
Automated Software Engineering, 12, 321–347, 2005
c© 2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands.

Deviation Analysis: A New Use of Model Checking

MATS P.E. HEIMDAHL
YUNJA CHOI
MICHAEL W. WHALEN
Department of Computer Science and Engineering, University of Minnesota, 200 Union Street S.E., 4-192,
Minneapolis, MN 55455, USA

Abstract. Inaccuracies, or deviations, in the measurements of monitored variables in a control system are facts
of life that control software must accommodate. Deviation analysis can be used to determine how a software
specification will behave in the face of such deviations. Deviation analysis is intended to answer questions such
as “What is the effect on output O if input I is off by 0 to 100?”. This property is best checked with some form of
symbolic execution approach. In this report we wish to propose a new approach to deviation analysis using model
checking techniques. The key observation that allows us to use model checkers is that the property can be restated
as “Will there be an effect on output O if input I is off by 0 to 100?”—this restatement of the property changes the
analysis from an exploratory analysis to a verification task suitable for model checking.

Keywords: deviation analysis, model checking, robustness

1. Introduction

Often, because of inherent limitations in sensors, a control system is presented with slightly
inaccurate information about its environment. These inaccuracies are deviations from the
actual value of an environmental variable. These deviations can stem from a number of
sources: inaccurate sensors, faulty switches, electrical interference on a wire, a garbled
message over a bus, etc. Frequently, control software must continue to function correctly
within an expected range of deviations in the inputs.

Deviation analysis is concerned with discovering and classifying any changes in system
behavior between two identical control systems in slightly different environments. One
system is provided with absolutely accurate input data from the environment, and the other
is provided with a slightly inaccurate deviation model of the environment, created by an
analyst. Deviation analysis can be distinguished from standard verification and validation
activities in that the control system in question, given correct inputs, is always assumed to
be correct—we are not interested in looking for faults in the model under perfect operating
condition. Instead, it is a mechanism for determining the robustness of the control system
in the face of expected inaccuracies in input data.

This idea has been explored in previous work (Reese and Leveson, 1997a, b; Reese,
1996) using symbolic execution and partial evaluation. Given qualitative descriptions (e.g.
“very high”, “low”) of deviations on system inputs, this work allows open-ended exploratory
analysis of effects on system outputs. For example, using the symbolic execution technique,
one can ask: “What are the possible effects on the primary flight display if the altitude reading



322 HEIMDAHL, CHOI AND WHALEN

is deviated so that it is ‘higher’ than the correct value?”. Unfortunately, the qualitative
abstractions used in this approach lead to situations where it is difficult to determine how a
deviation will affect the value of an output.

In this paper, we describe an alternate approach to deviation analysis. Our approach
works by restating exploratory deviation analysis questions as verification tasks suitable
for model checking (Clarke et al., 1999). For example, the flight display question can be
restated as follows: “Will the correct and deviated primary flight displays always match if
the altitude reading is high by 0 to 100 feet?”. This approach is more precise than previously
suggested approaches to deviation analysis and supports an alternate verification style. We
have defined the mechanism for performing this analysis, implemented a prototype tool,
and evaluated the approach on several case examples.

2. Background

Reese and Leveson introduced the notion of software deviation analysis in 1996 (Reese,
1996). The method is based on Hazard and Operability (HAZOP) analysis (CISHEC, 1977;
Kletz, 1992), a successful procedure used in the chemical and nuclear industries. This
section gives the reader an overview of the evolution of software deviation analysis and the
developments that led to the approach described in this paper.

2.1. Hazard and Operability analysis (HAZOP)

Developed for the British chemical industry in the 1950’s, HAZard and OPerability analysis
(HAZOP) (CISHEC, 1977; Kletz, 1992) is a manual analysis technique in which a HAZOP
leader directs a group of domain experts to consider a list of deviations. In HAZOP, a
deviation is the combination of a guide word, such as “too-high,” with a system variable,
e.g., “manifold pressure,” yielding a question: “What is the potential effect of the pressure
in the manifold being too high?” The answer to the question is now used to pose additional
questions (following the same “guide-word/system variable” approach) about the effect of
the result of the first question. In this way, the deviations are propagated through the system
in an attempt to discover hazardous results.

There have been some attempts to adapt the manual HAZOP technique to include software
(McDermid and Pumfrey, 1994), but these techniques are essentially identical to a standard
manual HAZOP except that the guide-words are changed and the model of the system may
differ from the original plant diagrams from the chemical processing industry (pipes, tanks,
and valves) used in the original approach. Because of the complexity of control software
(as compared to pipe diagrams) and the lack of a formalism for propagating the deviations
through the software, these techniques are largely infeasible in practice. To address these
problems and bring HAZOP related techniques to the safety critical software field, Reese
and Leveson developed software deviation analysis.

2.2. Software Deviation Analysis

Software Deviation Analysis (Reese and Leveson, 1997a; Reese, 1996) overcomes some
deficiencies with HAZOP. Software Deviation Analysis is based on the same underlying



DEVIATION ANALYSIS: A NEW USE OF MODEL CHECKING 323

idea as HAZOP—accidents are caused by deviations in system parameters. Using a black-
box software or system requirements specification, the analyst provides assumptions about
particular deviations in software inputs and hazardous states or outputs, and the software
deviation analysis automatically generates scenarios in which the analyst’s assumptions
lead to deviations in the specified outputs. A scenario is a set of deviations in the soft-
ware inputs plus constraints on the execution states of the software that are sufficient to
lead to a deviation in a safety-critical software output; in a sense, deviation analysis is
a symbolic execution of a software requirements model including the deviations in the
evaluation.

To represent the deviations, Reese and Leveson use qualitative mathematics, a branch of
mathematics that operates on categories of numbers rather than the numbers themselves.
For instance, a negative number multiplied by a negative number equals a positive number.
The advantage to deviation analysis is that general results (whole classes of deviations) can
be propagated quickly and clearly. In Reese (1996), Reese developed a calculus of deviation
that formed the basis for their tools—a sample expression from the calculus is “Very High-
Positive × Normal-Negative = Very Low-Negative.” With this calculus and the deviation
analysis tools, an analyst can pose a questions such as “If the altitude reading on altimeter 1 is
‘Very-High-Positive’, what will be the effect on the pitch command?” Deviation analysis,
as well as the perturbation analysis discussed below, are based on abstracting away the
details of the computations and are thus closely related to abstract interpretation (Cousot
and Cousot, 1977).

