A8 HHE|X| Z 0| &t
B.J-I'I-I OI_TI_ %x-lcl)_|
BEIAYE 203 XIS HATY

Effective and Efficient Test Generation for
Multithreaded Programs
Using Concurrency Coverage Metrics

=Y

Software Testing and Verification Group
KAIST

Research Overview

 Taming concurrency bugs in real-world multithreaded software

Precision

2015-02-05

A

Req.
Property

Formal
Model

AWEEREEREEEEL,y

Scripts Writin

“Okay”

Counter
Example

i

Model checking techniques

+ High precision

+ Comprehensive error detection
- Manual effort for modeling

- Scalability (state explosion)

Scalability

SAIE AHEX[E o] 8ot 2utH0o| s8N0 BE[AYE 220 Xts HAE 2/24

Research Overview

 Taming concurrency bugs in real-world multithreaded software

PrecisionT Real-world
. . P ncurrent
1 1 Q ograms
A ‘\ B
I/\ / L Z E;re(::rution
NV
: » ke COBET
. e g [JSS'13]
/ \ Q/ N !l!llllll.‘.
Code Cgtf:m / lizer E
pattern Fnatch #2 ZD O RacerX :
\ match#1) O Metal :
‘.lllllllllllllll’;
e
Scalability

2015-02-05 AN A E|X|2 0|23 STHH0| 1 BSHQ HE[MY S T2 12 XIS B AE 3 /24

 Taming concurrency bugs in real-world multithreaded software

[] [] A
Precision

Research Overview

N
ute

IPE -~ -

Real-world

Static/dynamic bug predictions
+ Fast (no need to generate many exec.)

<
x GEE@;‘(‘%

R

Block race
bug
w
s

I8 o

o Data race
"I.‘?"G 0
e bug

o, Multi-data
G, s bl
2. O ock race bug
Y

- False alarms
*
0020 Race bug
fét 5‘30 o e .
07, classification
[STVR 14]
Multi-data EEEEEEEEEEER
[race bug] .“‘ ’ .’o
k Atomizer %
o " Eraser RacerX -
oﬁﬁi““ . % Metal «
‘;QEG "..IIIIIIIIIIII“’

Scalability>

2015-02-05

HE|MPE Z2 Y X5 HAE

4 /24

Research Overview

 Taming concurrency bugs in real-world multithreaded software
A

Precision Real-world
concurrent
N programs
JPF_gusion Utilize
 Empirical evaluation of “coverage metrics”
concurrency coverage metric
[ICST’13, STVR’14]
* Coverage-guided thread rpr—c—
scheduling technique [ISSTA’12] Eraser () RacerX
O Metal
 Coverage-guided event-driven
program testing [ICST’14] Scalability>

2015-02-05 SAS AHHE[XE 0| 2ot 2tH0| 1 @M HEMYE ZZ2OH X5 HAE 5/24

Dthoar AP
8 workshop,
2018

Coverage-based Testing of Multithreaded Programs

Generating test executions to achieve high concurrency
coverage fast is effective and efficient to detect

concurrency errors in multithreaded programs
 Evaluation of testing effectiveness ||* Testing technique to achieve high
of concurrency coverage metrics concurrency coverage fast
e—e Blocked B B DefUse PSet Target e overade
4— A BlockedPair*—* Follows¢— ¢ SyncPair pro%ram Th;e:; r::rdel ‘ requirement
¥—~¥ Blocking + + LRDef Test case Y 'Z:L: {:'i <[”’I“>’—‘
.S T T T T
8 = AR 2
% gi pr; ‘; Test generator
A ol 7 ¥ - Singular Combinat- f Singular requirement
5 04r 1) ‘i/ { - [scheduler || scheduter]9 S e
£ 0.2} P ﬁ: & . Scheduling controller Combinatorial requirement
beO h“ﬁ 1 — é@ﬁé E W<y 1=, <y, 15>),
% (</|| 1)y, <ly "x >),
40 60 80 100 < (<by. by, </ L>), ...}
Coverage (%) Threads in program exec.

