res[i] = elts[i];
7 res.length = elts.length;
8 return res;
9 }

10
11 jQuery.fn = {
12 extend: function ext(obj) {
13 for(var p in obj)
14 jQuery.fn[p] = obj[p];
15 }
16 };
17
18 jQuery.fn.extend({
19 each: function(cb) {
20 for(var i=0;i<this.length;++i)
21 cb(this[i], i);
22 }
23 });
24
25 window.jQuery = jQuery;
26 })();

Fig. 2. A small subset of jQuery

The result of such a query is a special jQuery result object,
which provides array-like access to the result elements through
numerical indices and offers many utility methods, some of
them defined by jQuery itself, and others defined by plugins.

Our simplified version of jQuery, shown in Fig. 2, im-
plements a jQuery function as well. Following a common
pattern, it is first defined as a local function within a surround-
ing closure (lines 2–9), and later stored in a global variable
to make it accessible to client code (line 25). Our jQuery
function only provides a very simple form of querying: when
passed a string argument, it finds all DOM elements with this
tag name (line 4), stores them into the result object, sets its
length property to indicate how many elements were found,
and returns it. For instance, jQuery(’tbody’) returns all
table body elements in the document.

The result object itself is created on line 3 using the built-
in function Object.create, which takes as its argument an
object p and returns a new object o that has p as its prototype.
In this case, the prototype object will be jQuery.fn, which is
defined on line 11. Thus, any property defined on jQuery.fn
is available on all jQuery result objects via JavaScript’s
prototype-based inheritance mechanism.

Initially, the jQuery.fn object contains a single property:
a method extend that adds all property-value pairs of its
argument object obj to jQuery.fn. This is done through a
for-in loop (lines 13–14) that iterates over all properties p
of obj, and uses dynamic property reads and writes to copy
the value of property p on obj into a property of the same
name on jQuery.fn. If no such property exists yet, it will be
created; otherwise, its previous value will be overwritten.

27 (function($) {
28 $.fn.highlightAlt = function(c) {
29 this.each(function(elt) {
30 for(var i=1;i<elt.children.length;i+=2)
31 elt.children[i].style.backgroundColor = c;
32 });
33 };
34
35 window.highlightAltRows = function() {
36 $(’tbody’).highlightAlt(’#A9D0F5’);
37 };
38 })(jQuery);

Fig. 3. A jQuery plugin to highlight alternating children of DOM elements

On line 18, the extend method is used to add a method
each to jQuery.fn, which iterates over all elements con-
tained in a result object and invokes the given callback function
cb on it, passing both the element and its index as arguments.

The plugin, shown in Fig. 3, uses the each method, passing
it a callback that in turn iterates over all the children of every
result element, and sets the background color of every second
element to a given color c (line 31). This functionality is
exposed as a method highlightAlt added to the jQuery.fn
object, and hence available on every jQuery result object. The
plugin also defines a global function highlightAltRows that
clients can invoke to apply highlighting to all tables in the
document: it uses the jQuery function to find all table bodies,
and then invokes highlightAlt on each of them. Notice that
a closure is used to make the global jQuery variable available
as a local variable $.

Our example illustrates several important features of
JavaScript: variables have no static types and may, in general,
hold values of different types over the course of program
execution. Objects in JavaScript do not have a fixed set of
properties; instead, properties can be created simply by assign-
ing to them (e.g., the plugin adds a method highlightAlt
to jQuery.fn), and can even be deleted (not shown in the
example). Functions are first-class objects that can be passed
as arguments (as with the each function), stored in object
properties to serve as methods, and even have properties
themselves. Finally, dynamic property reads and writes allow
accessing properties by computed names.

B. Challenges for Call Graph Construction
As discussed in Section I, call graphs are widely useful

in IDEs, for example to implement “Jump to Declaration” or
to perform lightweight analysis tasks. Unfortunately, neither
standard coarse approaches nor more precise flow analyses
work well for building JavaScript call graphs, as we shall
explain using our running example.

Java IDEs take a type-based approach to call-graph con-
struction [6]: the possible targets of a method call are simply
those admitted by the program’s class hierarchy. Since vari-
ables and properties are not statically typed in JavaScript, type-
based call graph construction algorithms are not immediately
applicable. While prototype objects are superficially similar

Same value per iteration

Need separate analysis per loop iteration!
apply context sensitivity!
extract loop body into separate function

Correlation Tracking

1 (function() {
2 function jQuery(n) {
3 var res = Object.create(jQuery.fn);
4 var elts = document.getElementsByTagName(n);
5 for(var i=0;i<elts.length;++i)
6 res[i] = elts[i];
7 res.length = elts.length;
8 return res;
9 }

10
11 jQuery.fn = {
12 extend: function ext(obj) {
13 for(var p in obj)
14 jQuery.fn[p] = obj[p];
15 }
16 };
17
18 jQuery.fn.extend({
19 each: function(cb) {
20 for(var i=0;i<this.length;++i)
21 cb(this[i], i);
22 }
23 });
24
25 window.jQuery = jQuery;
26 })();

Fig. 2. A small subset of jQuery

The result of such a query is a special jQuery result object,
which provides array-like access to the result elements through
numerical indices and offers many utility methods, some of
them defined by jQuery itself, and others defined by plugins.

