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Abstract. The static determination of approximated values of string
expressions has many potential applications. For instance, approximated
string values may be used to check the validity and security of generated
strings, as well as to collect the useful string properties. Previous string
analysis efforts have been focused primarily on the maxmization of the
precision of regular approximations of strings. These methods have not
been completely satisfactory due to the difficulties in dealing with heap
variables and context sensitivity. In this paper, we present an abstract-
interpretation-based solution that employs a heuristic widening method.
The presented solution is implemented and compared to JSA. In most
cases, our solution gives results as precise as those produced by previ-
ous methods, and it makes the additional contribution of easily dealing
with heap variables and context sensitivity in a very natural way. We
anticipate the employment of our method in practical applications.

1 Introduction

Strings are used in many applications to build SQL queries, construct semi-
structured Web documents, create XPath and JavaScript expressions, and so
on. After being dynamically generated from user inputs, strings are sent to their
respective processors. However, strings are not evaluated for their validity or
security despite the potential usefulness of such metrics [5, 7, 6]. Hence, this
paper aims to establish a method for statically determining the approximated
values of string expressions in a string-generating program.

1.1 Related Works

Previous efforts to statically determine the approximated values of string ex-
pressions have attempted to maximize the precision of string approximations.

Christensen, Møller and Schwartzbach [2] developed a Java string analyzer
(JSA) that approximates the values of string expressions using regular language.
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An interprocedural data-flow analysis is first used to extract context-free gram-
mar from a Java program such that each string expression is represented as a
nonterminal symbol. Then, Mohri and Nederhof’s algorithm [8] is applied to
approximate the context-free grammar with regular grammar. Eventually, the
string analysis produces a finite state automaton that conservatively approxi-
mates the set of possible strings for each specified string expression. JSA tends
to be adequate when every string value is stored in a local variable, but it falters
when dealing with strings stored in heap variables. Perhaps the method could be
extended to deal with such variables, but not in a straightforward and immediate
manner.

To conduct string analysis based on regular expressions, Tabuchi, Sumii,
and Yonezawa [11] created a type system for a minimally functional language
equipped with string concatenation and pattern matching over strings. However,
they failed to provide a type inference algorithm due to a technical problem with
recursive constraint solving. Our analysis can be thought of as a solution to their
problem based on a carefully crafted widening.

Thiemann [12] presented a type system for string analysis based on context-
free grammar and provided a type inference algorithm derived from Earley’s
parsing algorithm. His analysis is more precise than those based on regular ex-
pressions, and though sound, his inference algorithm is incomplete because its
context-free language inclusion problem cannot be solved. The weak point is that
the grammar must be written in terms of single characters rather than tokens.

Minamide [7] also developed a static program analyzer that approximates
string output using context-free grammar. His analyzer, which uses a variant
of the JSA approach to produce context-free grammar from a PHP program,
validates HTML documents generated by a PHP program either by extracting
and testing sample documents or by considering documents with a bounded
depth only.

1.2 Our Approach

Our work is motivated by a desire to statically determine which database ap-
plication program accesses and updates which database tables and fields. Such
information is particularly useful in maintaining huge enterprise software sys-
tems. To obtain this information statically, all possible SQL queries must be
extracted from database application programs as strings.

Strings may be stored as field variables in object-oriented applications, thus a
string analysis must be able to determine their value. For example, the Java ap-
plication in Fig. 1 uses a field variable to construct strings. The class SQLBuffer
is defined as a gateway for connecting to a database server. In this example, two
SQLBuffer objects are allocated and each object has a separate string field, buf.
To prevent the clouding of analysis precision, independent string fields should be
maintained as such. Thus, heap memory analysis is required. Furthermore, the
methods add and set are called multiple times in different contexts. As such,
precise string analysis must also be context-sensitive. For the example in Fig. 1,
our analyzer is able to distinguish possible queries as SELECT .* FROM .* and



UPDATE .* SET .* = .*, while JSA is unable to do so and only gives .* that
means any string.

Our string analysis uses the standard monotone framework for abstract in-
terpretation [3, 4], which allows for context-sensitive handling of field variables.
However, use of the abstract-interpretation framework for string analysis requires
the invention of a reasonable widening operator. Thus, to keep its precision as
high as possible, our widening operator is designed with heuristics.

