
/ 24

동시성 커버리지를 이용한
효과적이고 효율적인

멀티쓰레드 프로그램 자동 테스팅

Effective and Efficient Test Generation for
Multithreaded Programs

Using Concurrency Coverage Metrics
홍신

Software Testing and Verification Group
KAIST

2015-02-05

/ 24

• Taming concurrency bugs in real-world multithreaded software

Research Overview

Precision

MetaL
RacerX

JPF
jCute

CHESS

SPIN

Atomizer
 Eraser

Fusion

KISS

Scalability
동시성 커버리지를 이용한 효과적이고 효율적인 멀티쓰레드 프로그램 자동 테스팅 2015-02-05

rstest
ConTest

CalFuzzer

Real-world
concurrent
programs

MOKERT
[MBT’09]

Model checking techniques
+ High precision
+ Comprehensive error detection
- Manual effort for modeling
- Scalability (state explosion)

2

/ 24

• Taming concurrency bugs in real-world multithreaded software

Research Overview

Precision

MetaL
RacerX

JPF
jCute

CHESS

SPIN

Atomizer
 Eraser

Fusion

KISS

Scalability
동시성 커버리지를 이용한 효과적이고 효율적인 멀티쓰레드 프로그램 자동 테스팅 2015-02-05

rstest
ConTest

CalFuzzer

Real-world
concurrent
programs

COBET
[JSS’13]

Code
pattern
match#1

Code
pattern
match #2

Error
execution

3

/ 24

• Taming concurrency bugs in real-world multithreaded software

Research Overview

Precision

MetaL
RacerX

JPF
jCute

CHESS

SPIN

Atomizer
 Eraser

Fusion

KISS

Scalability
동시성 커버리지를 이용한 효과적이고 효율적인 멀티쓰레드 프로그램 자동 테스팅 2015-02-05

rstest
ConTest

CalFuzzer

Real-world
concurrent
programs

Race bug
classification

[STVR 14]

Static/dynamic bug predictions
+ Fast (no need to generate many exec.)
- False alarms

4

/ 24

Research Overview

Precision

MetaL
RacerX

JPF
jCute

CHESS

SPIN

Atomizer
 Eraser

Fusion

KISS

Scalability
동시성 커버리지를 이용한 효과적이고 효율적인 멀티쓰레드 프로그램 자동 테스팅 2015-02-05

rstest
ConTest

CalFuzzer

Utilize
“coverage metrics”

Real-world
concurrent
programs

Testing techniques
+ No false positive
- Difficult to generate useful
 thread schedules

• Empirical evaluation of
concurrency coverage metric
[ICST’13, STVR’14]

• Coverage-guided thread
scheduling technique [ISSTA’12]

• Coverage-guided event-driven
program testing [ICST’14]

5

• Taming concurrency bugs in real-world multithreaded software

/ 24

Research Overview

Precision

MetaL
RacerX

JPF
jCute

CHESS

SPIN

Atomizer
 Eraser

Fusion

KISS

Scalability

동시성 커버리지를 이용한 효과적이고 효율적인 멀티쓰레드 프로그램 자동 테스팅 2015-02-05

rstest
ConTest

CalFuzzer

MOKERT

COBET
Race bug class

CUVE
Coverage study

2nd workshop, 2009

5th workshop, 2011

6th workshop, 2011

7th workshop, 2012

8th workshop,
2012

9th workshop, 2013 10th workshop, 2014

6

/ 24

Coverage-based Testing of Multithreaded Programs

Generating test executions to achieve high concurrency
coverage fast is effective and efficient to detect
concurrency errors in multithreaded programs

2015-02-05 동시성 커버리지를 이용한 효과적이고 효율적인 멀티쓰레드 프로그램 자동 테스팅

• Evaluation of testing effectiveness
of concurrency coverage metrics

• Testing technique to achieve high
concurrency coverage fast

7

/ 24

Testing Multithreaded Programs is Difficult

• Testing with the basic thread scheduler under stress is not
effective to generate diverse schedules which are possible for
field environments

