
Chapter 1

Extensible and Modular
Generics for the Masses
Bruno C. d. S. Oliveira1, Ralf Hinze2, Andres Löh2

Abstract: A generic function is a function that is defined on the structure of
data types: with a single definition, we obtain a function that works for many
data types. In contrast, an ad-hoc polymorphic function requires a separate im-
plementation for each data type. Previous work by Hinze on lightweight generic
programming has introduced techniques that allow the definition of generic func-
tions directly in Haskell. A severe drawback of these approaches is that generic
functions, once defined, cannot be extended with ad-hoc behaviour for new data
types, precluding the design of an extensible and modular generic programming
library based on these techniques. In this paper, we present a revised version of
Hinze’s Generics for the masses approach that overcomes this limitation. Us-
ing our new technique, writing an extensible and modular generic programming
library in Haskell 98 is possible.

1.1 INTRODUCTION

A generic, or polytypic, function is a function that is defined over the structure
of types: with a single definition, we obtain a function that works for many data
types. Standard examples include the functions that can be derived automatically
in Haskell [14], such as show, read, and ‘= =’, but there are many more.

By contrast, an ad-hoc polymorphic function [15] requires a separate imple-
mentation for each data type. In Haskell, we implement ad-hoc polymorphic
functions using type classes. Here is an example, a binary encoder:
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class Encode t where
encode :: t → [Bit ]

instance Encode Char where
encode = encodeChar

instance Encode Int where
encode = encodeInt

instance Encode a ⇒ Encode [a] where
encode [ ] = [0]
encode (x : xs) = 1 : (encode x++ encode xs)

The class construct introduces an overloaded function with a type parameter t,
and the instance statements provide implementations for a number of specific
types. An instance for lists of type [a] can only be given if an instance for a exists
already. The function encode thus works on characters, integers, and lists, and on
data types that are built from these types. If we call encode, the compiler figures
out the correct implementation to use, or, if no suitable instance exists, reports a
type error.

We assume that primitive bit encoders for integers and characters are provided
from somewhere. Lists are encoded by replacing an occurrence of the empty list [ ]
with the bit 0, and occurrences of the list constructor (:) with the bit 1 followed
by the encoding of the head element and the encoding of the remaining list.

The following example session demonstrates the use of encode on a list of
strings (where strings are lists of characters in Haskell).

Main〉 encode ["xy","x"]
[1,1,0,0,0,1,1,1,1,1,1,0,0,1,1,1,1,0,1,1,0,0,0,1,1,1,1,0,0]

The function encode can be extended at any time to work on additional data
types. All we have to do is write another instance of the Encode class. However,
each time we add a new data type and we want to encode values of that data type,
we need to supply a specific implementation of encode for it.

In “Generics for the Masses” (GM) [4] a particularly lightweight approach to
generic programming is presented. Using the techniques described in that paper
we can write generic functions directly in Haskell 98. This contrasts with other
approaches to generic programming, which usually require significant compiler
support or language extensions.

In Figure 1.1, we present a generic binary encoder implemented using the
GM technique. We will describe the technical details, such as the shape of class
Generic, in Section 1.2. Let us, for now, focus on the comparison with the ad-hoc
polymorphic function given above. The different methods of class Generic define
different cases of the generic function. For characters and integers, we assume
again standard definitions. But the case for lists is now subsumed by three generic
cases for unit, sum and product types. By viewing all data types in a uniform
way, these three cases are sufficient to call the encoder on lists, tuples, trees, and
several more complex data structures – a new instance declaration is not required.
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newtype Encode a = Encode {encode′ :: a → [Bit ]}
instance Generic Encode where

unit = Encode (const [ ])
plus a b = Encode (λx → case x of Inl l → 0 : encode′ a l

Inr r → 1 : encode′ b r)
prod a b = Encode (λ(x× y)→ encode′ a x++ encode′ b y)
char = Encode encodeChar
int = Encode encodeInt
view iso a = Encode (λx → encode′ a (from iso x))

FIGURE 1.1. A generic binary encoder

However, there are situations in which a specific case for a specific data type
– called an ad-hoc case – is desirable. For example, lists can be encoded more
efficiently than shown above: instead of encoding each constructor, we can encode
the length of the list followed by encodings of the elements. Or, suppose that sets
are represented as trees: The same set can be represented by multiple trees, so a
generic equality function should not compare sets structurally, and therefore we
need an ad-hoc case for sets.