1.3 Paper Contributions

Our paper makes the following contributions:

– We design a string analyzer based on standard abstract-interpretation tech-
niques. Until now, ascertaining widening operators for regular expressions
has been believed to be difficult [2]. However, by selecting a restricted sub-
set of regular expressions as our abstract domain, which results in limited
loss of expressibility, and by using heuristics, we can devise a precise widen-
ing operator. String operators, such concat, substring, trim, and replace,
are treated uniformly.

– The abstract-interpretation framework enables the integration of the follow-
ing tasks into our analyzer:
• handle memory objects and their field variables
• recognize context sensitivity
• integrate with constant propagation for integers

– Our string analyzer is implemented and tested. The results show the pro-
posed analyzer to be as precise as JSAs in all cases, and even more precise
for test programs dealing with memory objects and field variables.

1.4 Overview

The rest of this paper is organized as follows. Section 2 presents our key abstract
domain, the set of regular strings. Section 3 explains the analysis for a simple
imperative language and extends the analysis for integers, heap-manipulating
statements, and procedures. Section 4 shows the experimental results, and the
paper is concluded by Section 5.

2 Abstract Domain

An abstract string value is modeled as a regular string from within a restricted
subset of regular expressions, and string operations are given abstract seman-
tics. We first define a regular string and then explain the abstract semantics
of concatenation and the widening operator. We subsequently give the abstract
semantics of other string operators: replace, trim, and substr.



class SQLBuffer {

String buf;

Connection con;

void set(String s) {

buf = s;

}

void append(String s) {

buf = buf + " " + s;

}

ResultSet execute() throws SQLException {

Statement stmt = con.createStatement();

ResultSet rs = stmt.executeQuery(buf);

buf = "";

return rs;

}

}

public class Example {

public void some_fun(String[] args) throws SQLException {

SQLBuffer sql1 = new SQLBuffer();

SQLBuffer sql2 = new SQLBuffer();

sql1.set("SELECT");

sql1.add(args[2]);

sql1.add("FROM");

sql1.add(args[0]);

ResultSet rs = sql1.execute();

while (rs.next()) {

sql2.set("UPDATE");

sql2.add(args[1]);

sql2.add("SET");

sql2.add(args[2] + " = " + rs.getString(0));

sql2.execute();

}

}

// ...

}

Fig. 1. Example

2.1 Regular String

A regular string is a sequence of atoms that comprise either an abstract character
or the repetition of a regular string, as shown in Fig. 2. An abstract character is
a set of characters that is, in most cases, a singleton set. For brevity, we omit the
set notation for a singleton set; for instance, instead of {a} {b, c} {d}, we write



Collecting domain:
Var x
Char c
Str s ∈ {c1c2 · · · cn | n ≥ 0, ci ∈ Char}
Statecol S ∈ P(Var → Str)

Abstract domain:
Chars C ∈ PN(Char) where PN(A) = P(A) \ {∅}
Atom a ::= C | r?

Reg p, q, r ∈ {a1a2 · · · an | n ≥ 0, ai ∈ Atom, ¬∃i.(ai = p? ∧ ai+1 = q?)}
State σ ∈ (Var → PN(Reg))⊥

Meaning:
Atom → P(Str) γa(C) = C

γa(r?) = {s1s2 · · · sn | 0 ≤ n, si ∈ γr(r)}
Reg → P(Str) γr(a1a2 · · · an) = {s1s2 · · · sn | si ∈ γa(ai)}
PN(Reg) → P(Str) γR(R) =

⋃
{γr(r) | r ∈ R}

State → Statecol γS(⊥) = ∅
γS(σ) = {λx.sx | sx ∈ γR(σ(x))}

Order:
Reg p v q iff γr(p) ⊆ γr(q)
PN(Reg) P v Q iff γR(P ) ⊆ γR(Q)
State σ v σ′ iff γS(σ) ⊆ γS(σ′)

Fig. 2. The Abstract Domain

a {b, c} d, which is equivalent to a(b + c)d in regular expression. The meaning of
a repetition is as usual.

A regular string is derived from a restricted subset of regular expressions,
which is expressible enough for our purposes. The alternative operator + is
omitted, and the set notation is used to represent the collection of alternatives.
Consecutive repetitions, such as a?b?, are not allowed. To force the termination
of the analysis, the regular expression a?b? is approximated as {a, b}?.

In an abstract state, each variable maps to the set of regular strings.