2015-02-05 동시성 커버리지를 이용한 효과적이고 효율적인 멀티쓰레드 프로그램 자동 테스팅

5 4 3 2 1

5 4 3 2 1

5 4 3 2 1

Thread
scheduler

5 5 5 … 4 3 2 1 2 1 2 1

Thread-1

Thread-2

Thread-3

Interleaved execution-1

5 5 5 … 4 3 2 2 1 1 2 1

Interleaved execution-2

5 5 5 … 4 3 2 1 2 1 2 1

Interleaved execution-3

Testing environment

Execution start

8

5 4 3 … 3 2 5 1 4 3 2 1

/ 24

Concurrent Program Testing in Practice
• Most popular method is stress testing which is neither

scientific nor systematic
• However, stress testing suffers from low effectiveness and

low efficiency

2015-02-05 동시성 커버리지를 이용한 효과적이고 효율적인 멀티쓰레드 프로그램 자동 테스팅 9

/ 24

Part I:

Empirical Evaluation on Testing Effectiveness

of Concurrency Coverage Metrics

2015-02-05

• S.Hong, M.Staats, J.Ahn, M.Kim, and G.Rothermel, The Impact of Concurrent Coverage Metrics
on Testing Effectiveness, IEEE Intl’ Conf. Softw. Test. Verif. Valid. (ICST), 2013 (accept. ratio: 28%)

• S. Hong, M. Staats, J. Ahn, M. Kim, G. Rothermel, Are Concurrency Coverage Metrics Effective
for Testing: A Comprehensive Empirical Investigation, J. Softw. Test. Verif. Relia. (STVR), Accepted,
Published online, Jun 2014

/ 24

Concurrency Coverage Metrics
• A coverage metric generates a set of test

requirements from a target program code
– Each test requirement is a condition over

an execution
– The test requirement set is constructed to

capture comprehensive behaviors

• Concurrency coverage metrics aim to
generate the test requirements that
capture various thread interactions

– Synchronization coverage: blocking,
blocked, follows, sync-pair, etc.

– Data access based coverage:
PSet, all-use, LR-DEF, Def-Use, etc.

동시성 커버리지를 이용한 효과적이고 효율적인 멀티쓰레드 프로그램 자동 테스팅 2015-02-05

01: int data ;
 …
10: thread1() {
11: lock(m);
12: if (data …){
13: data = 1 ;
 ...
18: unlock(m);
 ...

20: thread2() {
21: lock(m);
22: data = 0;
 ...
29: unlock(m);
 ...

11

/ 24

Synchronization-Pair (SP) Coverage

동시성 커버리지를 이용한 효과적이고 효율적인 멀티쓰레드 프로그램 자동 테스팅

10:foo() {

11: lock(m);

12: unlock(m);

13: lock(m);

14: unlock(m);

15:}

--Thread1: foo()-- --Thread2: bar()--
11: lock(m)
12: unlock(m)

21: lock(m)
22: unlock(m)

(11, 21) is covered

13: lock(m)
14: unlock(m)

23: lock(m)
24: unlock(m)

(21, 23) is covered

(23, 13) is covered

 Def. A pair of code locations (𝒍𝟏, 𝒍𝟐)

 is a SP test requirement, if

(1) 𝑙1 and 𝑙2 are lock statements

(2) 𝑙1 and 𝑙2 hold the same lock 𝑚

(3) 𝑙2 holds 𝑚 right after 𝑙1 held 𝑚

20:bar() {

21: lock(m);

22: unlock(m);

23: lock(m);

24: unlock(m);

25:}

Covered SP test requirements:
 (11, 21), (21, 23), (23, 13)

2015-02-05

Total SP test requirements:
(11, 13), (11, 21), (11, 23), (13, 21),
(13, 23), (21, 11), (21, 13), (21, 23),
(23, 11), (23, 13)

12

/ 24

Is Concurrency Coverage Good for Testing?

• Concurrency coverage metrics are methods to provide
reasonable assessments of a testing process
1. Measure how many different behaviors are tested
2. Indicate untested program behaviors

• A common belief about coverage metrics is that
 “As more test requirements for the metrics are covered,
 testing becomes more likely to detect faults”.

 Is this hypothesis true for concurrency coverage metrics?
 - We have to provide empirical evidence

동시성 커버리지를 이용한 효과적이고 효율적인 멀티쓰레드 프로그램 자동 테스팅 2015-02-05 13

/ 24

Research Question 1
• Does coverage positively impact fault finding?