Defining ad-hoc cases for ad-hoc polymorphic functions is trivial: we just add
an instance declaration with the desired implementation. For the generic version
of the binary encoder, the addition of a new case is, however, very difficult. Each
case of the function definition is implemented a method of class Generic, and
adding a new case later requires the modification of the class. We say that generic
functions written in this style are not extensible, and that the GM approach is
not modular, because non-extensibility precludes writing a generic programming
library. Generic functions are more concise, but ad-hoc polymorphic functions
are more flexible.

While previous foundational work [2, 7, 3, 9] provides a very strong basis
for generic programming, most of it only considered non-extensible generic func-
tions. It was realized by many authors [5, 4, 8] that this was a severe limitation.

This paper makes the following contributions:

• In Section 1.3, we give an encoding of extensible generic functions directly
within Haskell 98 that is modular, overcoming the limitations of GM while
retaining its advantages. An extensible generic pretty printer is presented in
Section 1.4.

• In Section 1.5, we show that using a type class with two parameters, a small
extension to Haskell 98, the notational overhead can be significantly reduced
further.

• The fact that an extensible and modular generic programming library requires
the ability to add both new generic functions and new ad-hoc cases is related
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to the expression problem [18]. We establish this relation and present other
related work in Section 1.6.

But let us start with the fundamentals of the GM approach, and why extensibility
in this framework is not easy to achieve.

1.2 GENERICS FOR THE MASSES

In this section we will summarise the key points of the GM approach.

1.2.1 A class for generic functions

In the GM approach to generic programming, each generic function is an instance
of the class Generic:

class Generic g where
unit :: g 1
plus :: g a → g b → g (a+b)
prod :: g a → g b → g (a×b)
constr :: Name → Arity → g a → g a
constr = id
char :: g Char
int :: g Int
view :: Iso b a → g a → g b

Our generic binary encoder in Figure 1.1 is one such instance. The idea of Generic
is that g represents the type of the generic function and each method of the type
class represents a case of the generic function. Haskell 98 severely restricts the
type terms that can appear in instance declarations. To fulfil these restrictions, we
have to pack the type of the encoder in a data type Encode. For convenience, we
define Encode as a record type with one field and an accessor function encode′ ::
Encode a → (a → [Bit ]).

The first three methods of class Generic are for the unit, sum and product types
that are defined as follows:

data 1 = 1

data a+b = Inl a | Inr b
data a×b = a×b

The types of the class methods follow the kinds of the data types [3], where kinds
are types of type-level terms. Types with values such as Int, Char, and 1 have
kind ∗. The parameterized types + and × have kind ∗ → ∗ → ∗, to reflect the
fact that they are binary operators on types of kind ∗. The functions plus and prod
correspondingly take additional arguments that capture the recursive calls of the
generic function on the parameters of the data type.

The binary encoder is defined to encode the unit type as the empty sequence
of bits. In the sum case, a 0 or 1 is generated depending on the constructor of
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the input value. In the product case, we concatenate the encodings of the left and
right component.

If our generic functions require information about the constructors (such as
the name and arity), we can optionally provide a definition for the function constr.
Otherwise – such as for the binary encoder – we can just use the default imple-
mentation, which ignores the extra information.

Cases for the primitive types Char and Int are defined by providing the func-
tions char and int, respectively.