2.2 Concatenation and Widening

The abstract semantics of string concatenation is defined as follows: two regular
strings are sequentially ordered, except for when initial and subsequent regular
strings end and begin, respectively, with a repetition, as defined in Fig. 3. If the
two repetitions are the same, one is thrown away; otherwise, the two are brutally
merged.

The widening operator of two regular strings is designed minimize precision
loss while allowing for analysis termination. Two sets of regular strings can be
widened simply by widening every pair of two input sets, but with the possi-
ble result of an unnecessarily large string. For instance, consider where after



P ·Q = {p · q | p ∈ P, q ∈ Q}

p · q =

{
p′r?q′ if p = p′r?, q = r?q′

p′ {c | c appears in r or r′ }?
q′ if p = p′r?, q = r′?q′, and r 6= r′

pq otherwise

σ∇kσ′ =


σ if σ′ = ⊥
σ′ if σ = ⊥
λx.

{
.p∇k.q | p ∈ σ(x), q ∈ σ′(x), pR q

}
otherwise

for a total relation R : σ(x)× σ′(x)

p.q∇kp′.q′ =


pq �k p′q′ if q = ε or q′ = ε

(p�k p′) · a · (.r∇k.r′) if q = ar, q′ = ar′, and star-height(a) ≤ k

pa.r∇kp′a.r′ if q = ar, q′ = ar′, and star-height(a) > k

pa.r∇kp′.a′r′ if q = ar, q′ = a′r′, a 6= a′, and |q| > |q′|
p.ar∇kp′a′.r′ if q = ar, q′ = a′r′, a 6= a′, and |q| ≤ |q′|

where |q| = n for q = a1a2 · · · an

and star-height(a) is the depth of repetitions of q

p�k q =



ε if p, q ∈ {ε}
p? if p 6= ε, q = ε, and star-height(p?) ≤ k
q? if p = ε, q 6= ε, and star-height(q?) ≤ k

(.p′∇k−1.q′)? if p = p′?, q = q′?, and k ≥ 2

(.p′∇k−1.q)? if p = p′?, q 6= q′?, and k ≥ 2

(.p∇k−1.q′)? if p 6= p′?, q = q′?, and k ≥ 2
{c | c appears in p or q }? otherwise

Fig. 3. Abstract Concatenation and Widening

one loop iteration of {a, b} becomes {aa, ba}. The most reasonable analysis so-
lution should be {aa?, ba?}, so we would want to choose {a∇aa, b∇bb} instead of
{a∇aa, a∇ba, b∇aa, b∇ba}. Hence, we define P∇Q = {p∇q | p ∈ P, q ∈ Q, pR q }
to give total relation R : P ×Q. The method for finding such a relation is dis-
cussed after the explanation of the widening operator for regular strings.

To widen two regular strings, we identify their common and different compo-
nents, pick and leave unchanged the common parts, and then merge the different
parts. For instance, suppose we compute acd∇abc, where the common compo-
nents are the bold characters in acd and abc. We first pick a, then extract b?

from the merger of ε and b, then pick c, and then extract d? from the merger of d
and ε. Therefore, by concatenating the components, the two original inputs are
widened to ab?cd?. This method is problematic, though, as the different compo-
nents of multiple regular strings may be determined with different results. For
instance, for cd and cdd, we can say that cd is common and the last d of cdd is
different: cd and cdd, or the middle d of cdd is different: cd and cdd. We solve
this dilemma by traversing the string from left to right. The marker . is used to
indicate the position of string traversal. That is, p.q indicates that p has been
traversed and identified as different, and that q has not been traversed. Thus the



current atom is always next to the dot(.) on the right. There exist three possible
cases of string traversal:

– After one regular string has been completely traversed, we conclude that
the two regular strings are different. Thus, we merge them with the mash
operator, �, which is discussed below.

– When we find a common atom, we merge the two different parts on the left,
widen the rest of strings on the right, and then concatenate them in order.

– When two current atoms differ, we pick the longer string (the string with
more atoms) and move the dot one atom to the right in the picked string.

For instance, consider the case of .abc∇.ac. First, we find that a is common and
move to the adjacent string to the right, .bc∇.c, where the current atoms b and
c are different. Since bc is longer than c, we conclude that b is different: b.c∇.c.
We again meet the common character c, so we mash b and ε to obtain b?. In
conclusion, abc and ac are widened to ab?c, where a and c are picked as common
string components.