동시성 커버리지를 이용한 효과적이고 효율적인 멀티쓰레드 프로그램 자동 테스팅

Fault
finding

Coverage

• Measure correlation of fault finding and coverage to check if
concurrency coverage is a good predictor of testing effectiveness

• Compare with the correlation of fault finding and test size

coverage
metric B

coverage
metric C

coverage
metric A

2015-02-05 14

/ 24

0 0.2 0.4 0.6 0.8 1

Blocked

Blocked-pair

Blocking

Def-Use

Follows

LR-DEF

PSet

Sync-pair

Corr. Size-FF

RQ 1: Does Coverage Achieved Impact Fault Finding ?
• Compute the correlations of coverage metrics and fault finding as well as

the correlations of test suite size and fault finding by Pearson’s r
• Result

– Ex. Vector

동시성 커버리지를 이용한 효과적이고 효율적인 멀티쓰레드 프로그램 자동 테스팅

Corr. cov. and fault finding

2015-02-05

RQ 1: Is concurrency coverage good predictor of test. effectiveness?

 Yes. The metrics estimate fault finding of a testing properly
15

/ 24

Research Question 2
• Is testing controlled to have high coverage more

effective than random testing with equal size tests?

동시성 커버리지를 이용한 효과적이고 효율적인 멀티쓰레드 프로그램 자동 테스팅

Does a coverage-directed test suite have better fault
finding ability than random tests of equal size?

t1

t2

t3

Coverage

Random test suite:
a test suite having arbitrary

three executions

+)

t'1

t'2

t'3

Coverage

Coverage controlled test suite:
a test suite controlled to

have 100% coverage

+)

2015-02-05 16

/ 24

RQ 2: Does Coverage Controlled Testing Detect More Faults?

동시성 커버리지를 이용한 효과적이고 효율적인 멀티쓰레드 프로그램 자동 테스팅

* Cov FF / Random FF: fault finding of
controlled test suites/random test suite (0--8.5)

• Compare fault finding of a coverage-controlled test suite w.r.t. a metric M
and fault finding of random test suite of equal size

• Result
– Ex. ArrayList

0

1

2

3

4

5

6

7

8

blocking blocked LR-Def blocked-pair Def-Use follows PSet Sync-pair

Reduced FF Random FFFault findingFault detection Cov FF Random FF

2015-02-05

RQ 2: Is concurrency coverage proper for test generation ?
Yes. Generating test suites toward high coverage can detect

more faults than random test generation
17

/ 24

Part II:

Test Generation Technique Achieving

High Concurrency Coverage Fast

2015-02-05

• S. Hong, J. Ahn, S. Park, M. Kim, and M. J. Harrold, Testing Concurrent Programs to Achieve
High Synchronization Coverage, Intl. Symp. Softw. Test. Analy. (ISSTA), 2012 (accept ratio: 29%)

• S. Hong, Y. Park, M. Kim, CUVE: Effective and Efficient Testing of Concurrent Program Using
Combinatorial Concurrency Coverage, Technical Report, 2014

/ 24

Coverage Based Test Generation
for Multithreaded Programs

• Control execution orders of threads to achieve test
requirements from concurrency coverage metrics

• Technique
– Estimation phase: estimates achievable test requirements,
– Testing phase: generates thread schedules by

• monitor running thread status, and measure coverage
• suspend/resume threads to cover uncovered test requirements

동시성 커버리지를 이용한 효과적이고 효율적인 멀티쓰레드 프로그램 자동 테스팅

Testing phase

Thread scheduling
controller

Threads

Estimated
target TRs

 {(10,20),
 (20,10),…}

 {(10,20), …}

Test run Measure
coverage

 {(20,10), …}

Covered TRs

Uncovered TRs

Estimation phase

Coverage
estimator

 thread1() {
10: lock(m)
 ...
15: unlock(m) ...

 thread2() {
20: lock(m)
 ...
30: unlock(m)

2015-02-05 19

/ 24

09: sched_probe(…);

Thread Scheduling Controller
• Instrument a target program to invoke a scheduling controller

(scheduling probe) before every coverage related operation (e.g.,
lock/unlock, shared memory read/write)

• Manipulate the execution order of threads in runtime
(1) suspend a thread before a lock or shared memory operation
(2) select one of suspended threads to resume using a heuristic

동시성 커버리지를 이용한 효과적이고 효율적인 멀티쓰레드 프로그램 자동 테스팅

 ...