The view function is the key to genericity: given an isomorphism (between
the data type and a sum of products) and a representation for the isomorphic type,
returns a representation for the original data type. Let us look at lists as an exam-
ple. A list of type [a] can be considered as a binary sum (it has two constructors),
where the first argument is a unit (the [ ] constructor has no arguments) and the
second argument is a pair (the (:) constructor has two arguments) of an element
of type a and another list of type [a]. This motivates the following definitions:

data Iso a b = Iso {from :: a → b, to :: b → a}
isoList :: Iso [a] (1+(a× [a]))
isoList = Iso fromList toList
fromList :: [a]→ 1+(a× [a])
fromList [ ] = Inl 1
fromList (x : xs) = Inr (x× xs)
toList ::1+(a× [a])→ [a]
toList (Inl 1) = [ ]
toList (Inr (x× xs)) = x : xs

In order to use generic functions on a data type, the programmer must define such
an isomorphism once. Afterwards, all generic functions can be used on the data
type by means of the view case. The function rList – also within the programmer’s
responsibility – captures how to apply view in the case of lists:

rList :: Generic g ⇒ g a → g [a]
rList a = view isoList (unit ‘plus‘ (a ‘prod‘ rList a))

The first argument of view is the isomorphism for lists defined above. The second
argument reflects the list-isomorphic type 1+(a× [a]). Using rList, we can apply
any generic function to a list type, by viewing any list as a sum of products and
then using the generic definitions for the unit, sum and product types.

The view case of the encoder applies the from part of the isomorphism to con-
vert the type of the input value and then calls the encoder recursively on that value.
Generally, functions such as the encoder where the type variable appears only in
the argument position are called generic consumers and require only the from part
of the isomorphism. Functions that produce or transform values generically make
also use of the to component.

We have demonstrated that a fixed amount of code (the isomorphism and the
view invocation) is sufficient to adapt all generic functions to work on a new data
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type. This is a huge improvement over ad-hoc polymorphic functions, which have
to be extended one by one to work on an additional data type.

1.2.2 Using generic functions

In order to call a generic function such as encode′, we have to supply a suitable
value of type Encode. As a simple example, suppose that we want to call the
function encode′ on a pair of an integer and a character. We then use prod int char
to build the desired value of type Encode (Int×Char), and use encode′ to extract
the function:

Main〉 encode′ (prod int char) (1×’x’)
[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1]

Similarly, if we want to encode a list of strings, we can make use of function rList
to build the argument to encode′:

Main〉 encode′ (rList (rList char)) ["xy","x"]
[1,1,0,0,0,1,1,1,1,1,1,0,0,1,1,1,1,0,1,1,0,0,0,1,1,1,1,0,0]

The argument to encode′ is dictated by the type at which we call the generic
function. We can therefore use the type class Rep, shown in Figure 1.2, to infer
this so-called type representation automatically for us. We call such a type class
a dispatcher, because it selects the correct case of a generic function depending
on the type context in which it is used. Note that the dispatcher works for any g
that is an instance of Generic. Therefore, it needs to be defined only once for all
generic functions. With the dispatcher, we can define encode as follows:

encode :: Rep t ⇒ t → [Bit ]
encode = encode′ rep

Here, the type representation is implicitly passed via the type class. The function
encode can be used with the same convenience as any ad-hoc overloaded function,
but it is truly generic.

1.3 EXTENSIBLE GENERIC FUNCTIONS

This section consists of two parts: in the first part, we demonstrate how the non-
extensibility of GM functions leads to non-modularity. In the second part, we
show how to overcome this limitation.

1.3.1 The modularity problem

Suppose that we want to encode lists, and that we want to use a different encoding
of lists than the one derived generically: a list can be encoded by encoding its
length, followed by the encodings of all the list elements. For long lists, this
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class Rep a where
rep :: (Generic g)⇒ g a

instance Rep 1 where
rep = unit

instance Rep Char where
rep = char

instance Rep Int where
rep = int

instance (Rep a,Rep b)⇒ Rep (a+b) where
rep = plus rep rep

instance (Rep a,Rep b)⇒ Rep (a×b) where
rep = prod rep rep

instance Rep a ⇒ Rep [a] where
rep = rList rep

FIGURE 1.2. A generic dispatcher

encoding is more efficient than to separate any two subsequent elements of the
lists and to mark the end of the list.

