
Fault Localization for 
Multi-language Programs

Taehoon Kwak, Yiru Jeon, Yunho Kim, Shin Hong, Moonzoo Kim
Software Testing & Verification Group, KAIST

Bongseok Ko, Byeongcheol Lee
Programming Systems Laboratory, GIST



Summary

• Develop a mutation-based fault localization for 
locating complex bugs in multi-language programs

• Mutation-based d

2



• A program which consists of more than two different 
programming languages.

• Mix-and-match benefits of different languages
• Reuse legacy code
• Examples

- special-purpose language(SQL) + general purpose language(C)
- procedural language(C) + object-oriented language(JAVA)

Multi-language programs

3



Challenge
• Debugging of multi-language programs is difficult 

because a bug may be involved with code fragments of 
different languages.

– For example, a memory leak bug occurs if a Java object is 
illegally manipulated by C code fragments.

• Research target: JAVA/JNI programs
– JNI enables programmers to directly use native languages such 

as C, C++, and assembly with Java programs
– Widely used in Android applications 

Multi-language program

Java C

4



Approach: MUtation-baSEd fault localization (MUSE)

For a buggy program with failing and passing test cases
(1) Mutate each line of a target program to generate mutants
(2) Check if the mutants from a line are likely fixed the bug 

(golden mutants)
(3) Report the line with many golden mutants as bug location

A buggy program
statement 1

statement 2

statement 4

statement 3

3 test cases

3 test results
(1 pass, 2 fail)

MUSE

A buggy program
statement 1

statement 2

statement 4

statement 3

3

2

4

1

susp. 
ranking

faulty 
statement

mutant 1
stmt 1’

stmt 2

stmt 4

stmt 3

mutant n
stmt 1

stmt 2

stmt 4’

stmt 3
…

5



Progress
• 4 complicate bugs are collected from the bug repository.

‒ 2 bugs in sqlite-jdbc
‒ 1 bug in Java-gnome
‒ 1 bug in Azureus

• MUSE ranks the buggy statement at the top of the 
suspiciousness ranking for 2 out of 4 collected bugs.

• An example of MUSE output
line Statement Pass Fail F2P P2F #mutants Susp.

ranking
...

2526 Java_org_sqlite_NativeDB_changes (...) 586 5 0 0 0 12

2528 jint ret = 0; 586 5 0 0 0 12

2529 ret = sqlite3_changes (gethandle (...)); 586 5 12 967 13 1

2530 return ret; 586 5 4 325 22 2
...

402
lines

A buggy statement in sqlite-jdbc

𝑚𝑚1 : ret *= sqlite3_changes(gethandle(...));
𝑚𝑚2 : ret >>= sqlite3_changes(gethandle(...));
𝑚𝑚3 : return ret;
𝑚𝑚4 : ; 6



Future Work
• Create mutation operator specialized for Java/JNI 

programs
• Memory leak bugs
• Pending exceptions
• API misuses

• Study more real-world Java/JNI bugs
• Bugs with complicated error scenarios

7



Fault Localization for 
Multi-language Programs

Taehoon Kwak, Yiru Jeon, Yunho Kim, Shin Hong, Moonzoo Kim
Software Testing & Verification Group, KAIST

Bongseok Ko, Byeongcheol Lee
Programming Systems Laboratory, GIST


	Fault Localization for �Multi-language Programs
	Summary
	Multi-language programs
	Challenge
	Approach: MUtation-baSEd fault localization (MUSE)
	Progress
	Future Work
	Fault Localization for �Multi-language Programs