Our simplified version of jQuery, shown in Fig. 2, im-
plements a jQuery function as well. Following a common
pattern, it is first defined as a local function within a surround-
ing closure (lines 2–9), and later stored in a global variable
to make it accessible to client code (line 25). Our jQuery
function only provides a very simple form of querying: when
passed a string argument, it finds all DOM elements with this
tag name (line 4), stores them into the result object, sets its
length property to indicate how many elements were found,
and returns it. For instance, jQuery(’tbody’) returns all
table body elements in the document.

The result object itself is created on line 3 using the built-
in function Object.create, which takes as its argument an
object p and returns a new object o that has p as its prototype.
In this case, the prototype object will be jQuery.fn, which is
defined on line 11. Thus, any property defined on jQuery.fn
is available on all jQuery result objects via JavaScript’s
prototype-based inheritance mechanism.

Initially, the jQuery.fn object contains a single property:
a method extend that adds all property-value pairs of its
argument object obj to jQuery.fn. This is done through a
for-in loop (lines 13–14) that iterates over all properties p
of obj, and uses dynamic property reads and writes to copy
the value of property p on obj into a property of the same
name on jQuery.fn. If no such property exists yet, it will be
created; otherwise, its previous value will be overwritten.

27 (function($) {
28 $.fn.highlightAlt = function(c) {
29 this.each(function(elt) {
30 for(var i=1;i<elt.children.length;i+=2)
31 elt.children[i].style.backgroundColor = c;
32 });
33 };
34
35 window.highlightAltRows = function() {
36 $(’tbody’).highlightAlt(’#A9D0F5’);
37 };
38 })(jQuery);

Fig. 3. A jQuery plugin to highlight alternating children of DOM elements

On line 18, the extend method is used to add a method
each to jQuery.fn, which iterates over all elements con-
tained in a result object and invokes the given callback function
cb on it, passing both the element and its index as arguments.

The plugin, shown in Fig. 3, uses the each method, passing
it a callback that in turn iterates over all the children of every
result element, and sets the background color of every second
element to a given color c (line 31). This functionality is
exposed as a method highlightAlt added to the jQuery.fn
object, and hence available on every jQuery result object. The
plugin also defines a global function highlightAltRows that
clients can invoke to apply highlighting to all tables in the
document: it uses the jQuery function to find all table bodies,
and then invokes highlightAlt on each of them. Notice that
a closure is used to make the global jQuery variable available
as a local variable $.

Our example illustrates several important features of
JavaScript: variables have no static types and may, in general,
hold values of different types over the course of program
execution. Objects in JavaScript do not have a fixed set of
properties; instead, properties can be created simply by assign-
ing to them (e.g., the plugin adds a method highlightAlt
to jQuery.fn), and can even be deleted (not shown in the
example). Functions are first-class objects that can be passed
as arguments (as with the each function), stored in object
properties to serve as methods, and even have properties
themselves. Finally, dynamic property reads and writes allow
accessing properties by computed names.

B. Challenges for Call Graph Construction
As discussed in Section I, call graphs are widely useful

in IDEs, for example to implement “Jump to Declaration” or
to perform lightweight analysis tasks. Unfortunately, neither
standard coarse approaches nor more precise flow analyses
work well for building JavaScript call graphs, as we shall
explain using our running example.

Java IDEs take a type-based approach to call-graph con-
struction [6]: the possible targets of a method call are simply
those admitted by the program’s class hierarchy. Since vari-
ables and properties are not statically typed in JavaScript, type-
based call graph construction algorithms are not immediately
applicable. While prototype objects are superficially similar

if (p == “x”) {
 jQuery[“x”] = obj[“x”]
} else if (p == “y”) {
 jQuery[“x”] = obj[“x”]
}

Implemented using context-sensitivity

Traditional Call Graphs

Correlation tracking greatly aids analysis!

Other JavaScript dynamism still problematic!

Framework-based code beyond state of the art

All our experiments were run on a Lenovo ThinkPad W520 with a 2.20 GHz
Intel Core i7-2720QM processor and 8GB RAM running Linux 2.6.32. We used
the OpenJDK 64-Bit Server VM, version 1.6.0_20, with a 5GB maximum heap.

5.3 Results

Framework Baseline� Baseline+ Correlations� Correlations+

dojo * (*) * (*) 3.1 (30.4) 6.7 (*)
jquery * * 78.5 *
mootools 0.7 * 3.1 *
prototype.js * * 4.4 4.5
yui * * 2.2 2.1

Table 3. Time (in seconds) to build call graphs for the benchmarks, averaged per
framework; ‘*’ indicates timeout. For dojo, one benchmark takes significantly longer
than the others, and is hence listed separately in parentheses.