The class Generic is the base class of all generic functions, and its methods are
limited. If we want to design a generic programming library, it is mandatory that
we constrain ourselves to a limited set of frequently used types. Still, we might
hope to add an extra case by introducing subclasses:

class Generic g ⇒ GenericList g where
list :: g a → g [a]
list = rList

This declaration introduces a class GenericList as a subclass of Generic: we can
only instantiate GenericList for type g that are also instances of class Generic.
The subclass contains a single method list. By default, list is defined to be just
rList. However, the default definition of list can be overridden in an instance
declaration. For example, here is how to define the more efficient encoding for
lists:

instance GenericList Encode where
list a = Encode (λx → encodeInt (length x)++ concatMap (encode′ a) x)

Our extension breaks down, however, once we try to adapt the dispatcher:
the method rep of class Rep has the type Generic g ⇒ g a, and we cannot easily
replace the context Generic with something more specific without modifying the
Rep class. Therefore, the only methods of a type class depending on the type
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class RepEncode t where
repEncode :: Encode t

instance RepEncode 1 where
repEncode = Encode (encode′ unit)

instance RepEncode Int where
repEncode = Encode (encode′ int)

instance RepEncode Char where
repEncode = Encode (encode′ char)

instance (RepEncode a,RepEncode b)⇒ RepEncode (a+b) where
repEncode = Encode (encode′ (plus repEncode repEncode))

instance (RepEncode a,RepEncode b)⇒ RepEncode (a×b) where
repEncode = Encode (encode′ (prod repEncode repEncode))

FIGURE 1.3. An ad-hoc dispatcher for binary encoders

variable g that we can use at the definitions of rep are those of Generic – any uses
of methods from subclasses of Generic will result in type errors. In particular, we
cannot adapt the instance of Rep for lists to make use of list rather than rList.

Consequently, generic functions in the GM approach are not extensible. This
rules out modularity: all cases that can appear in a generic function must be turned
into methods of class Generic, and as we have already argued, this is impossible:
it may be necessary to add specific behaviour on user-defined or abstract types
that are simply not known to the library writer.

1.3.2 Ad-hoc dispatchers

The problem with the GM approach is that the generic dispatcher forces a specific
dispatching behaviour on all generic functions. A simple solution to this problem
is to specialize the dispatcher Rep to the generic function in question. This means
that we now need one dispatcher for each generic function, but it also means
that extensibility is no longer a problem. Figure 1.3 shows what we obtain by
specializing Rep to the binary encoder. In the instances, we use encode′ to extract
the value from the newtype and redirect the call to the appropriate case in Generic.
The specialized dispatcher can be used just as the general dispatcher before, to
define a truly generic binary encoder:

encode :: RepEncode t ⇒ t → [Bit ]
encode = encode′ repEncode

It is now trivial to extend the dispatcher to new types. Consider once more the
ad-hoc case for encoding lists, defined by providing an instance declaration for
GenericList Encode. The corresponding dispatcher extension is performed as fol-
lows:
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instance RepEncode a ⇒ RepEncode [a] where
repEncode = Encode (encode′ (list repEncode))

Let us summarize. By specializing dispatchers to specific generic functions,
we obtain an encoding of generic functions in Haskell that is just as expressive
as the GM approach and shares the advantage that the code is pure Haskell 98.
Additionally, generic functions with specialized dispatchers are extensible: we
can place the type class Generic together with functions such as encode in a library
that is easy to use and extend by programmers.

1.4 EXAMPLE: AN EXTENSIBLE GENERIC PRETTY PRINTER

In this section we show how to define a extensible generic pretty printer. This
example is based on the non-modular version presented in GM (originally based
on Wadler’s work [19]).