2015-02-05 SAE AHEX[E o] 8ot 2utH0o|n s8N0 BE[AYHE 220 Xts HAE 7 /24

Testing Multithreaded Programs is Difficult

Thread-1 D sttt Execution start

Interleaved execution-1

NEn:-0- aemm::

Interleaved execution-2

Interleaved execution-3

Testingenvironment m 432172121

Thread-2

Thread
scheduler

Thread-3

'CIE - EE R

* Testing with the basic thread scheduler under stress is not
effective to generate diverse schedules which are possible for
field environments

2015-02-05 EAM A E|X|2 0|23 STHE0| T ZSHO HE[MY S T2 12 XIS B AE 8 /24

Concurrent Program Testing in Practice

* Most popular method is stress testing which is neither
scientific nor systematic

 However, stress testing suffers from low effectiveness and
low efficiency

gl Google-testing blog

HOW WE TEST

SOFTWARE
AT MICROSOFT .

.- Software

Help me test like Google | =4t

2015-02-05 ZAM AHBE|X|E 0|82 2 1H0| D S MO HE|MYE T2 X}x BHAE 9 /24

Part I:
Empirical Evaluation on Testing Effectiveness

of Concurrency Coverage Metrics

* S.Hong, M.Staats, J.Ahn, M.Kim, and G.Rothermel, The Impact of Concurrent Coverage Metrics
on Testing Effectiveness, IEEE Intl’ Conf. Softw. Test. Verif. Valid. (ICST), 2013 (accept. ratio: 28%)

 S.Hong, M. Staats, J. Ahn, M. Kim, G. Rothermel, Are Concurrency Coverage Metrics Effective
for Testing: A Comprehensive Empirical Investigation, J. Softw. Test. Verif. Relia. (STVR), Accepted,
Published online, Jun 2014

2015-02-05

Concurrency Coverage Metrics

* A coverage metric generates a set of test
requirements from a target program code
— Each test requirement is a condition over |19: threadi() { 20: thread2() {

01: int data ;

an execution 11: lock(m); 21: lock(m);
— The test requirement set is constructed to [12: if (data ..){ 22: data = 0;

capture comprehensive behaviors 13: data =1 ;

29: unlock(m);
* Concurrency coverage metrics aim to UEunTEEk(m)k;
generate the test requirements that

capture various thread interactions QO & o
— Synchronization coverage: blocking, N:? @ &
blocked, follows} sync-pair,]etc. @ O E

— Data access based coverage: ¥ Q ®
),

PSet, all-use, LR-DEF, Def-Use, etc. O

2015-02-05 SAE AHBEXE 0|8t 2itH0|1 22Xl HEMAYE ZZOHM X5 HAE 11 /24

Synchronization-Pair (SP) Coverage

10:foo() { 20:bar({
11: Tock(m); 21: lock(m);
12: unlock(m); 22: unlock(m);
13: Tock(m); 23: lock(m);
14: unlock(m); 24: unlock(m);
15:} 25:}

N

(11, 21) is covered i

(21, 23) is covered I

2015-02-05

(23, 13) is covered

Def. A pair of code locations (I, ;)

is a SP test requirement, if
(1) [; and [, are lock statements

(2) [, and [, hold the same lock m

(3) [, holds m right after [, held m

Total SP test requirements:

(11, 13), (11, 21), (11, 23), (13, 21),
(13, 23), (21, 11), (21, 13), (21, 23),
(23,11), (23, 13)

| Covered SP test requirements:
(11, 21), (21, 23), (23, 13)

MOl E|MBC T2 1M XS HAY 12 /24

Is Concurrency Coverage Good for Testing?

* Concurrency coverage metrics are methods to provide
reasonable assessments of a testing process

1. Measure how many different behaviors are tested
2. Indicate untested program behaviors

« A common belief about coverage metrics is that
“As more test requirements for the metrics are covered,
testing becomes more likely to detect faults”.

Is this hypothesis true for concurrency coverage metrics?
- We have to provide empirical evidence

2015-02-05 SA|E AHHE[XE 0|2t 2tH0|1 22X HE(MYE ZZ2OH X5 HAE 13 /24

Research Question 1

* Does coverage positively impact fault finding?

Fault
finding

N\

coverage
metric A

coverage

f.’ metric B

coverage
N

metric C

Coverage

* Measure correlation of fault finding and coverage to check if
concurrency coverage is a good predictor of testing effectiveness

 Compare with the correlation of fault finding and test size

2015-02-05 EAIM FH2|X|2 0|2 200D X0

HE|MPE Z2 2 X} HAE 14 / 24

RQ 1: Does Coverage Achieved Impact Fault Finding ?