Performance We first measured the time it takes to generate call graphs for our
benchmarks using the di�erent configurations, with a timeout of ten minutes.
The results are shown in Table 3. Since our benchmarks are relatively small,
call graph construction time is dominated by the underlying framework, and
di�erent benchmarks for the same framework generally take about the same
time to analyze. For this reason, we present average numbers per framework,
except in the case of dojo where one benchmark took significantly longer than
the others; its analysis time is not included in the average and given separately
in parentheses.

Configuration Baseline� does not complete within the timeout on any bench-
mark except for mootools, which it analyzes in less than a second on average.
However, once we move to Baseline+ and take call and apply into considera-
tion, mootools also becomes unanalyzable.

Our improved analysis fares much better. Correlations� analyzes most bench-
marks in less than five seconds, except for one dojo benchmark taking half a
minute, and the six jquery benchmarks, which take up to 80 seconds. Adding
support for call and apply again impacts analysis times: the analysis now times
out on the jquery and mootools tests, along with the dojo outlier (most likely
due to a sophisticated nested use of call and apply on the latter), and runs
more than twice as slow on the other dojo tests; on prototype.js and yui, on
the other hand, there is no noticeable di�erence. However, our precision mea-
surements indicate that some progress has been made even for the cases with
timeouts in Correlations+ (see below).

Our timings for the “+” configurations do not include the overhead for finding
and extracting correlated pairs, which is very low: on average, the former takes
about 0.1 seconds, and the latter even less than that.

18

+/- means with/without modeling of call and apply

Dynamic Determinacy
Runtime information to aid static analysis

program analysis

Actual JQuery Code

var e = ("blur,focus,load,resize,scroll,unload," +
"click,dblclick,mousedown,mouseup,mousemove," +!

"mouseover,mouseout,change,reset,select,submit," +!
“keydown,keypress,keyup,error").split(",");!
!
for(var i=0;i<e.length;i++) new function(){!
! var o = e[i];!
! jQuery.fn[o] = function(f){!
! ! return f ? this.bind(o, f) : this.trigger(o); };!
! jQuery.fn["un"+o] = function(f){!
! ! return this.unbind(o, f); };!
! jQuery.fn["one"+o] = function(f){! ! ! !
! ! return this.each(function(){!
! ! ! var count = 0;!
! ! ! jQuery.event.add(this, o, function(e){!
! ! ! ! if(count++) return;!
!! ! ! return f.apply(this, [e]); }); }); }; };

Dynamic Behavior

Dynamic code is completely constant at runtime!

Values must be the same in every execution

jQuery.fn.blur = function () { ... };!
jQuery.fn.unblur = function () { ... };!
jQuery.fn.oneblur = function () { ... };!
jQuery.fn.focus = function () { ... };!
jQuery.fn.unfocus = function () { ... };!
jQuery.fn.onefocus = function () { ... };!
jQuery.fn.load = function () { ... };!
jQuery.fn.unload = function () { ... };!
jQuery.fn.oneload = function () { ... };

Determinacy Facts

Record values known at runtime to be constant!

Record as determinacy facts

[[e]]f!g!...!k = c

expression context value

Determinacy Examples

var e = ("blur,focus,load,resize,scroll,unload," +
"click,dblclick,mousedown,mouseup,mousemove," +!
"mouseover,mouseout,change,reset,select,submit," +!
“keydown,keypress,keyup,error").split(",");!
!
for(var i=0;i<e.length;i++) new function(){!
! var o = e[i];!
 …!
! jQuery.fn["un"+o] = …

[[e[i]]]?!5 = “unload”

[[“un” + o]]?!5 = “ununload”

ImplementationImplementation

instrument

to track

determinacy

run on

test inputrun on

test inputrun on

test input

determinacy

facts

JS code
instrumented

JS code

analyse

with

WALA

analysis
results

25 / 28

Does it work?

Determinacy greatly aids static analysis!

See OOPSLA13 paper from Aarhus for a static version!

Allows analysis of more jQuery versions!

Still not sufficient for real jQuery applications

Approximate Callgraphs
Let’s not solve the impossible problems

copyright collectpeanuts.com

http://peanuts.com

Field-Sensitive Approach

1 (function() {
2 function jQuery(n) {
3 var res = Object.create(jQuery.fn);
4 var elts = document.getElementsByTagName(n);
5 for(var i=0;i<elts.length;++i)
6 res[i] = elts[i];
7 res.length = elts.length;
8 return res;
9 }

10
11 jQuery.fn = {
12 extend: function ext(obj) {
13 for(var p in obj)
14 jQuery.fn[p] = obj[p];
15 }
16 };
17
18 jQuery.fn.extend({
19 each: function(cb) {
20 for(var i=0;i<this.length;++i)
21 cb(this[i], i);
22 }
23 });
24
25 window.jQuery = jQuery;
26 })();

Fig. 2. A small subset of jQuery

The result of such a query is a special jQuery result object,
which provides array-like access to the result elements through
numerical indices and offers many utility methods, some of
them defined by jQuery itself, and others defined by plugins.