1.4.1 A generic pretty printer

In Figure 1.4 we present an instance of Generic that defines a generic pretty
printer. The pretty printer makes use of Wadler’s pretty printing combinators.
These combinators generate a value of type Doc that can be rendered into a string
afterwards. For the structural cases, the unit function just returns an empty docu-
ment; plus decomposes the sum and pretty prints the value; for products, we pretty
print the first and second components separated by a line. For base types char and
int we assume existing pretty printers prettyChar and prettyInt. The view case just
uses the isomorphism to convert between the user defined type and its structural
representation. Finally, since pretty printers require extra constructor information,
the function constr calls prettyConstr, which pretty prints constructors.

Suppose that we add a new data type Tree for representing labelled binary
trees. Furthermore, the nodes have an auxiliary integer value that can be used to
track the maximum depth of the subtrees.

data Tree a = Empty | Fork Int (Tree a) a (Tree a)

Now, we want to use our generic functions with Tree. As we have explained
before, what we need to do is to add a subclass of Generic with a case for the new
data type and provide a suitable view.

class Generic g ⇒ GenericTree g where
tree :: g a → g (Tree a)
tree a = view isoTree (constr "Empty" 0 unit ‘plus‘

constr "Fork" 4
(int ‘prod‘ (rTree a ‘prod‘ (a ‘prod‘ rTree a))))

(We omit the boilerplate definition of isoTree). Providing a pretty printer for Tree
amounts to declaring an empty instance of GenericTree – that is, using the default
definition for tree.
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newtype Pretty a = Pretty {pretty′ :: a → Doc}
instance Generic Pretty where

unit = Pretty (const empty)
char = Pretty (prettyChar)
int = Pretty (prettyInt)
plus a b = Pretty (λx → case x of Inl l → pretty′ a l

Inr r → pretty′ b r)
prod a b = Pretty (λ(x× y)→ pretty′ a x� line�pretty′ b y)
view iso a = Pretty (pretty′ a◦ from iso)
constr n ar a = Pretty (prettyConstr n ar a)

prettyConstr n ar a x = let s = text n in
if ar = = 0 then s

else group (nest 1 (text "("� s� line�pretty′ a x� text ")"))

FIGURE 1.4. A generic prettier printer

Main〉 let t = Fork 1 (Fork 0 Empty ’h’ Empty) ’i’ (Fork 0 Empty ’!’ Empty)
Main〉 render 80 (pretty′ (tree char) t)
(Fork 1 (Fork 0 Empty ’h’ Empty) ’i’ (Fork 0 Empty ’!’ Empty))
Main〉 let i = Fork 1 (Fork 0 Empty 104 Empty) 105 (Fork 0 Empty 33 Empty)
Main〉 render 80 (pretty′ (tree (Pretty (λx → text [chr x ]))) i)
(Fork 1 (Fork 0 Empty h Empty) i (Fork 0 Empty ! Empty))
Main〉 render 80 (pretty t)
(Fork 1 (Fork 0 Empty ’h’ Empty) ’i’ (Fork 0 Empty ’!’ Empty))

FIGURE 1.5. A sample interactive sesssion

instance GenericTree Pretty

We now demonstrate the use of generic functions, and the pretty printer in
particular, by showing the outcome of a console session in Figure 1.5.

The first use of pretty′ prints the tree t using the generic functionality given
by tree and char. More interestingly, the second example (on a tree of integers),
shows that we can override the generic behaviour for the integer parameter by
providing a user-defined function instead of int – in this case, we interpret an
integer as the code of a character using the function chr.

Whenever the extra flexibility provided by the possibility of overriding the
generic behaviour is not required (as in the first call of pretty′), we can provide
a dispatcher such as the one presented in Figure 1.6 and just use the convenient
pretty function.
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class RepPretty a where
repPretty :: Pretty a
repPrettyList :: Pretty [a]
repPrettyList = Pretty (pretty′ (list repPretty))

instance RepPretty 1 where
repPretty = Pretty (pretty′ repPretty)

instance RepPretty Char where
repPretty = Pretty (pretty′ char)
repPrettyList = Pretty prettyString

instance RepPretty Int where
repPretty = Pretty (pretty′ int)

instance (RepPretty a,RepPretty b)⇒ RepPretty (a+b) where
repPretty = Pretty (pretty′ (plus repPretty repPretty))