 10: lock(m);
 11: if (t > 0) {
 12: ...

Decide whether
suspend, or
resume a
current thread

 {(10,20), …}

 {(20,10), …}

Covered TRs

Uncovered TRs

Other threads’ status

2015-02-05 20

/ 24

Coverage Based Thread Scheduling Heuristics

동시성 커버리지를 이용한 효과적이고 효율적인 멀티쓰레드 프로그램 자동 테스팅

5 4 3

5 4 3 2

5 4

Coverage
-based

scheduler

Thread-2

Thread-3

? 3 2 1 2 1 1

Thread-1 ?

• Resume one suspended thread:

• Greedy rules: choose a thread whose next operation definitely
covers a new test requirement

• Estimation-based rule: choose a thread whose next operation is
most unlikely to cover uncovered test requirements

2015-02-05

Coverage
information

Execution start

• Covered test requirements
• Next operation of each thread
• Uncovered test requirements

(i.e., estimated but not yet covered)

21

/ 24

RQ1: Fault Finding

동시성 커버리지를 이용한 효과적이고 효율적인 멀티쓰레드 프로그램 자동 테스팅 2015-02-05

• CUVE shows highest fault finding for all study objects
• CUVE reaches high fault finding levels faster than the other

techniques for most study objects

Average
fault

finding

22

/ 24

RQ2: Coverage Achievement

• CUVE achieves coverage levels higher than or equal to the other
techniques for most study objects

• CUVE is faster to achieve high coverage levels than the other
techniques for most study objects

2015-02-05 동시성 커버리지를 이용한 효과적이고 효율적인 멀티쓰레드 프로그램 자동 테스팅

Combinatorial
coverage

achievement

23

/ 24

RQ3: Impact of Using Improved Coverage

* CUVE-c is a CUVE variant which use only the conventional metrics.

2015-02-05 동시성 커버리지를 이용한 효과적이고 효율적인 멀티쓰레드 프로그램 자동 테스팅

Program
Fault finding Coverage

CUVE-c CUVE CUVE-c CUVE
ArrayList 0.88 1.00 109786.2 117030.1
HashMap 0.90 0.92 98844.1 98785.4
TreeSet 0.70 0.94 116146.8 215772.1
Airlines 1.00 1.00 14554.6 14572.3
Crawler 1.00 1.00 29713.7 30105.7
Log4j-509 1.00 1.00 13256.0 13257.0
Log4j-1507 1.00 1.00 3540.0 3540.0
Pool-146 1.00 1.00 38582.9 41215.1
Pool-184 1.00 1.00 71686.6 74562.8

24

	동시성 커버리지를 이용한 �효과적이고 효율적인 �멀티쓰레드 프로그램 자동 테스팅��Effective and Efficient Test Generation for �Multithreaded Programs �Using Concurrency Coverage Metrics
	Research Overview
	Research Overview
	Research Overview
	Research Overview
	Research Overview
	Coverage-based Testing of Multithreaded Programs
	Testing Multithreaded Programs is Difficult
	Concurrent Program Testing in Practice
	Part I: �Empirical Evaluation on Testing Effectiveness �of Concurrency Coverage Metrics
	Concurrency Coverage Metrics
	Synchronization-Pair (SP) Coverage
	Is Concurrency Coverage Good for Testing?
	Research Question 1
	RQ 1: Does Coverage Achieved Impact Fault Finding ?
	Research Question 2
	RQ 2: Does Coverage Controlled Testing Detect More Faults?
	Part II: �Test Generation Technique Achieving �High Concurrency Coverage Fast
	Coverage Based Test Generation �for Multithreaded Programs
	Thread Scheduling Controller
	Coverage Based Thread Scheduling Heuristics
	RQ1: Fault Finding
	RQ2: Coverage Achievement
	RQ3: Impact of Using Improved Coverage