In an attempt to implement this analysis procedure in the NIMBUS tool at the University
of Minnesota1, we came to the conclusion that the qualitative mathematics used in software
deviation analysis did not provide the analysis accuracy that we required. Therefore, in
collaboration with Reese and Leveson we developed a related approach based on interval
calculus as opposed to qualitative mathematics.

2.3. Perturbation analysis

Perturbation analysis is an adaptation and simplification of Reese’s deviation procedure for
the RSML−e language. RSML−e (Thompson et al., 1999; Whalen, 2000) is a synchronous
dataflow language in which the specification state is comprised of a set of state variables,
each describing a portion of the specification behavior.

In perturbation analysis, the user specifies a state variable of interest (VOI), and we
construct a partial machine state containing perturbed values of input variables that we use
to compute the nominal and perturbed values of the VOI. We can then study these values
to determine if the perturbation is within acceptable limits.

For example, suppose we have a state variable z, defined as follows (using the textual
RSML−e syntax):

STATE VARIABLE z: INTEGER
PARENT : NONE
INITIAL VALUE : 0
CLASSIFICATION : State



324 HEIMDAHL, CHOI AND WHALEN

EQUALS x * 2 IF b
EQUALS y IF not (b or c)
EQUALS x * 2 - y IF not b and c

END STATE VARIABLE

From the definition, z references two input variables, x and y. Perturbations in x and
y will manifest themselves in perturbations of z. Therefore, we must prompt the user to
decide to what extent x and y are perturbed. The user provides a range of correct values and
also a range of perturbation. In the analysis, we prompt the user for all values that cannot be
directly computed in this step: the values of input variables, the time input variables were
assigned, and values of state variables in the previous step (if this information is relevant).
For our example, a user could define x and y as follows:

Variable Correct range Perturbation Perturbed range

x [0..10] [−1..3] [−1..13]

y [5..60] [10..20] [15..80]

In this scenario, the correct value of x could range from [0..10], but because of sensor
errors, each value of x could be perturbed anywhere from 1 less than its true value to 3
greater than its true value. Thus, the potential range of perturbed values is from [−1..13].
We compute both the potential correct values of the VOI and a range of perturbed values
given perturbed inputs.

Because we are describing variable ranges, several different assignment conditions could
hold for a given state variable. Therefore, we output from the analysis a set of 〈condition,

correct, perturbed〉 tuples, where if condition holds, then correct describes the possible
correct range of values and perturbed describes the maximum perturbation possible. First,
we can determine the normal values of z by using interval arithmetic:

– If b, then the normal range of z is x × 2 = [0..10] × 2 = [0..20]
– If ¬b and ¬c, then the normal range of z is y = [5..60]
– If ¬b and c, then the normal range of z is x × 2 − y = [0..20] − [5..60] = [−60..15]

Given perturbations in x and y,we can also determine the maximum perturbations of z by
the same process.

– If b, then the perturbed range of z is x × 2 = [−1..13] × 2 = [−2..26]
– If ¬b and ¬c, then the perturbed range of z is y = [15..80]
– If ¬b and c, then the perturbed range of z is x × 2 − y = [−2..26] − [15 − 80] =

[−82..11]



DEVIATION ANALYSIS: A NEW USE OF MODEL CHECKING 325

To summarize, the deviations in z given deviations of x and y are given by the tuples below:

Condition Correct z range Deviated z range

b [0..20] [−2..26]

¬(b ∨ c) [5..60] [15..80]

¬(b ∧ c) [−60..15] [−82..11]

The idea behind this analysis is appealing since it helps answer many questions during
safety analysis that can be very difficult to address without tool support. Unfortunately,
as discussed below, there were several issues that led us to abandon perturbation analysis
before we completed a stable prototype or any publications.

2.4. Issues with existing approaches

These analyses, while useful, have issues that, in our opinion, must be resolved before they
are applicable in realistic applications. The most serious issue involves the interplay between
intervals (whether numeric or qualitative) and Boolean conditions within the specification.
The intervals are often too large to accurately partition the conditions into cases in which the
deviated specification behaves differently than the non-deviated specification. For example,
given the definition of z, a useful question might be: “Are there any circumstances when the
non-deviated z is greater than 18 but the deviated value is less than 18?” For this question,
the output of the deviation analysis as well as perturbation analysis provides no help. The
user must go back and describe smaller correct intervals in order to improve the accuracy
of the analysis.

Second, given the interval procedure above, we can determine the maximum and mini-
mum of the deviated range, but it is not as straightforward to determine the maximum and
minimum deviation. Similarly, with qualitative methods, the output of the analysis describes
only qualitative ranges of deviations.

Third, the reports from our prototype tool were excessively large. Our implementation did
not check whether or not the condition of each pair is satisfiable. Given decision procedures,
it would be possible to reduce the number of cases reported by the symbolic execution by
removing unsatisfiable conditions. In our experience, however, decision procedures alone
will not remove enough spurious reports—the size of the output may still be overwhelming in
even a small system. We could further reduce the number of unsatisfiable cases by checking
whether certain conditions were possible once the intervals for input and state variables are
given. There are, however, some problems with extending the standard relational operators
over intervals that make it difficult to create accurate decision procedures. For example,
defining various operators such as the notion of equivalence of intervals poses a problem—
shall two intervals be equivalent if they have the same upper and lower bound, or is it enough
that they overlap? Either choice is defensible, but both may yield spurious reports and may
falsify predicates that are satisfiable in the original system.