instance (RepPretty a,RepPretty b)⇒ RepPretty (a×b) where
repPretty = Pretty (pretty′ (prod repPretty repPretty))

instance RepPretty a ⇒ RepPretty (Tree a) where
repPretty = Pretty (pretty′ (tree repPretty))

pretty :: RepPretty t ⇒ t → Doc
pretty = pretty′ repPretty

FIGURE 1.6. An ad-hoc dispatcher for pretty printers

1.4.2 Showing lists

For user-defined types like Tree, our generic pretty printer can just reuse the
generic functionality and the results will be very similar to the ones we get if
we just append deriving Show to our data type definitions. However, this does
not work for built-in lists. The problem with lists is that they use a special mix-
fix notation instead of the usual alphabetic and prefix constructors. Fortunately,
we have seen in Section 1.3 that we can combine ad-hoc polymorphic functions
with generic functions. We shall do the same here: we define an instance of
GenericList Pretty but, deviating from GenericTree Pretty, we override the de-
fault definition.

instance GenericList Pretty where
list p = Pretty (λx →

case x of [ ] → text "[]"
(a : as)→ group (nest 1 (text "["�pretty′ p a� rest as)))

where rest [ ] = text "]"
rest (x : xs) = text ","� line�pretty′ p x� rest xs
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We can now extend the dispatcher in Figure 1.6 with an instance for lists that uses
Haskell’s standard notation.

instance RepPretty a ⇒ RepPretty [a] where
pretty = pretty′ (list repPretty)

Unfortunately, we are not done yet. In Haskell there is one more special nota-
tion involving lists: strings are just lists of characters, but we want to print them
using the conventional string notation. So, not only do we need to treat lists in
a special manner, but we also need to handle lists of characters specially. We
thus have to implement a nested case analysis on types. We anticipated this pos-
sibility in Figure 1.6 and included a function repPrettyList. The basic idea is
that repPrettyList behaves as expected for all lists except the ones with charac-
ters, where it uses prettyString.This is the same as Haskell does in the Show class.
Finally, we modify RepPretty [a] to redirect the call to prettyList and we are done.

instance RepPretty a ⇒ RepPretty [a] where
repPretty = repPrettyList

In the pretty printer presented in GM, supporting the list notation involved adding
an extra case to Generic, which required us to have access to the source code
where Generic was originally declared. In contrast, with our solution, the addition
of a special case for lists did not involve any change to our original Generic class
or even its instance for Pretty.

The additional flexibility of ad-hoc dispatchers comes at a price: while in
GM the responsibility of writing the code for the dispatchers was on the library
writer side, now this responsibility is on the user of the library, who has to write
additional boilerplate code. Still, it is certainly preferable to define an ad-hoc
dispatcher than to define the function as an ad-hoc polymorphic function, being
forced to give an actual implementation for each data type. Yet, it would be even
better if we could somehow return to a single dispatcher that works for all generic
functions and restore the definition of the dispatcher to the library code.

In the next section we will see an alternative encoding that requires a single
generic dispatcher only and still allows for modular and extensible functions. The
price to pay for this is that the code requires a small extension to Haskell 98.

1.5 MAKING AD-HOC DISPATCHERS LESS AD-HOC

In this section we present another way to write extensible generic functions, which
requires only one generic dispatcher just like the original GM approach. It relies,
however, on an extension to Haskell 98: multi-parameter type classes, which are
widely used and supported by the major Haskell implementations.