Our simplified version of jQuery, shown in Fig. 2, im-
plements a jQuery function as well. Following a common
pattern, it is first defined as a local function within a surround-
ing closure (lines 2–9), and later stored in a global variable
to make it accessible to client code (line 25). Our jQuery
function only provides a very simple form of querying: when
passed a string argument, it finds all DOM elements with this
tag name (line 4), stores them into the result object, sets its
length property to indicate how many elements were found,
and returns it. For instance, jQuery(’tbody’) returns all
table body elements in the document.

The result object itself is created on line 3 using the built-
in function Object.create, which takes as its argument an
object p and returns a new object o that has p as its prototype.
In this case, the prototype object will be jQuery.fn, which is
defined on line 11. Thus, any property defined on jQuery.fn
is available on all jQuery result objects via JavaScript’s
prototype-based inheritance mechanism.

Initially, the jQuery.fn object contains a single property:
a method extend that adds all property-value pairs of its
argument object obj to jQuery.fn. This is done through a
for-in loop (lines 13–14) that iterates over all properties p
of obj, and uses dynamic property reads and writes to copy
the value of property p on obj into a property of the same
name on jQuery.fn. If no such property exists yet, it will be
created; otherwise, its previous value will be overwritten.

27 (function($) {
28 $.fn.highlightAlt = function(c) {
29 this.each(function(elt) {
30 for(var i=1;i<elt.children.length;i+=2)
31 elt.children[i].style.backgroundColor = c;
32 });
33 };
34
35 window.highlightAltRows = function() {
36 $(’tbody’).highlightAlt(’#A9D0F5’);
37 };
38 })(jQuery);

Fig. 3. A jQuery plugin to highlight alternating children of DOM elements

On line 18, the extend method is used to add a method
each to jQuery.fn, which iterates over all elements con-
tained in a result object and invokes the given callback function
cb on it, passing both the element and its index as arguments.

The plugin, shown in Fig. 3, uses the each method, passing
it a callback that in turn iterates over all the children of every
result element, and sets the background color of every second
element to a given color c (line 31). This functionality is
exposed as a method highlightAlt added to the jQuery.fn
object, and hence available on every jQuery result object. The
plugin also defines a global function highlightAltRows that
clients can invoke to apply highlighting to all tables in the
document: it uses the jQuery function to find all table bodies,
and then invokes highlightAlt on each of them. Notice that
a closure is used to make the global jQuery variable available
as a local variable $.

Our example illustrates several important features of
JavaScript: variables have no static types and may, in general,
hold values of different types over the course of program
execution. Objects in JavaScript do not have a fixed set of
properties; instead, properties can be created simply by assign-
ing to them (e.g., the plugin adds a method highlightAlt
to jQuery.fn), and can even be deleted (not shown in the
example). Functions are first-class objects that can be passed
as arguments (as with the each function), stored in object
properties to serve as methods, and even have properties
themselves. Finally, dynamic property reads and writes allow
accessing properties by computed names.

B. Challenges for Call Graph Construction
As discussed in Section I, call graphs are widely useful

in IDEs, for example to implement “Jump to Declaration” or
to perform lightweight analysis tasks. Unfortunately, neither
standard coarse approaches nor more precise flow analyses
work well for building JavaScript call graphs, as we shall
explain using our running example.

Java IDEs take a type-based approach to call-graph con-
struction [6]: the possible targets of a method call are simply
those admitted by the program’s class hierarchy. Since vari-
ables and properties are not statically typed in JavaScript, type-
based call graph construction algorithms are not immediately
applicable. While prototype objects are superficially similar

Field-based means one location per property!

imprecisely merge properties for each name!

makes copying fields a no-op to analysis!

 No full pointer analysis

Unsoundness

Ignoring dynamic accesses can be unsound!

some functions only written in such accesses!

Field based analysis imprecise for some idioms!

inheritance and overriding not distinguished!

less common in JavaScript than Java

to Java classes, properties can be dynamically added or over-
written. For instance, the jQuery.fn object in our example
starts out with only one property (extend) to which two
others (each and highlightAlt) are later added, defeating
any simple static type inference. Type inference algorithms
for JavaScript that can handle such complications have been
proposed [12, 14], but do not yet scale to real-world programs.

An very naïve way to construct call graphs would be to use
name matching, and resolve a call e.f(...) to all functions
named f. This approach, which is used by Eclipse JSDT,
fails when functions are passed as parameters or stored in
properties with a different name, like the extend function on
line 12. Consequently, JSDT is unable to resolve any of the call
sites in our example. Other IDEs employ more sophisticated
techniques, but we do not know of any current IDE that can
handle callbacks and discover targets for the call on line 21.

A more conservative approach suggesting any function with
the right number of parameters as a call target would likely
be too imprecise in practice, yet still fails to be sound, since
JavaScript allows arity mismatching: the call on line 21 passes
two parameters, while the callback only declares one.

A flow analysis, like an Andersen-style pointer analysis [19]
or an inter-procedural data flow analysis [14], can avoid
these issues. Such analyses work by tracing the flow of
abstract values through abstract memory locations based on
the relevant program statements (primarily assignments and
function calls). A call graph is then derived by determining
which function values flow to each invoked expression.