The mash operator � yields precise results for the following cases.

– When one of its operands is empty, the other non-empty regular string is
most likely to be repeated. Thus, the repetition of the non-empty regular
string is returned. If both operands are empty, an empty regular string is
returned.

– When both operands are repetitions, regular strings in the bodies of the
repetitions are widened, and then the repetition of the widened result is
returned.

– When only one of its operands is a repetition, a regular string in the body
of the repetition and the other regular string are widened, and then the
repetition of the widened result is returned.

For other cases, two regular strings are brutally mashed to conform to the form
of C?.

During widening or mashing regular strings, we control the star height. The
superscript k of widening operator ∇k and mash operator �k indicates that the
star height of the result should be less than or equal to k. In mashing two regular
strings, k is decreased when we go one level deeper inside a repetition. When
k < 2, instead of going one level deeper inside, we brutally merge two regular
strings so that the star height of the result is one. In theory, we cannot guarantee
the termination of our analysis without some form of star-height control. As
shown by our experiments, however, our analysis seems to terminate without
star-height control (i.e., k = ∞).

We now discuss in detail the clever widening of two sets of regular strings.
The procedure aims to find the total relation of two sets so that similar regular
strings are related. One pair of regular strings is more similar than the other if
it maintains more common components. When the number of common compo-
nents is equal, the pair with fewer differing components is considered to be more
similar. The algorithm to find the total relation of two sets is as follows: (1) For



each regular string in the smaller set, find the most similar regular string in the
larger set and pick related pairs until the smaller set is empty; (2) The leftover
regular strings in the larger set find their similar counterparts from the original
smaller set. For instance, consider {a, b} and {ba, bb, bc}. For a in the smaller
set, we pick the most similar one ba. For b, since the leftovers bb and bc tie, we
arbitrarily choose one bb. Since all regular strings in the smaller set are picked,
the leftover bc finds the most similar one b from {a, b}.

Theorem 1. ∇k : State × State → State is a widening operator which satisfies
the followings:

1. σ v σ∇kσ′ and σ′ v σ∇kσ′; and
2. the ascending chain by ∇k is always finite when the cardinality of sets of

regular strings is bounded.

We only sketch the proof of the termination argument. The widening se-
quence of abstract states is finite if the sequence of regular strings is finite for
each variable, which can be proved as follows. We can consider every regular
string p as a form r1C1r2C2r3 · · ·Cnrn+1 where ri is an empty string or a rep-
etition because we do not allow adjacent repetitions. For instance, abc? can be
considered as εaεbc?. By using the canonical form, we define the size tree of
regular strings:

– |ε|T = 〈ω〉 where ω is an arbitrary big tree, and
– |r1C1r2C2 · · ·Cnrn+1|T =

〈
|r1|I , |C1|, |r2|I , |C2|, · · · , |Cn|, |rn+1|I

〉
where |C| =

Int(i) when i is the size of character set C.

where |ε|I = ω, |C?|I = |C|, and |r?|I = |r|T if r 6= C. The order among trees is
defined as: Int(i) ≤ t ≤ ω for all tree t which is not an integer, Int(i) ≤ Int(j) if
i ≥ j, and 〈t1, t2, · · · tn〉 ≤ 〈t′1, t′2, · · · , t′m〉 if n < m, or n = m and ti ≤ t′i for all
0 ≤ i ≤ n. We proved that |.p∇k.q|T ≤ |p|T , and that |.p∇k.q|T = |p|T implies
that .p∇k.q = p. We also showed that every sequence t0, t1, · · · , tn is finite when
ti > ti+1 for all 0 ≤ i < n because we limit the depth of the trees. Therefore,
every sequence widened by ∇k is finite.

2.3 Other String Operators

The abstract versions of string operators trim, replace, and substr are defined
in Fig. 4. replace(c,c′) replaces all occurrences of character c with character c′

in the given regular string. trim removes blanks at both ends of the given string.
However, for presentation brevity, we assume that trim removes blanks only at
the front end. The abstract trim operator traverses the given regular string from
left to right.

– If we reach an abstract character {′ ′}, we continue trimming.
– If we reach an abstract character C which includes a blank, we have to

consider two possibilities: when the concretized character is a blank and
when it is a non-blank.