Recall the discussion at the end of Section 1.3.1. There, we have shown that
the problem with GM’s dispatcher is that it fixes the context of method rep to the
class Generic. This happens because the type variable g, which abstracts over the
“generic function”, is universally quantified in the class method rep. However,
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instance Generic g ⇒ GRep g 1 where
grep = unit

instance Generic g ⇒ GRep g Int where
grep = int

instance Generic g ⇒ GRep g Char where
grep = char

instance (Generic g,GRep g a,GRep g b)⇒ GRep g (a+b) where
grep = plus grep grep

instance (Generic g,GRep g a,GRep g b)⇒ GRep g (a×b) where
grep = prod grep grep

instance (GenericList g,GRep g a)⇒ GRep g [a] where
grep = list grep

instance (GenericTree g,GRep g a)⇒ GRep g (Tree a) where
grep = tree grep

FIGURE 1.7. A less ad-hoc dispatcher.

since we want to use subclasses of Generic to add additional cases to generic
functions, the context of rep must be flexible. We therefore must be able to ab-
stract from the specific type class Generic. Our solution for this problem is to
change the quantification of g: instead of universally quantifying g at the method
rep we can quantify it on the type class itself.

class GRep g a where
grep :: g a

The type class GRep g a is a variation of Rep a with the proposed change of quan-
tification. The fact that g occurs at the top-level gives us the extra flexibility that
we need to provide more refined contexts to the method grep (which corresponds
to the method rep).

In Figure 1.7 we see how to use this idea to capture all ad-hoc dispatchers
in a single definition. The instances of GRep look just like the instances of Rep
except that they have the extra parameter g at the top-level. The structural cases
1, + and × together with the base cases int and char are all handled in Generic,
therefore we require g to be an instance of Generic. However, for [a] and Tree a
the argument g must be constrained by GenericList and GenericTree, respectively,
since these are the type classes that handle those types. The remaining constraints,
of the form GRep g a, contain the necessary information to perform the recursive
calls. Now, we can just use this dispatcher to obtain an extensible encode by
specializing the argument g to Encode:

encode :: GRep Encode t ⇒ t → [Bit ]
encode = encode′ grep
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For pretty printers we can just use the same dispatcher, but this time using Pretty
instead of Encode:

pretty :: GRep Pretty t ⇒ t → Doc
pretty = pretty′ grep

This approach avoids the extra boilerplate of the solution with ad-hoc dis-
patchers presented in Sections 1.3 and 1.4 requiring a similar amount of work to
the original GM technique. Still it is modular, and allows us to write a generic
programming library.

In a previous version of this paper [13] we used a trick proposed by Hughes [6]
and also used by Lämmel and Peyton Jones [8] that simulated abstraction over
type classes using a class of the form:

class Over t where
over :: t

While the same effect could be achieved using Over instead of GRep, this would
be more demanding on the type system since the instances would not be legal in
Haskell 98: For example, the instance for GRep g Int would become Over (g Int).
The former is legal in Haskell 98, the latter is not. Moreover, GRep is also more
finely typed allowing us to precisely specify the kind of the “type class” that we
are abstracting from.

Since the publication of the original version of this paper, Sulzmann and
Wang [16] have shown how to add extensible superclasses to the Haskell lan-
guage, which would constitute another solution to the extensibility problem for
GM generic functions.

1.6 DISCUSSION AND RELATED WORK

In this section we briefly relate our technique to the expression problem [18] and
discuss some other closely related work.

1.6.1 Expression problem

Wadler [18] identified the need for extensibility in two dimensions (adding new
variants and new functions) as a problem and called it the expression problem.
According to him, a solution for the problem should allow the definition of a data
type, the addition of new variants to such a data type as well as the addition of
new functions over that data type. A solution should not require recompilation of
existing code, and it should be statically type safe: applying a function to a variant
for which that function is not defined should result in a compile-time error. Our
solution accomplishes all of these for the particular case of generic functions. It
should be possible to generalize our technique in such a way that it can be applied
to other instances of the expression problem. For example, the work of Oliveira
and Gibbons [11], which generalizes the GM technique as a design pattern, could
be recast using the techniques of this paper.
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Let us analyze the role of each type class of our solution in the context of the
expression problem. The class Generic plays the role of a data type definition and
declares the variants that all functions should be defined for. The subclasses of
Generic represent extra variants that we add: not all functions need to be defined
for those variants, but if we want to use a function with one of those, then we need
to provide the respective case. The instances of Generic and subclasses are the
bodies of our extensible functions. Finally, the dispatcher allows us to encode the
dispatching behaviour for the extensible functions: if we add a new variant and
we want to use it with our functions, we must add a new instance for that variant.