However, building a precise flow analysis that scales to large
JavaScript programs is an unsolved challenge. In the example
of Fig. 2, the flow of functions to invocations is non-trivial, due
to the use of the extend function to modify the jQuery.fn
object. Precise modeling of dynamic property accesses like
those in extend and other complex constructs is required to
obtain a useful flow analysis result, but this precise modeling
can compromise scalability; see [19] for a detailed discussion.
In particular, we know of no JavaScript flow analysis that can
analyze real-world jQuery-based application.1

C. Our Approach

In this paper, we show that a simple flow analysis suffices
to construct approximate call graphs that are, in practice,
sufficiently accurate for applications such as IDE services.
Our analysis only tracks the flow of function values, unlike
most previous flow analyses, which track the flow of all
objects. Ignoring general object flow implies that for a property
access e.f, the analysis cannot reason about which particular
(abstract) object’s f property is accessed. Instead, a field-based
approach is employed, in which e.f is modeled as accessing
a single global location f, ignoring the base expression e.

Our analysis uses a standard flow graph capturing assign-
ments of functions into variables and properties, and of one
variable into another. For instance, the function declaration on

1The analysis in [19] could only analyze a manually rewritten version of
jQuery with handling of certain JavaScript features disabled.

line 2 adds a flow graph edge from the declared function to the
local variable jQuery, while the assignment on line 25 adds an
edge from that variable to the abstract location Prop(jQuery)
representing all properties named jQuery. The function call
on line 38, in turn, establishes a flow from Prop(jQuery) into
the parameter $, leading the analysis to conclude that the call
on line 36 may indeed invoke the jQuery function. Details
of how to construct the flow graph and how to extract a call
graph from it are presented in the next section.

At first glance, dynamic property accesses present a
formidable obstacle to this approach: for a dynamic prop-
erty access e[p], the analysis cannot reason about which
names p can evaluate to, since string values are not tracked.
A conservative approximation would treat such accesses as
possibly reading or writing any possible property, leading to
hopelessly imprecise analysis results. However, we observe
that dynamic property accesses in practice often occur as
correlated accesses [19], where the read and the write refer
to the same property, as on line 14 in our example. A field-
based analysis can safely ignore correlated accesses, since
like-named properties are merged anyway. Our analysis goes
further and simply ignores all dynamic property accesses.

This choice compromises soundness, as seen in this example
(inspired by code in jQuery):

arr = ["Width","Height"];
for (var i=0;i<arr.length;++i)
$.fn["outer"+arr[i]] = function() { ... };

$.fn.outerWidth();

The dynamic property write inside the loop corresponds
to two static property writes to $.fn.outerWidth and
$.fn.outerHeight, which the analysis ignores; hence it is
unable to resolve the call to outerWidth.

But, as we shall show in our evaluation (Section IV), such
cases have little effect on soundness in practice. Furthermore,
unlike more precise flow analyses, our approach scales easily
to large programs, which makes it well suited for use in an
IDE, where a small degree of unsoundness can be tolerated.

III. ANALYSIS FORMULATION

We now present the details of our call graph construction
algorithm. We first explain the intraprocedural parts of the
analysis, and then present two contrasting approaches to han-
dling interprocedural flows, one pessimistic and one optimistic.

A. Intraprocedural Flow
Our algorithm operates over a flow graph, a representation

of the possible data flow induced by program statements.
The vertices of the flow graph represent functions, variables
and properties, while the edges represent assignments. To
emphasize the suitability of our techniques for an IDE, we
show how to construct the flow graph directly from an AST,
as is done in our implementation.

Abstracting from a concrete AST representation, we write
� for the set of all AST positions, and use the notation t� to
mean a program element t (such as an expression, a function
declaration, or a variable declaration) at position � � �.

Call Graph Precision

Fraction of static edges found in dynamic call graph!

Variable noise, like most static call graphs!

>= 90% real edges in a few cases, always > 50%!

Pessimistic reduces extraneous propagation








































Fig. 8. Precision and recall measurements for optimistic and pessimistic call graphs compared to dynamic call graphs

better. Only on beslimed and flotr, the two non-jQuery pro-
grams, is the difference more marked, and we only achieve a
relatively modest precision of between 65% and 75%, while
on the others the precision is at least 80%.

For both approaches, the main sources of imprecision are
functions that are stored in properties of the same name,
which a field-based analysis cannot distinguish as call targets.
Additionally, the optimistic approach may resolve callback
invocations imprecisely. The pessimistic approach would give
up on such call sites, returning zero call targets, which
accounts for its better precision measure.

Both analyses achieve very high recall: in every case,
more than 80% of dynamically observed call targets are also
found by the analysis, with recall above 90% for the jQuery-
based programs and close to 100% for the framework-less
programs. Missing call targets are due to the unsoundness of
our approach with respect to dynamic property writes. These
are often used in frameworks to define a group of closely
related functions or to do metaprogramming, which is rare in
non-framework code. On flotr, the optimistic analysis does
significantly better than the pessimistic one; this seems to
be due to a liberal use of callback functions, which are not
handled by the pessimistic analysis.