Finally, the perturbation analysis was originally defined is a ‘one-step’ analysis; it does
not record how a series of perturbations affect the specification over time. Unfortunately,



326 HEIMDAHL, CHOI AND WHALEN

many of the properties in which one might be interested (e.g., stability) can only be checked
over multiple steps. The deviation analysis, while allowing multiple steps, requires user
guidance to successfully explore a multi-step state space. While pondering these drawbacks,
the solutions started to look more and more like some variant of temporal logic model
checking. This fact led to our investigation of alternative approaches to symbolic execution
and was the genesis of the model checking ideas presented in the next section.

2.5. Recent developments

Recently, Ait-Ameur et al., developed an approach similar to perturbation analysis based on
abstract interpretation of LUSTRE programs (Ait-Ameur et al., 2003). In this work, they fo-
cus on the effect of deviations in real variables that are inputs to control laws implemented
in the LUSTRE language (Halbwachs et al., 1991). They define an abstract interpreta-
tion (Cousot and Cousot, 1977) of the real domain in LUSTRE programs—using interval
calculus—that allows an analyst to compute approximations of the deviations in output
variables caused by deviations in inputs. The analysis has been implemented in a prototype
Java tool. This tool has been applied to the various LUSTRE libraries available at Airbus
Industries. Their approach is exciting, but suffers from problems similar to the ones we faced
with perturbation analysis (see above). It is likely that this approach will scale better than an
approach based on model checking (and works with real-valued variables), but at the cost of
less precision. Continued refinement of the work presented in Ait-Ameur et al. (2003), pos-
sibly coupled with constraint solving and decision procedures, may yield a complementary
approach for analyzing the robustness of software systems in the face of deviated inputs.

3. Deviation analysis as a verification problem

Because of the issues with the symbolic execution approach discussed above, we developed
a novel technique to use model-checking techniques to perform deviation analysis.2 As
mentioned above, deviation analysis is intended to answer “What if?” questions such as
“What is the effect on the output DOI-Command if the altitude reading is ‘high’?.” This
question can be explored with the techniques discussed in the previous section. By restating
the question to “Will there be an effect on the DOI-Command if the altitude reading is off
by 0 to 100 feet?”, we change the analysis from an exploratory analysis to a verification
task suitable for model checking. Consider the example with x, y, and z introduced above.
In the original statement, we are simply interested in computing all variables that are data
dependent on x and y in any way. We would then investigate the result and see if any of the
affected variables had a deviation that was unacceptably large. If we restate our problem
as “Given a deviation of x and y, will the deviation of z be within an acceptable margin?”,
we can formulate it as a temporal logic property and, with creative use of a model checker,
verify that the deviation is acceptable or provide an example (counter example) of how the
deviation of z may become too large.

The general approach to deviation analysis using model checking is to represent the
system under investigation with two models, one representing the behavior of the system
with no deviation and the other representing the deviated system (figure 1 outlines the



DEVIATION ANALYSIS: A NEW USE OF MODEL CHECKING 327

Figure 1. General approach of deviation analysis using model checking.

general approach). We want the two models to operate on exactly the same inputs, except
for the input variables that are deviated—we can then compare the computed states of the
two systems and see if any critical deviations are present.

To assure that the discrepancy of computed states of the two systems are purely due to
the given deviation, we impose two types of constraints on input variables; (1) for non-
deviated input variables, both system models must receive the same values in each step,
(2) for deviated input variables (only existing in the deviated system model), all deviated
variables have exactly the value of the corresponding input variables in the original system
plus possible deviations. The two system models are tied together through these constraints
on the input variables.

As an example, let us use the xyz example from above. We would provide two system
models; one expressed in terms of the variables x, y, and z, and the other (deviated system) in
terms of the variables x d , y d , and z d. Note that the models would be identical except for
the names of the variables. We can now tie the ‘correct’ and ‘deviated’ system together with
constraints on the input variables. Let us assume that we want to investigate how z is affected
by a [0..10] deviation of x . By defining the constraints y d = y and x d = x + [0..10] we
have stated that there is no deviation in the variable y and a deviation of [0..10] in variable
x. If we want to investigate if z is affected by the deviation, we can state that it is globally
true that z = z d . If this property can be verified, the deviation in x does not propagate to
z. If verification fails, we will get an example of a situation when the deviation in x shows
up as a deviation in z. We can also capture the notion of acceptable deviations using this
approach. For instance, if x is deviated, an acceptable deviation of z might be e. This can
be stated as it is globally true that (z d − e ≤ z ≤ z d + e).

The greatest challenge of using model checking for deviation analysis is in dealing with
the state space explosion problem. Since we are duplicating the system model, the number
of system variables may be doubled and, consequently, the size of the state space may
explode. Also, since we are often interested in the actual values of data variables, dealing
with data variables ranging over large domains is an issue that must be overcome.

4. Deviation analysis using a model checker

The analysis ideas outlined above can be realized by either (1) providing two models of the
original system and tie the input variables together with constraints, or (2) providing one
model that is instantiated twice under the same system environment.



328 HEIMDAHL, CHOI AND WHALEN

Figure 2. Modeling Scheme 1—simple duplication.

4.1. System model duplication

As shown in figure 2, we can simply duplicate the original system model and check for
critical discrepancies between the behavior of the original system and that of the duplicated
system with deviation introduced. The constraints between input variables of the original
system and the duplicated system can be imposed outside of the two models as invariants.
For example, suppose the original system has two input variables X and Y and we want to
perform a deviation analysis on the input variable X. The constraints would be imposed in
NuSMV (NuSMV, ) as follows (variables with a d subscript represents the variables in the
deviated system):

INVAR Yd = Y
INVAR Xd = X + deviation

The benefit of using this approach is mainly its simplicity; once we have an automated
translation between a program or a specification, and a target input language of a model
checker, no extra work is required for this approach other than duplicating the system and
imposing constraints between the input variables. This approach, however, is inefficient
since it duplicates all variables (and thus, increasing the state space when model checking)
and it requires costly computations during model checking such as invariant assignments
and computations.

4.2. System model embedding

An alternative approach is to embed the original system and the deviated system inside of
a common environment and check the outputs of both embedded systems. As shown in



DEVIATION ANALYSIS: A NEW USE OF MODEL CHECKING 329

Figure 3. Modeling Scheme 2—embedding.