 Compute the correlations of coverage metrics and fault finding as well as
the correlations of test suite size and fault finding by Pearson’s r

* Result
— Ex. Vector
Corr. Size-FF # ‘ ‘ 30
Sync-pair
PSet 5 #
LR-DEF E 20
Follows é
Def-Use E "
Blocking ;%D 10
Blocked-pair
Blocked ’

0O 02 04 06 08 1
Corr. cov. and fault finding

Blocked

- Blocked-pair

Blocking

- Def-Use

Follows

+ LR-Def

PSet

- Synec-pair

‘
e
e
.t.-

/]
i
/

20

40

60

Coverage (%)

30

100

RQ 1: Is concurrency coverage good predictor of test. effectiveness?

=>» Yes. The metrics estimate fault finding of a testing properly

2015-02-05 S A F{H2|X|Z 0|23+ S 0|1 ZLH Ol

HEMAYE Z2 M XS HAE

15 /24

Research Question 2

* |s testing controlled to have high coverage more
effective than random testing with equal size tests?

(" Coverage)
t, [
t, I []
t

NE] == = =uj
IR BN B |

Random test suite:

a test suite having arbitrary

three executions

Does a coverage-directed test suite have better fault

[

t'; I I

Coverage

\

J

Coverage controlled test suite:

a test suite controlled to
have 100% coverage

finding ability than random tests of equal size?

2015-02-05 EAA HHZ|X|Z 0|28 BIFH0| 1 ZS O HE[MPYE T2 AE B AE

16 /24

RQ 2: Does Coverage Controlled Testing Detect More Faults?

* Compare fault finding of a coverage-controlled test suite w.r.t. a metric M
and fault finding of random test suite of equal size

e Result * Cov FF / Random FF: fault finding of

— Ex. Arraylist controlled test suites/random test suite (0--8.5)

Fault detection m Cov FF ® Random FF
8

7 -

6 -

5 -

blocking blocked LR-Def blocked-pair Def-Use follows PSet Sync-pair

RQ 2: Is concurrency coverage proper for test generation ?
=» Yes. Generating test suites toward high coverage can detect
more faults than random test generation

2015-02-05 SA|ES AHHE[X[E 0|2t 20| 1 2N HEMYE Z2 0 X5 HAE 17 /24

1 -

0 -

Part Il:
Test Generation Technique Achieving

High Concurrency Coverage Fast

* S.Hong, J. Ahn, S. Park, M. Kim, and M. J. Harrold, Testing Concurrent Programs to Achieve
High Synchronization Coverage, Intl. Symp. Softw. Test. Analy. (ISSTA), 2012 (accept ratio: 29%)

2015-02-05

Coverage Based Test Generation
for Multithreaded Programs

* Control execution orders of threads to achieve test
requirements from concurrency coverage metrics

 Technique
— Estimation phase: estimates achievable test requirements,
— Testing phase: generates thread schedules by
* monitor running thread status, and measure coverage
* suspend/resume threads to cover uncovered test requirements

.

: i Measure | Test run)
E 1ethfeaﬁ%(§ ¢ P i [Thread scheduling
. . ocC m : :
: : | {(20,20), -} controller
: [15: unlock(m) Coverage | _[{(10,20) P
- | thread2 > esti St | Covered TRs
200 1ock<8 { estimator | ’| (20,10),...}
30: unlock(m) Estimated {(20,10), ...}
: 4 target TRs : | Uncovered TRs Threads
: SN J \.
. Estimation phase i i Testing phase

Thread Scheduling Controller

Instrument a target program to invoke a scheduling controller
(scheduling probe) before every coverage related operation (e.g.,
lock/unlock, shared memory read/write)

Manipulate the execution order of threads in runtime
(1) suspend a thread before a lock or shared memory operation
(2) select one of suspended threads to resume using a heuristic

4)
(I) {(10120)1 }
S Decide whether Covered TRs
@9: sched _probe(..); suspend, or < 1{(20,10), ...}
10: lock(m); resume a Uncovered TRs
11: if (t > 9) { current thread
\ J | OB
7 Other threads’
9 status y

2015-02-05 SAE AHBEXE 0|8t 2itH0|1 22Xl HEMAYE ZZOHM X5 HAE 20 /24

Coverage Based Thread Scheduling Heuristics

Coverage
information

e Covered test requirements
* Next operation of each thread

7

* Uncovered test requirements

Thread-1

?