D. Suitability for IDE Services (EC3)

We now evaluate the suitability of our analyses for three
typical client applications.

Jump to Declaration: Java IDEs typically offer a “Jump
to Declaration” feature for navigating from a field or method
reference to its declaration. In JavaScript, there are no method
declarations as such, but several JavaScript IDEs offer a similar
feature to navigate from a function call to the function (or, in
general, functions) that may be invoked at this place.

Our call graph algorithms could be used to implement such
a feature. The pessimistic algorithm seems to be particularly
well-suited, since it gives a small set of targets for most call
sites. While no call target may be available for unresolved call
sites, this is arguably better than listing many spurious targets.

To test this hypothesis, we measure the percentage of call
sites with a single target, excluding native functions. The
results, along with the percentage of call sites with zero, two,

Fig. 9. Number of non-native call targets per site with pessimistic analysis

three, and more than three targets, are given in Fig. 9: on all
benchmarks, more than 70% of call sites have at most one
target, 80% have at most two and 90% at most three targets.
This suggests that the pessimistic algorithm could be useful
for implementing Jump to Declaration.

The relatively large percentage of call sites without targets
is due to excluding native call targets. If they are included,
the pessimistic analysis is on average able to find at least one
callee for more than 95% of calls. The maximum number of
non-native call targets is 20 callees for a small number of sites
on beslimed ; if native targets are considered, several call sites
can have up to 124 callees: these are calls to toString, with
120 of the suggested callees being DOM methods.

We now compare our approach against three current
JavaScript IDEs: Eclipse JSDT, Komodo IDE, and WebStorm.

The Eclipse JSDT plugin (we tested version 1.4.0 on Eclipse
4.2.0) provides a Jump to Declaration feature, which does not
seem to handle method calls, severely limiting its practical
usefulness: across all our subject programs, it can only find
targets for about 130 call sites (less than 1%).

Komodo IDE (version 7.0.2) uses fairly intricate heuristics
to resolve function and method calls that works well on our
smaller subject programs such as 3dmodel. However, it seems
unable to handle larger, framework-based programs, where its
Jump to Declaration feature usually fails.

pessimistic does less propagation

Call Graph Recall

Fraction of dynamic edges found in static call graph!

Unsoundness limited!

>= 80% of the call graph usually found!

Optimistic helps callback-heavy code





































Fig. 8. Precision and recall measurements for optimistic and pessimistic call graphs compared to dynamic call graphs

better. Only on beslimed and flotr, the two non-jQuery pro-
grams, is the difference more marked, and we only achieve a
relatively modest precision of between 65% and 75%, while
on the others the precision is at least 80%.

For both approaches, the main sources of imprecision are
functions that are stored in properties of the same name,
which a field-based analysis cannot distinguish as call targets.
Additionally, the optimistic approach may resolve callback
invocations imprecisely. The pessimistic approach would give
up on such call sites, returning zero call targets, which
accounts for its better precision measure.

Both analyses achieve very high recall: in every case,
more than 80% of dynamically observed call targets are also
found by the analysis, with recall above 90% for the jQuery-
based programs and close to 100% for the framework-less
programs. Missing call targets are due to the unsoundness of
our approach with respect to dynamic property writes. These
are often used in frameworks to define a group of closely
related functions or to do metaprogramming, which is rare in
non-framework code. On flotr, the optimistic analysis does
significantly better than the pessimistic one; this seems to
be due to a liberal use of callback functions, which are not
handled by the pessimistic analysis.

D. Suitability for IDE Services (EC3)

We now evaluate the suitability of our analyses for three
typical client applications.

Jump to Declaration: Java IDEs typically offer a “Jump
to Declaration” feature for navigating from a field or method
reference to its declaration. In JavaScript, there are no method
declarations as such, but several JavaScript IDEs offer a similar
feature to navigate from a function call to the function (or, in
general, functions) that may be invoked at this place.

Our call graph algorithms could be used to implement such
a feature. The pessimistic algorithm seems to be particularly
well-suited, since it gives a small set of targets for most call
sites. While no call target may be available for unresolved call
sites, this is arguably better than listing many spurious targets.

To test this hypothesis, we measure the percentage of call
sites with a single target, excluding native functions. The
results, along with the percentage of call sites with zero, two,

Fig. 9. Number of non-native call targets per site with pessimistic analysis

three, and more than three targets, are given in Fig. 9: on all
benchmarks, more than 70% of call sites have at most one
target, 80% have at most two and 90% at most three targets.
This suggests that the pessimistic algorithm could be useful
for implementing Jump to Declaration.

The relatively large percentage of call sites without targets
is due to excluding native call targets. If they are included,
the pessimistic analysis is on average able to find at least one
callee for more than 95% of calls. The maximum number of
non-native call targets is 20 callees for a small number of sites
on beslimed ; if native targets are considered, several call sites
can have up to 124 callees: these are calls to toString, with
120 of the suggested callees being DOM methods.