1.6.2 Other related work

Generic Haskell (GH) [9] is a compiler for a language extension of Haskell that
supports generic programming. The compiler can generate Haskell code that can
then be used with a Haskell compiler. Like our approach, GH uses sums of prod-
ucts for viewing user defined types. GH can generate the boilerplate code required
for new data types automatically. With our approach we need to manually provide
this code, but we could employ an additional tool to facilitate its generation. How-
ever, our generic functions are extensible; at any point we can add an extra ad-hoc
case for some generic function. We believe this is of major importance since, as
we have been arguing, extensible functions are crucial for a modular generic pro-
gramming library. This is not the case for GH since all the special cases need to
be defined at once. Also, since GH is an external tool it is less convenient to use.
With our approach, all we have to do is to import the modules with the generic
library.

“Derivable Type Classes” (DTCs) [5] is a proposed extension to Haskell that
allows us to write generic default cases for methods of a type class. In this ap-
proach, data types are viewed as if constructed by binary sums and binary prod-
ucts, which makes it a close relative of both our approach and GM. The main ad-
vantage of DTCs is that it is trivial to add ad-hoc cases to generic functions, and
the isomorphisms between data types and their structural representations (see Sec-
tion 1.2.1) are automatically generated by the compiler. However, the approach
permits only generic functions on unparameterized types (types of kind ?), and
the DTC implementation lacks the ability to access constructor information, pre-
cluding the definition of generic parsers or pretty printers. The generic extension
to Clean [1] uses the ideas of DTCs and allows the definition of generic functions
on types of any kind.

Lämmel and Peyton Jones [8] present another approach to generic program-
ming based on type classes. The idea is similar to DTCs in the sense that one
type class is defined for each generic function and that default methods are used
to provide the generic definition. Overriding the generic behaviour is as simple
as providing an instance with the ad-hoc definition. The approach shares DTC’s
limitation to generic functions on types of kind ?. One difference to our approach
is that data types are not mapped to a common structure consisting of sums and
products. Instead, generic definitions make use of a small set of combinators. An-
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other difference is that their approach relies on some advanced extensions to the
type class system, while our approach requires only a multi-parameter type class
or even just Haskell 98.

Löh and Hinze [10] propose an extension to Haskell that allows the definition
of extensible data types and extensible functions. With the help of this extension,
it is also possible to define extensible generic functions, on types of any kind,
in Haskell. While their proposed language modification is relatively small, our
solution has the advantage of being usable right now. Furthermore, we can give
more safety guarantees: in our setting, a call to an undefined case of a generic
function is a static error; with open data types, it results in a pattern match failure.

Vytiniotis and others [17] present a language where it is possible to define
extensible generic functions on types of any kind, while guaranteeing static safety.
While it is not a novelty that we can define such flexible generic functions, we
believe it is the first time that a solution with all these features is presented in
Haskell, relying solely on implemented language constructs or even solely on
Haskell 98.

1.7 CONCLUSIONS

In the GM approach defining generic functions in Haskell 98 is possible but it
is impossible to extend them in a modular way. The ability to define extensi-
ble generic function is very important since, in practice, most generic functions
have ad-hoc cases. In this paper we presented two variations of GM that allow
the definition of generic functions that are both extensible and modular. The first
variation, like the original GM, can be encoded using Haskell 98 only but requires
extra boilerplate code not present in the original approach. The second variation
requires a multi-parameter type class, an extension to Haskell 98 that is supported
by the major Haskell implementations. This variation still allows extensibility
and does not add any significant boilerplate over the original GM. One important
aspect of the GM and our encoding is that dispatching generic functions is re-
solved statically: calling a generic function on a case that is not defined for it is a
compile-time error.

Based on the results of this paper, we are currently in the process of assem-
bling a library of frequently used generic functions. For the interested reader, the
Haskell source code for this paper can be found online [12].
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