Figure 4. A comparison of the two modeling schemes.

figure 3, we use a two level model hierarchy. The top level is responsible for modelling the
input variables to the system. The ‘correct’ and ‘deviated’ versions of the system models
are represented as subsystems. The top level will then pass the necessary variables to the
subsystems—variables that are not deviated will be passed to both subsystems as they are
whereas variables that are deviated will be passed with a deviation added to the subsystem
designated to be ‘deviated’. The two subsystems execute synchronously and they compute
the values of state variables based on the input values received from the parent. We can now
express the properties of interest as properties over the two subsystems. Note that the input
variables are declared only once in the parent system in this modelling scheme and we do
not need to impose extra constraints for input variables as invariants—this saves on both
verification time and required memory space.

The table in figure 4 shows a performance comparison of the two modelling schemes
for one deviation analysis over our sample system, the Altitude Switch, (after applying
abstraction on numeric variables as described in the next section). Since the embedding
scheme is significantly more efficient, we have chosen to pursue this approach for our
prototype tool. Our tool uses RSML−e as the source language and produces output to
NuSMV (NuSMV, ); nevertheless, our general approach is not limited to any particular
model checking tools.

5. Examples

To illustrate our approach to deviation analysis, we will use two examples from the avionics
domain—the Altitude Switch and a Flight Guidance System. Both systems we are using



330 HEIMDAHL, CHOI AND WHALEN

as our examples have their origin with Rockwell-Collins’ Advanced Technology Center in
Cedar Rapids, Iowa. Using the altitude switch example, we will illustrate how deviation
analysis through model checking can be used to detect subtle problems with straight forward
and seemingly correct approaches to tolerating altitude measurement deviations. The flight
guidance system will be used to show how deviation analysis can be used to analyze a
complex system for mode confusion properties.

5.1. The altitude switch

The Altitude Switch (ASW) is a hypothetical device based on a real system that turns power
on to another subsystem, the Device of Interest (DOI), when the aircraft descends below
a threshold altitude and turns the power off again after we ascend over the threshold plus
some hysteresis factor (the example is adopted from Miller and Tribble, 2001 and Thompson
et al., 1999). The robustness to deviations in the altitude measures is the subject of interest
in the following two subsections.

The version of the ASW used in this paper receives altitude information from some
number of radio altimeters (figure 5). The functionality of the ASW can be inhibited or
reset at any time. This raises questions, for example, about how the ASW should oper-
ate if it is reset or inhibited while crossing the various thresholds. In our initial version
of the ASW, we model the perceived altitude status (are we above or below the thresh-
olds) as shown in figure 6. Using the textual RSML−e syntax, we view the AltitudeStatus
to be Unknown at system startup or after a reset. In addition, we define AltitudeStatus
to be a child variable of the state PowerStatus.On (indicated by the parent field), that
is, AltitudeStatus is only relevant when the ASW power is on. AltitudeStatus is assigned
the value in an EQUALS clause when the guard condition in that clause is true. Should
more than one guard be satisfied, the first EQUALS clause is chosen. The guard condition
is expressed in a tabular format we call AND/OR tables. The left column of the AND/OR

table lists the logical phrases. Each of the other columns is a conjunction of those phrases
and contains the logical values of the expressions. If one of the columns is true, then the
table evaluates to true. A column evaluates to true if all of its elements match the truth
values of the associated predicates. A dot denotes “don’t care.” For example, we will set the

Figure 5. The ASW system in its environment.



DEVIATION ANALYSIS: A NEW USE OF MODEL CHECKING 331

Figure 6. The definition of the AltitudeStatus state variable and the BelowThreshold() macro.



332 HEIMDAHL, CHOI AND WHALEN

AltitudeStatus to Above or Below when we have determined that we are above the threshold
hysteresis or below the threshold respectively—until then, we consider the AltitudeStatus
to be Unknown. The BelowThreshold() and AboveThresholdHyst() macros encapsulate the
conditions used to determine this information based on the altimeter data, this is where
potential voting algorithms providing fault tolerance would be modelled (the sample macro
in figure 6 shows the voting scheme used in this example, as soon as one of our three
altimeters report an altitude below the threshold we consider ourselves below). The inter-
ested reader can find a complete description and formal semantics of the RSML−e language
in Whalen (2005)

The ASW command to the Device of Interest (DOI) is defined as in figure 7. At startup
and after a reset, we do not know what to do with the DOI so we view its status as Undefined.
We power the DOI off under two conditions, (1) we ascended above the threshold plus the
hysteresis value (the condition @T(..AltitudeStatus = Above) indicating that the condition
AltitudeStatus = Above became true) while not being inhibited nor reset, or (2) we are
currently above the threshold plus hysteresis and the inhibit is removed. We turn on the
DOI if the system is operational (i.e., it is not inhibited or reset) and the altitude changed
from above to below (condition rows 1 and 4).

5.1.1. The effect of altitude deviations on the DOI. Figure 8 shows a major part of the
NuSMV code for the ASW system automatically translated from the ASW specifications

Figure 7. The definition of the DOI Intended state variable.



DEVIATION ANALYSIS: A NEW USE OF MODEL CHECKING 333

written in RSML−e. Note that this is the code for one instance of the ASW—not
the code we will create to represent the two ASW systems for deviation
analysis.

Given this system model, we would like to check the tolerance of the system in terms
of deviation of the measured altitude. Suppose one of the altimeters is not accurate and
the measured altitude can be deviated by −100 ft . . . 100 ft from the actual value of the
altitude. The main function of the ASW system is to signal the On command to the DOI
when the aircraft descends below the threshold altitude. Since it is quite critical that the
DOI is turned on in a timely manner, we would like the ASW to tolerate deviations in the
altitude measures. In particular, we want to make sure that the DOI is never turned on ‘too
late’. This can be captured as the property “The deviated system signals the DOI command
On whenever the correct system signals the DOI command On”. Note here that we are not
concerned about the deviation leading to the DOI being turned on ‘too early’; this is an
acceptable performance degradation in the face of deviations, ‘too late’, however, is not
acceptable.