Abstract operator [[op]] : Reg → P(Reg) for op ::= replace(c, c′) | trim | substr(i, j)

[[replace(c, c′)]]p = {p{c′/c}}

[[trim]]p =


[[trim]]q if p = {′ ′} q
[[trim]]q ∪ ((C \ {′ ′})q) if p = Cq and {′ ′} ⊂ C
[[trim]]q ∪ ({r′ · r?q | r′ ∈ [[trim]]r, r′ 6= ε} if p = r?q
{p} otherwise

[[substr(i, j)]]p =


{ε} if i = 0 and j = 0
{C} · [[substr(0, j − 1)]]q if i = 0, j > 0, and p = Cq
[[substr(i− 1, j − 1)]]q if i > 0, j > 0, and p = Cq
[[substr(i, j)]](r · r?q) ∪ [[substr(i, j)]]q if i ≥ 0, j > 0, and p = r?q
{} otherwise

Fig. 4. Abstract String Operators

– If we reach a repetition r?, we consider two possibilities: (1) when r? becomes
empty after trimming it off, we continue trying for the rest; (2) when r?

becomes a non-empty string, we trim r off and put the result in front only
when the result is not empty.

– If we reach an abstract character which does not include a blank, we stop.

substr(i, j) extracts a substring from the ith position to the (j − 1)th position
of the given string. When we reach a repetition r? when finding a substring, we
also consider two possibilities: (1) r? is concretized to an empty string, and (2)
r? is concretized to a non-empty string. For possibility (2), r? is unfolded once to
yield r ·r?, from which substrings are extracted. Other cases are straightforward.

Previous string analyzers do not properly handle string operations. In JSA
and Minamide’s analyzer, string operations other than concatenation use rough
approximations to break cycles of string productions [2, 7]. In our analyzer, ab-
stract string operations are applied during analysis on demand. Hence, with our
method, it is not at all an issue whether or not string operations are in cyclic
productions. For example,

x = "a";
for(i=0; i<10; i++) {
x = x + "b ";
x.trim();

}

Our analyzer returns the exact answer: ab?, while JSA gives the most imprecise
answer: (a+b+’ ’)?

3 Analysis

In this section, we describe our string analysis. We first define the analysis for a
core imperative string-processing language. We next extend it to cover constant



E [[e]] : State → P(Reg) for e ::= s | x | e+e | e.op
E [[s]] σ = {C1 · · ·Cn | s = c1c2 · · · cn, Ci = {ci}}
E [[x]] σ = σ(x)
E [[e1+e2]] σ = E [[e1]] σ · E [[e2]] σ
E [[e.op]] σ =

⋃
{[[op]]p | p ∈ E [[e]] σ }

T [[t]] : State → State for t ::= skip | x:=e | t;t | if t t | while t
T [[t]]⊥ = ⊥
T [[skip]] σ = σ

T [[x:=e]] σ =

{
σ[E [[e]] σ/x] if E [[e]] σ 6= ∅
⊥ if E [[e]] σ = ∅

T [[t1; t2]] σ = T [[t2]] (T [[t1]] σ)
T [[if t1 t2]] σ = T [[t1]] σ t T [[t2]] σ
T [[while t]] σ = fix∇λσ′.σ t T [[t]] σ′

Fig. 5. The Analysis for the Core Language

propagation for integers. Then we show how to handle heap objects. Finally, we
close this section by briefly explaining the interprocedural version.

3.1 Analysis for the Core Language

The analysis of the core imperative language is defined in Fig. 5 based on the
standard abstract interpretation technique. An expression may be a string con-
stant s, a variable x, a string concatenation e+e, or another string operator
x.op. For a string concatenation, we use the abstract concatenation operator ·
defined in Fig. 3. For other string operators, we use their abstract version de-
fined in Fig. 4. A statement is either a no-operation skip, an assignment x:=e,
a sequence t;t, a conditional statement if t t, or a loop while t. For the case
of a loop, we use the widening operator defined in Fig. 3 to compute a widen
sequence until it is stabilized. Note that the boolean expression in conditional
statement and loop is not considered.

3.2 Integers

String-manipulating programs sometimes convert integer values to strings. To
increase the precision of our analysis, a constant propagation for integers is added
to our analysis, as defined in Fig. 6. We assume that programs are well-typed.
That is, we assume that each variable only has values of its type, and thus a
widening operator may be applied to string-typed variables.