We now compare our approach against three current
JavaScript IDEs: Eclipse JSDT, Komodo IDE, and WebStorm.

The Eclipse JSDT plugin (we tested version 1.4.0 on Eclipse
4.2.0) provides a Jump to Declaration feature, which does not
seem to handle method calls, severely limiting its practical
usefulness: across all our subject programs, it can only find
targets for about 130 call sites (less than 1%).

Komodo IDE (version 7.0.2) uses fairly intricate heuristics
to resolve function and method calls that works well on our
smaller subject programs such as 3dmodel. However, it seems
unable to handle larger, framework-based programs, where its
Jump to Declaration feature usually fails.

Taint Analysis Client
Adapt taint analysis to approximate call graphs

Taint Example
<head>
<TITLE>Welcome!</TITLE>
<script src=“script.js”>
</script>
</head>
<body>

Welcome to our system
<form>
 <input type="button"
 onClick="doit();"/>

 <input type="textarea"
 id="fd"
 value="enter text"/>
</form>
</body>
</HTML>

function copy(a, b) {
 for(t in a) {
 b[t] = a[t]; } }
!
var Facade = {
 open: function open(obj) {
 window.open(obj.url); },
 url: function url() {
 var obj = { };
 var elt = document.getElementById(“fd");
 obj.url = elt.value;
 return obj;
} };
!
function doit() {
 var x = Facade.url();
 var y = { url: "http://cnn.com/" };
 Facade.open(y);
 copy(x,y);
 Facade.open(y); }

taint rule: document.getElementById.value > window.open

Taint Example
<head>
<TITLE>Welcome!</TITLE>
<script src=“script.js”>
</script>
</head>
<body>

Welcome to our system
<form>
 <input type="button"
 onClick="doit();"/>

 <input type="textarea"
 id="fd"
 value="enter text"/>
</form>
</body>
</HTML>

function copy(a, b) {
 for(t in a) {
 b[t] = a[t]; } }
!
var Facade = {
 open: function open(obj) {
 window.open(obj.url); },
 url: function url() {
 var obj = { };
 var elt = document.getElementById(“fd");
 obj.url = elt.value;
 return obj;
} };
!
function doit() {
 var x = Facade.url();
 var y = { url: "http://cnn.com/" };
 Facade.open(y);
 copy(x,y);
 Facade.open(y); }

how to identify tainted source?

Taint Example
<head>
<TITLE>Welcome!</TITLE>
<script src=“script.js”>
</script>
</head>
<body>

Welcome to our system
<form>
 <input type="button"
 onClick="doit();"/>

 <input type="textarea"
 id="fd"
 value="enter text"/>
</form>
</body>
</HTML>

function copy(a, b) {
 for(t in a) {
 b[t] = a[t]; } }
!
var Facade = {
 open: function open(obj) {
 window.open(obj.url); },
 url: function url() {
 var obj = { };
 var elt = document.getElementById(“fd");
 obj.url = elt.value;
 return obj;
} };
!
function doit() {
 var x = Facade.url();
 var y = { url: "http://cnn.com/" };
 Facade.open(y);
 copy(x,y);
 Facade.open(y); }

don’t taint all ‘url’ properties

Taint Example
<head>
<TITLE>Welcome!</TITLE>
<script src=“script.js”>
</script>
</head>
<body>

Welcome to our system
<form>
 <input type="button"
 onClick="doit();"/>

 <input type="textarea"
 id="fd"
 value="enter text"/>
</form>
</body>
</HTML>

function copy(a, b) {
 for(t in a) {
 b[t] = a[t]; } }
!
var Facade = {
 open: function open(obj) {
 window.open(obj.url); },
 url: function url() {
 var obj = { };
 var elt = document.getElementById(“fd");
 obj.url = elt.value;
 return obj;
} };
!
function doit() {
 var x = Facade.url();
 var y = { url: "http://cnn.com/" };
 Facade.open(y);
 copy(x,y);
 Facade.open(y); }

first-class property accesses

Taint Example
<head>
<TITLE>Welcome!</TITLE>
<script src=“script.js”>
</script>
</head>
<body>

Welcome to our system
<form>
 <input type="button"
 onClick="doit();"/>

 <input type="textarea"
 id="fd"
 value="enter text"/>
</form>
</body>
</HTML>

function copy(a, b) {
 for(t in a) {
 b[t] = a[t]; } }
!
var Facade = {
 open: function open(obj) {
 window.open(obj.url); },
 url: function url() {
 var obj = { };
 var elt = document.getElementById(“fd");
 obj.url = elt.value;
 return obj;
} };
!
function doit() {
 var x = Facade.url();
 var y = { url: "http://cnn.com/" };
 Facade.open(y);
 copy(x,y);
 Facade.open(y); }

only open after copy is bad

Taint Example
<head>
<TITLE>Welcome!</TITLE>
<script src=“script.js”>
</script>
</head>
<body>

Welcome to our system
<form>
 <input type="button"
 onClick="doit();"/>

 <input type="textarea"
 id="fd"
 value="enter text"/>
</form>
</body>
</HTML>

function copy(a, b) {
 for(t in a) {
 b[t] = a[t]; } }
!
var Facade = {
 open: function open(obj) {
 window.open(obj.url); },
 url: function url() {
 var obj = { };
 var elt = document.getElementById(“fd");
 obj.url = elt.value;
 return obj;
} };
!
function doit() {
 var x = Facade.url();
 var y = { url: "http://cnn.com/" };
 Facade.open(y);
 copy(x,y);
 Facade.open(y); }

only some ‘url’ tainted

Flow-Sensitive Propagation

No pointer analysis!