To achieve this level of fault tolerance we will have to include more than one altimeter
in the ASW system—a positive deviation with only one altimeter will always lead to the
DOI being turned on too late. Therefore, we have included three redundant altimeters and
use a voting scheme to determine if we are above or below the threshold. A voting scheme
where we require all altimeters to be below the threshold before we turn the DOI on will,
not surprisingly, be useless since a positive deviation in any altimeter will lead to the DOI
being turned on too late. Therefore, we selected a voting scheme that will ‘obviously’ solve
our problem—we will turn the DOI on as soon as one altimeter indicates we are below the
threshold and we will turn the DOI off as soon as all altimeters indicate we are above the
threshold plus hysteresis. With this voting scheme, the DOI will be turned on early if we
have a negative deviation in one altimeter and there will be no change in when the DOI is
turned on if we have a positive deviation. Also, the DOI may be turned off late if we have a
negative deviation in one altimeter and there will be no change in when the DOI is turned
off if we have a positive deviation (see figure 9)—at least that is what we expected before
applying our deviation analysis.

The NuSMV code is translated using the embedding scheme described in the previous
section as shown in figure 10. The main module defines input variables for the ASW
system and the range of deviations for one of the altimeters. It embeds two synchronous
sub-processes, ASW Original and ASW Deviated, that accept the values of input variables
defined in the main module; correct values for the process ASW Original and deviated
values for the process ASW Deviated. The definition for the sub-module ASW is identical to
the original ASW system definition except for the removal of the input variable declarations
and the macro declarations; the macro declarations are referenced from both sub-processes
and do not need to be declared twice.

The property “The deviated system signals the DOI command On whenever the correct
system signals the DOI command On” can be specified in CTL as

P1. AG(ASW Original.DOICommand=On →
ASW Deviated.DOICommand=On)



334 HEIMDAHL, CHOI AND WHALEN

Figure 8. Fraction of NuSMV code for the ASW system.



DEVIATION ANALYSIS: A NEW USE OF MODEL CHECKING 335

Figure 9. A negative deviation will turn on the DOI early. A positive deviation will have no effect.

Figure 10. NuSMV code for deviation analysis.



336 HEIMDAHL, CHOI AND WHALEN

Since the model includes several integer variables over large domains, such as Altitude1:
0..40000; model checking the ASW system is not feasible without using some abstraction.
The change of the integer values in the ASW is not constrained, i.e., the altitude values are
random input. Therefore, we can apply a simple domain reduction abstraction (Choi et al.,
2002; Choi, 2003) to reduce the size of the domain without affecting the behavior of the
system.

At a high level, the idea behind the simplest version of domain reduction abstraction
is to partition the input domain based in the collection of numeric guarding conditions in
the model. We then reduce the domain to a set of random representatives, one from each
equivalence class. In the ASW mode we can identify six numeric guarding conditions.

Altitude1 < AltitudeThreshold
Altitude1 > AltitudeThreshold + Hysteresis
Altitude2 < AltitudeThreshold
Altitude2 > AltitudeThreshold + Hysteresis
Altitude3 < AltitudeThreshold
Altitude3 > AltitudeThreshold + Hysteresis

The constraints produce the following data equivalence classes.

ai1 : Altitude#i < AltitudeThreshold
ai2 : Altitude#i ≥ AltitudeThreshold ∧

Altitude#i ≤ AltitudeThreshold + Hysteresis
ai3 : Altitude#i > AltitudeThreshold + Hysteresis

where i = 1..3. After selecting a representative value from each equivalence class, the
domain of each altitude variable is reduced to Altitude#i : {1999, 2001, 2201}. We proved
in Choi et al. (2001) that a system model with such a reduced domain bi-simulates the
original system model.

After applying the domain reduction abstraction and extending the domain of the altitude
variables to accommodate the specified deviation, NuSMV easily checks the property and
generates a counter example as shown in figure 11. The variables with a d subscript in
the lower half of the table are the variables in the deviated system—there is a [−100..100]
deviation in Altitude1. The issue highlighted by the counter example is a startup problem
caused by our definition of the initial system behavior.

A graphical view of the startup scenario can be seen in figure 12. At system startup, the
state variables AltitudeStatus and DOICommand are given the value Undefined since we
do not know if we are above or below the threshold and, consequently, we do not know
if the DOI should be on or off. In this initial version of the ASW, we do not assign a new
value to the DOICommand until we cross one of the thresholds (either we drop below the
threshold or we raise above the threshold plus hysteresis)—note that we turn the DOI on
and off based on the event of crossing the thresholds, not based on the conditions of being
above or below. Therefore, the value of the DOICommand does not change to Off until
the AltitudeStatus becomes Above—the DOICommand will remain Undefined until this



DEVIATION ANALYSIS: A NEW USE OF MODEL CHECKING 337

Figure 11. A counter example trace.

Figure 12. The startup scenario problem.

event happens. The counter example shows that if we have a negative deviation, the original
system raises above the threshold plus hysteresis, thus setting the AltitudeStatus to Above
and the DOICommand to Off. The deviated system, on the other hand, is still considered
to be below the threshold because of the negative deviation so no action is taken. When
the aircraft now descends below the threshold, the original system’s AltitudeStatus will
change from Above to Below—an event that will cause the DOI to be turned on. Since the
deviated system never changed AltitudeStatus to Above, the event of changing from Above
to Below will never take place and, consequently, the DOI will not be turned on. We have
discovered how a critical function can be effected by a deviation in one altimeter despite
our conservative voting mechanism.

After analyzing the counter example, one would expect that the system would tolerate
the deviation if we changed the startup behavior of the system—we will now allow the
DOI to be turned on immediately at startup if we are below the threshold and off if we



338 HEIMDAHL, CHOI AND WHALEN

Figure 13. The inhibit scenario problem.