Thread-2 Coverage

-based
scheduler

Thread-3 ! —

* Resume one suspended thread:

Greedy rules: choose a thread whose next operation definitely

covers a new test requirement

| (i.e., estimated but not yet covered

]

S Execution start

Estimation-based rule: choose a thread whose next operation is

most unlikely to cover uncovered test requirements

2015-02-05

SAE AHEX[E o] 8ot 2utH0|n w2 HQl BE[AYHE 220 Ats HAE

A = 21 /24

RQ1: Fault Finding

Average |1 o S o S —
fault Y oo T
finding 08 =" O cuve
R e = X RN
0.6 ,/ff,zﬁ‘;'_?%:::*-::- — — = O] RE
0.4 %" — + RN,
— A X RS
0.2 = m— — A JPF
0 | | | I I |

200 400 600 800 1000
Time (sec)

ArrayList

* CUVE shows highest fault finding for all study objects
* CUVE reaches high fault finding levels faster than the other
techniques for most study objects

2015-02-05 SAE AHBEXE 0|8t 2itH0|1 22Xl HEMAYE ZZOHM X5 HAE 22 /24

RQ2: Coverage Achievement

Combinatorial 120000 o

o S o
coverage /e/"" ------------
achievement g0 IRV N S o e
/” | d-._z___.__:':_____-—_—_-——*,_.. ——.—_—_.T.'.__*:._;T_:T x RNB
60000 7_;” x AN
y W
30000 X RS
O L] L | I

200 400 600 800 1000
Time (sec)

ArrayList

 CUVE achieves coverage levels higher than or equal to the other
techniques for most study objects

 CUVE is faster to achieve high coverage levels than the other
techniques for most study objects

2015-02-05 SAE AHHEXE 0| 8¢t 2tH0|1 2N HE(MY E ZZ2OH X5 HAE 23 /24

RQ3: Impact of Using Improved Coverage

Fault finding Coverage
Program
CUVE-c CUVE CUVE-c CUVE

ArrayList 0.88 1.00 109786.2 117030.1
HashMap 0.90 0.92 98844.1 98785.4
TreeSet 0.70 0.94 116146.8 2157721
Airlines 1.00 1.00 14554.6 14572.3
Crawler 1.00 1.00 29713.7 30105.7
Log4i-509 1.00 1.00 13256.0 13257.0
Log4i-1507 1.00 1.00 3540.0 3540.0
Pool-146 1.00 1.00 38582.9 41215.1
Pool-184 1.00 1.00 71686.6 74562.8

2015-02-05

* CUVE-c is a CUVE variant which use only the conventional metrics.

SAlE AHE|X|E o] 8¢t

—

z21tH0|

24 /24

	동시성 커버리지를 이용한 �효과적이고 효율적인 �멀티쓰레드 프로그램 자동 테스팅��Effective and Efficient Test Generation for �Multithreaded Programs �Using Concurrency Coverage Metrics
	Research Overview
	Research Overview
	Research Overview
	Research Overview
	Research Overview
	Coverage-based Testing of Multithreaded Programs
	Testing Multithreaded Programs is Difficult
	Concurrent Program Testing in Practice
	Part I: �Empirical Evaluation on Testing Effectiveness �of Concurrency Coverage Metrics
	Concurrency Coverage Metrics
	Synchronization-Pair (SP) Coverage
	Is Concurrency Coverage Good for Testing?
	Research Question 1
	RQ 1: Does Coverage Achieved Impact Fault Finding ?
	Research Question 2
	RQ 2: Does Coverage Controlled Testing Detect More Faults?
	Part II: �Test Generation Technique Achieving �High Concurrency Coverage Fast
	Coverage Based Test Generation �for Multithreaded Programs
	Thread Scheduling Controller
	Coverage Based Thread Scheduling Heuristics
	RQ1: Fault Finding
	RQ2: Coverage Achievement
	RQ3: Impact of Using Improved Coverage