No explicit aliasing!

Rely on local queries!

Use access paths!

Globals, e.g. document!

But must handle methods

function copy(a, b) {
 for(t in a) {
 b[t] = a[t]; } }
!
var Facade = {
 open: function open(obj) {
 window.open(obj.url); },
 url: function url() {
 var obj = { };
 var elt = document.getElementById(“fd");
 obj.url = elt.value;
 return obj;
} };
!
function doit() {
 var x = Facade.url();
 var y = { url: "http://cnn.com/" };
 Facade.open(y);
 copy(x,y);
 Facade.open(y); }

Identifying Tainted Sources
var Facade = {
 open: function open(obj) {
 window.open(obj.url); },
 url: function url() {
 var obj = { };
 var elt = document.getElementById(“fd");
 obj.url = elt.value;
 return obj;
} };

taint rule: document.getElementById.value > window.open

variable path
document document

Identifying Tainted Sources
var Facade = {
 open: function open(obj) {
 window.open(obj.url); },
 url: function url() {
 var obj = { };
 var elt = document.getElementById(“fd");
 obj.url = elt.value;
 return obj;
} };

taint rule: document.getElementById.value > window.open

variable path
document document

elt document.getElementById

Identifying Tainted Sources
var Facade = {
 open: function open(obj) {
 window.open(obj.url); },
 url: function url() {
 var obj = { };
 var elt = document.getElementById(“fd");
 obj.url = elt.value;
 return obj;
} };

taint rule: document.getElementById.value > window.open

variable path
document document

elt document.getElementById
_ document.getElementById.value

Distinguishing Objects

taint rule: document.getElementById.value > window.open

variable path
obj url

function copy(a, b) {
 for(t in a) {
 b[t] = a[t]; } }
!
var Facade = {
 open: function open(obj) {
 window.open(obj.url); },
 url: function url() {
 var obj = { };
 var elt = document.getElementById(“fd");
 obj.url = elt.value;
 return obj;
} };
!
function doit() {
 var x = Facade.url();
 var y = { url: "http://cnn.com/" };
 Facade.open(y);
 copy(x,y);
 Facade.open(y); }

Distinguishing Objects

taint rule: document.getElementById.value > window.open

variable path
obj url
x url

function copy(a, b) {
 for(t in a) {
 b[t] = a[t]; } }
!
var Facade = {
 open: function open(obj) {
 window.open(obj.url); },
 url: function url() {
 var obj = { };
 var elt = document.getElementById(“fd");
 obj.url = elt.value;
 return obj;
} };
!
function doit() {
 var x = Facade.url();
 var y = { url: "http://cnn.com/" };
 Facade.open(y);
 copy(x,y);
 Facade.open(y); }

First-Class Properties

taint rule: document.getElementById.value > window.open

variable path
obj url
x url
a url
b *

function copy(a, b) {
 for(t in a) {
 b[t] = a[t]; } }
!
var Facade = {
 open: function open(obj) {
 window.open(obj.url); },
 url: function url() {
 var obj = { };
 var elt = document.getElementById(“fd");
 obj.url = elt.value;
 return obj;
} };
!
function doit() {
 var x = Facade.url();
 var y = { url: "http://cnn.com/" };
 Facade.open(y);
 copy(x,y);
 Facade.open(y); }

First-Class Properties

taint rule: document.getElementById.value > window.open

variable path
obj url
x url
a url
b *

obj *
_ _

function copy(a, b) {
 for(t in a) {
 b[t] = a[t]; } }
!
var Facade = {
 open: function open(obj) {
 window.open(obj.url); },
 url: function url() {
 var obj = { };
 var elt = document.getElementById(“fd");
 obj.url = elt.value;
 return obj;
} };
!
function doit() {
 var x = Facade.url();
 var y = { url: "http://cnn.com/" };
 Facade.open(y);
 copy(x,y);
 Facade.open(y); }

Taint Analysis

Flow-sensitive approach promising!

tolerates imprecisions from field-based analysis!

initial scalability results promising!

Evaluation so far against existing analyses!

better scalability of underlying analysis!

equally precise results

The Impossible Dream

Approximate analysis seems inevitable!

traditional approaches do not scale yet!

dynamism of JavaScript challenging!

Approximate security analysis promising!

shows good coverage compared to existing approaches!

scalability benefits of approximate techniques