Figure 14. Corresponding trace after correction.

are above the threshold plus hysteresis no matter what the previous value of AltitudeStatus
was; at startup we will no longer wait for the event of crossing the thresholds to occur.
With this modification in startup behavior the problem is solved, the trace in figure 11
would become the trace shown in figure 14. The problem, however, was not that simple; the
model checker quickly found another counter example trace related to the inhibit signal that
prevents the system from issuing output commands. The counter example in figure 15 shows
this case (a graphical illustration is available in figure 13); if we have a negative deviation
in one altimeter, the value of AltitudeStatus of the deviated system becomes Below in the
second state because of the deviation (the deviated variable is less than the threshold) but
the ASW cannot set the value of DOICommand to On since it is inhibited. The original
system stays above the threshold in this state. In the next state, the aircraft descends below
the threshold and the inhibit is removed. The original system can set DOICommand to On
since it is not inhibited and the event Above to Below occurred, but the deviated system
still cannot set DOICommand to On since in this system the event happened while it was
inhibited.



DEVIATION ANALYSIS: A NEW USE OF MODEL CHECKING 339

Figure 15. Counter example trace after correction.

When this problems is corrected, a similar issue is raised with an ASW reset function that
is designed to bring the system back to its initial state. Although our ASW can be corrected so
that it does tolerate deviations in one altimeter, the example serves to demonstrate how a fault
tolerance mechanism that will ‘obviously correct the problem’ exhibits undesirable behavior
under various non-obvious circumstances. In our limited experience with deviation analysis,
the problems exposed seem to be related to startup behaviors, temporary shutdowns and
inhibits, and system reset behaviors—well known problem areas in critical systems (Jaffe
et al., 1991).

5.1.2. The effect of altitude deviations on altitude rate. Our approach to deviation analysis
can also be used for quantitative analysis. For example, assume that the ASW is computing
the altitude rate in addition to its duties related to the DOI. The altitude rate is simply the
difference between two altitude readings divided by the time between the readings. This
is an admittedly very simplistic example that nevertheless suffices to illustrate the main
point. Further assume we want to answer the question “If one altimeter has a measurement
error of 0..100 ft, what will be the deviation of the computed altitude rate?”. We can change
the question into a verification task by asking “If one altimeter has a measurement error
of 0..100 ft, the deviation in the altitude rate will be less than y ft?”. The main difference
between the questions is that in the second question we first need to provide an acceptable
value for the deviation of the altitude rate and then check the property using model checking.
If the property does not hold (the deviation is larger than y) we know that the deviation in
the input leads to an unacceptable deviation in the output. If we want to know how large
the deviation in the output may be, we need to adjust the value of y upward and check the
property again. This process will be repeated until we come up with the right value. This
estimation process is admittedly inefficient and if we are interested in computing exact (or
estimated) values of deviations rather than determining if a specific deviation is possible,



340 HEIMDAHL, CHOI AND WHALEN

methods based on some form of symbolic execution would be preferable, for example, the
approach based on abstract interpretation discussed in Ait-Ameur et al. (2003).

To demonstrate quantitative analysis, we modify the ASW system altitude computation
scheme; the altitude value Alt is now defined as

Alt =
{ altitude1 + altitude2 + altitude3

3
if all altimeters are OK

Undefined, otherwise

The altitude rate is computed as

AltRate = Alt − PREV STEP(Alt)

since the altitude is sampled once per second. Again, we assume that the deviated system
has a problem with Altimeter1; the altitude reports from altimeter1 are deviated by 0..100
from the true altitude.

We can now formulate our question “If Altimeter1 has a measurement error of 0..100 ft,
the deviation in the altitude rate will be less than 35 ft?” as a CTL property

P2. AG(ASW Deviated.AltRate − ASW Original.AltRate < 35)

In order to verify the property, we again apply domain reduction abstraction to reduce
the domain of the input variables as we discussed in the previous section. Note that we need
to take the numeric conditions ASW Deviated.AltRate − ASW Original.AltRate < 35 into
account from the property specification as well as the numeric conditions from the system
model itself.

After applying the abstraction, property P2 quickly turns out false using NuSMV; if one
of the altimeters is not functioning correctly (it signals that the altitude is bad), the averaged
altitude takes on the value Undefined, and, consequently, AltRate becomes Undefined and
the model checker assumes the value of AltRate is the same as the previous one which can be
any value. In our property, we did not specify that the altitude rate used in the computations
must actually be defined. Therefore, we adjusted the property as follows to require that all
altimeters work correctly. This property proves to be true with our very simplistic scheme
of averaging altitude reports.

P2.1. AG(ASW Original.AltRate Undefined = FALSE −→
ASW Deviated.AltRate − ASW Original.AltRate < 35)

In actuality, in the ASW we do not declare a failure until we have lost altitude reports
from two or more altimeters—the ASW continues functioning normally with one failed
altimeter. To capture this, we modify the logic so that the computation of altitude as well



DEVIATION ANALYSIS: A NEW USE OF MODEL CHECKING 341

Figure 16. A counter example for property P2.1.

as altitude rate tolerate failure of one altimeter.

Alt =




Altitude1 + Altitude2 + Altitude3

3
if AltitudeQ1 = AltitudeQ2 =

AltitudeQ3 = Good,
Altitude1 + Altitude2

2
if AltitudeQ1 = AltitudeQ2 = Good &

AltitudeQ3 = Bad ,
Altitude1 + Altitude3

2
if AltitudeQ1 = AltitudeQ3 = Good &

AltitudeQ2 = Bad ,
Altitude2 + Altitude3

2
if AltitudeQ2 = AltitudeQ3 = Good &

AltitudeQ1 = Bad

NuSMV generates a counter example for property P2.1 after the modification of the
altitude computation as shown in figure 16. If one of altimeters 2 or 3 fails, we continue
computing an averaged altitude but we only average two altitude reports. Thus, a larger
portion of the measurement error in Altimeter1 propagates to the altitude rate computation.
After reviewing the counter example and the computation logic of AltRate we had to lower
our expectations and accept a much larger possible deviation in the computed altitude rate
than we previously planned for. This property is captured below as P2.2 and can be easily
verified using NuSMV.

P2.2. AG(ASW Original.AltRate Undefined = FALSE −→
ASW Deviated.AltRate − ASW Original.AltRate < 55)



342 HEIMDAHL, CHOI AND WHALEN

5.2. Mode confusion analysis using a variation of deviation analysis

Mode confusion refers to the situation where the operator of a system, in our case a pilot,
gets confused about the status of the automation and starts interacting with it inappropri-
ately (Leveson et al., 1997; Leveson and Palmer, 1997). In this section we will outline how a
variation of deviation analysis can be used for analysis of certain mode confusion properties
in a Flight Guidance System.

A Flight Guidance System (FGS) is a component of the overall Flight Control System
(FCS). It compares the measured state of an aircraft (position, speed, and altitude) to the
desired state and generate pitch and roll guidance commands to minimize the difference
between the measured and desired state.3 The FGS can be broken down to mode logic,
which determines which lateral and vertical modes of operation are active and armed at any
given time, and the flight control laws that accept information about the aircraft’s current
and desired state and compute the pitch and roll guidance commands.

Figure 17 illustrates a graphical view of a FGS in the NIMBUS environment. The primary
modes of interest in the FGS are the horizontal and vertical modes. The horizontal modes
control the behavior of the aircraft about the longitudinal, or roll, axis, while the vertical

Figure 17. Flight guidance system.



DEVIATION ANALYSIS: A NEW USE OF MODEL CHECKING 343

modes control the behavior of the aircraft about the vertical, or pitch, axis. In addition,
there are a number of auxiliary modes, such as half-bank mode, that control other aspects
of the aircraft’s behavior. Since the modes determine how the aircraft will be controlled,
mode confusion problem becomes a critical issue—it is imperative that the pilot is provided
adequate guidance as to which mode is actively controlling the aircraft.

Various research efforts have identified collections of conditions that might lead to mode
confusion (Leveson et al., 1997; Leveson and Palmer, 1997; Miller and Potts, 1999). For
example, it is well known that hidden modes are a serious problem—a mode is hidden if the
system retains state information that may affect future mode changes, but this information
is not annunciated to the pilot. This can be informally stated as the requirement below.

R3. If the mode annunciations A are provided to the pilot and mode selection input I is
given, the new mode annunciations A′ will always be given.

Note here that we have not really stated what the mode annunciations shall be or how
they shall change. All we have stated is that every time the annunciations are A and we
provide a mode switch input I , they will change to A′—the mode changes are consistent.
This property cannot be checked using regular model checking techniques since we are
interested in showing consistency of sets of variables over time, but we do not know the
value of the variables. This property can be trivially formalized, however, if we can quantify
over states.

P3. ∀s1, s2 : (modeAnnunc(prev(s1)) = modeAnnunc(prev(s2))) ∧ (m inputs(s1)
= m inputs(s2)) ⇒ modeAnnunc(s1) = modeAnnunc(s2)

Nevertheless, we can check similar types of properties using a variation of the deviation
analysis technique we have presented in this paper. For the purpose of mode confusion
analysis, we introduce two identical models of the system and tie the mode annunciations
in the previous state and the current mode switch inputs together to investigate if the current
annunciations are consistent. Note that we are not introducing any artificial deviation in the
model as we did for the general deviation analysis discussed earlier; we are not interested
in investigating the response to deviations, instead we are interested in seeing if there is a
potential for any unexpected mode changes to identical mode switch inputs. Therefore, as
illustrated in figure 18, we treat the two system models as two independent systems, without
introducing any extra constraints for the input variables as we did for deviation analysis.

To check a property similar to property P3, we must first identify the mode-annunciations
and mode switch inputs in the system model. In the version of the FGS we used as an
example, we identified the following variables:

Mode annunciations HDG Lamp, VS Lamp, ALT Lamp, AP Lamp

Mode inputs AP Engage Switch, AP Disconnect Switch,
HDG Switch, VS Pitch Wheel In Motion,
VS Switch, ALT Switch, Transfer Switch



344 HEIMDAHL, CHOI AND WHALEN

Figure 18. Two independent models for mode confusion analysis.

With a model that has two FGS system, FGS1 and FGS2 running synchronously, we can
state a relaxed version of property P3 as property P4 below.

P4 AG(m was same annunciations.result & m same inputs.result⇒m same annunciations
.result)

where m was same annunciations.result, m same inputs.result, and m same annunciations.
result represent macros that compare values of mode annunciations and mode switch inputs
of the two synchronously running FGS models. These macros are specified in NuSMV
using its MODULE construct as shown in figure 19. Note here that P4 is a relaxation of
P3. In P3 we are interested in if any two arbitrary states with the same mode annunciation
will provide the same new mode annunciation after receiving identical mode switching
commands. In the relaxed property P4, we are interested in if there there is a possibility
of getting two different mode annunciations given identical sequences of mode switching
commands—a situation that could occur if there is nondeterminism in the system or if other
inputs affect the mode logic. We have not yet been able to investigate properties such as P3
in our deviation analysis framework. The version of the FGS we used in our case study was
developed independently by Rockwell Collins Inc. using RSML−e and has been extensively
reviewed for mode confusion in a related project—thus, the deviation analysis proved the
property above true.

6. Discussion

In this paper we reported on an effort to perform deviation analysis using standard model
checkers. Our work is a complement to other approaches based on a symbolic execution
of the system models and promises to provide a more accurate analysis than what was pre-
viously possible. In our, admittedly quite limited, experience, deviation analysis through



DEVIATION ANALYSIS: A NEW USE OF MODEL CHECKING 345

Figure 19. Macros for the mode confusion analysis.

model checking works well and has helped us identify problems in small to medium sized
examples. More work is necessary before the feasibility of the approach on larger prob-
lems can be determined. The future challenges mainly fall in two categories: comparative
evaluation and conquering the state space explosion problem.

Here, we showed that deviation analysis through model checking can be effective in
pointing out subtle problems in a system model. We did not, however, make any claims as
to the relative effectiveness of tackling real world safety analysis problems with our approach
compared to other proposed techniques. We believe the exploratory nature of the original
deviation/perturbation analysis of Reese and Leveson (1997a, 1997b) and Reese (1996)
and the abstract interpretation approach of Ait-Ameur et al. (2003) will nicely complement



346 HEIMDAHL, CHOI AND WHALEN

the more verification-oriented nature of deviation analysis through model checking. The
interaction of the techniques, and a possible incorporation of constraint solving and decision
procedures in the exploratory techniques are issues worth further study.

The size of the representation of the state space and the next state relation are the limiting
factor when model checking larger systems. Since we are in essence simultaneously analyz-
ing two copies of a system (correct and deviated), we have many more variables to contend
with, and thus, our approach may not scale up to large systems. Given our experience with
model checking realistic systems expressed in RSML−e (Choi and Heimdahl, 2002), we
believe the approach will scale as well as model checking in general. By adopting exist-
ing model checking abstraction techniques, such as iterative refinement abstraction (Clarke
et al., 2000) and domain reduction abstraction (Choi et al., 2002), or other analysis ap-
proaches, such as bounded model checking (Biere et al., 1999), we hope to extend the
scalability of our approach to larger systems.

Acknowledgments

This work has been partially supported by NASA grant NAG-1-224 and NASA contract
NCC-01-001. We also want to thank the McKnight Foundation for their generous support
over the years.

Notes

1. NIMBUS is a execution, analysis, and code generation environment for the state-based, fully formal specification
language RSML−e .

2. We will use Reese’s and Leveson’s original name of the analysis since we abandoned perturbation analysis
before it was fully implemented in a usable tool.

3. We thank Dr. Steve Miller and Dr. Alan Tribble of Rockwell Collins Inc. for the information on flight control
systems and for letting us use the models they have developed in our case studies.

References

Ait-Ameur, Y., Bel, G., Boniol, F., Pairault, S., and Wiels, V. 2003. Robustness analysis of avionics embedded
systems. In Proceedings of the 2003 ACM SIGPLAN Conference on Language, Compiler, and Tool for Embedded
Systems. New York, NY, USA, ACM Press, pp. 123–132.

Biere, A., Cimatti, A., Clarke, E.M., and Zhu, Y. 1999. Symbolic model checking without BDDs. In Tools and
Algorithms for the Analysis and Construction of Systems, pp. 193–207.

Choi, Y. 2003. Toward automated verifiaction of software specifications with numeric constraints. Ph.D. thesis,
University of Minnesota. Draft.

Choi, Y. and Heimdahl, M. 2002. model checking RSML−e requirements. In Proceedings of the 7th IEEE/IEICE
International Symposium on High Assurance Systems Engineering. Tokyo, Japan, pp. 109–118.

Choi, Y., Rayadurgam, S., and Heimdahl, M. 2001. ‘Automatic abstraction for model checking software systems
with interrelated numeric constraints’. In Proceedings of the 9th ACM SIGSOFT Symposium on the Foundations
of Software Engineering (ESEC/FSE-9), pp. 164–174.

Choi, Y., Rayadurgam, S., and Heimdahl, M.P. 2002. Toward automation for model checking requirement speci-
fications with numeric constraints. Requirements Engineering Journal, 7(4):225–242.

CISHEC. 1977. A Guide to Hazard and Operability Studies. The Chemical Industry Safety and Health Council
of the Chemical Industries Association Ltd.



DEVIATION ANALYSIS: A NEW USE OF MODEL CHECKING 347

Clarke, E., Grumberg, O., Jha, S., Lu, Y., and Veith, H. 2000. Counterexample-guided abstraction refinement. In
Proceedings of the 12th International Conference on Computer Aided Verification, pp. 154–169.

Clarke, E.M., Grumberg, O., and Peled, D. 1999. Model Checking. MIT Press.
Halbwachs, N., Caspi, P., Raymond, P., and Pilaud, D. 1991. The synchronous dataflow programming language

lustre. Proceedings of the IEEE, 79(9):1305–1320.
Jaffe, M.S., Leveson, N.G., Heimdahl, M.P., and Melhart, B.E. 1991. Software requirements analysis for real-time

process-control systems. IEEE Transactions on Software Engineering, 17(3):241–258.
Kletz, T. 1992. Hazop and Hazan: Identifying and Assessing Process Industry Standards. Institution of Chemical

Engineers.
Leveson, N., Reese, J., Koga, S., Pinnel, L., and Sandys, S. 1997. Analyzing Requirements Specifications for

Mode Confusion Errors. In Proceedings of the Workshop on Human Error and System Development.
Leveson, N.G. and Palmer, E. 1997. Designing automation to reduce operator errors. In Proceedings of the IEEE

Systems, Man, and Cybernetics Conference.
McDermid, J. and Pumfrey, D.J. 1994. A development of hazard analysis to aid software design. In COMPASS

’94: Proceedings of the Ninth Annual Conference on Computer Assurance. IEEE/NIST, pp. 17–25.
Miller, S.P. and Potts, J.N. 1999. Detecting mode confusion through formalanalysis and modeling. In NASA

Contractor Report NASA/CR-1999-208971.
Miller, S.P. and Tribble, A.C. 2001. Extending the Four-Variable Model to Bridge the System-Software Gap. In

Proceedings of the Twentith IEEE/AIAA Digital Avionics Systems Conference (DASC’01).
NuSMV, NuSMV: A New Symbolic Model Checking. Available at http://nusmv.irst.itc.it/.
Cousot, P. and Cousot, R. 1977. Abstract interpretation: A unified lattice model for static analysis of programs by

construction or approximation of fixpoints. In Proceedings of 4th ACM Symposium on Principles of Program-
ming Languages, pp. 238–252.

Reese, J. and Leveson, N. 1997a. Software deviation analysis. In International Conference on Software Engineer-
ing.

Reese, J. and Leveson, N. 1997b. Software deviation analysis: A “Safeware” technique. In: AIChe 31st Annual
Loss Prevention Symposium.

Reese, J.D. 1996. Software deviation analysis. Ph.D. thesis, University of California, Irvine.
Thompson, J.M., Heimdahl, M.P., and Miller, S.P. 1999. Specification based prototyping for embedded systems.

In Seventh ACM SIGSOFT Symposium on the Foundations on Software Engineering, pp. 163–179.
Whalen, M.W. 2000. A formal semantics for RSML−e . Master’s thesis, University of Minnesota.
Whalen, M.W. 2005. Trustworthy translation for the requirements state machine language without events, Uni-

versity of Minnesota.