3.3 Handling Heap Objects

Our method uses a well-known technique [1] to handle heap objects: (1) a heap
object is abstracted by its allocation site; for instance, two heap objects allocated



Abstract domain: Value V ∈ PN(Reg) + Z>

State σ ∈ (Var → Value)⊥
Order:

Value V v V ′ iff V, V ′ ⊆ Reg and γR(V ) ⊆ γR(V ′)

or V, V ′ ∈ Z> and (V ′ = > or V = V ′)
State σ v σ′ iff σ(x) v σ′(x) for all x ∈ Var

I[[ie]] : State → Z> for ie ::= i ∈ Z | x | ie iop ie for iop ∈ {+,−,×, · · ·}
I[[i]]σ = i
I[[x]]σ = σ(x)

I[[ie1 iop ie2]]σ =

{
I[[ie1]]σ iop I[[ie2]]σ if I[[ie1]]σ 6= > and I[[ie2]]σ 6= >
> if I[[ie1]]σ = > or I[[ie2]]σ = >

T [[t]] : State → State for t ::= · · · | x:=ie
T [[x:=ie]] σ = σ[I[[ie]]σ/x]

Fig. 6. The Extension for Integers.

at the same program point are summarized as one abstract heap object; and
(2) for each abstract heap object, we record the number of heap objects that
are abstracted. This information is used to strongly update the content of a
heap object. If an abstract heap object represents only one heap object, we can
strongly update its content; otherwise, we cannot.

In the extended abstract domain for handling heap memory, shown in Fig 7,
the location domain identifies allocation sites. The value domain is extended to
include locations and a null-pointer value. The heap domain is a partial map
from locations to their possible objects. An object consists of one value because
we only consider objects with size equal to one. In addition, every object is
tagged to indicate whether it is unique.

The analysis extended to deal with three heap-manipulating statements is de-
fined in Fig 7. The additional statements are an allocation statement x:=newl,
a load statement x:=[y], and a store statement [x]:=y. Note that every allo-
cation statement is marked with a label, the size of every object is always one,
and we assume that the initial value for a new heap object is nil.

– For the allocation statement x:=newl, if there is no heap object previously
abstracted as l, that is, l is not in the domain of the abstract heap, we add
a new object to the abstract heap, initialize its content as nil, and tag it
with 1. Otherwise, that is, if there already exist some objects abstracted by
l, we weakly update its content by the initial value nil and tag it with ω.

– For the load statement x:=[y], we get the content of y from the abstract
heap and update x.

– For the store statement [x]:=y, if x points to a single, unique object, we
strongly update its content. Otherwise, we weakly update the content of
objects that x may point to.



Abstract domain:
Loc l

Value V ∈ PN(Reg) + Z> + PN(Loc + {nil})
State σ ∈ Var → Value
Uniqueness u ∈ {1, ω}
Content V u ∈ Value× Uniqueness
Heap h ∈ Loc ⇀ Content

Order:
Value V v V ′ iff V, V ′ ⊆ Reg and γR(V ) ⊆ γR(V ′)

or V, V ′ ∈ Z> and (V ′ = > or V = V ′)
or V, V ′ ⊆ Loc ∪ {nil} and V ⊆ V ′

State σ v σ′ iff σ(x) v σ′(x) for all x ∈ Var
Uniqueness 1 v ω
Content V u1

1 v V u2
2 iff V1 v V2 and u1 v u2

Heap h1 v h2 iff dom(h1) ⊆ dom(h2)
and h1(l) v h2(l) for all l ∈ dom(h1)

(State× Heap)⊥ ⊥ v (σ, h)
(σ1, h1) v (σ2, h2) iff σ1 v σ2 and h1 v h2

T [[t]] : (State× Heap)⊥ → (State× Heap)⊥ for t ::= · · · | x:=newl | x:=[x] | [x]:=y

T [[t]]⊥ = ⊥

T [[x:=newl]] (σ, h) =

{
(σ[{l} /x], h[{nil}1 /l]) if l 6∈ dom(h)
(σ[{l} /x], h[(V ∪ {nil})ω/l]) if l ∈ dom(h) and h(l) = V u

T [[x:=[y]]] (σ, h) =

{
(σ[V ′/x], h) if V ′ 6= ∅
⊥ if V ′ = ∅

where V ′ =
⋃
{V | l ∈ σ(y), h(l) = V u }

T [[[x]:=y]] (σ, h) =

{
(σ, h[σ(y)1/l]) if σ(x) = {l} and h(l) = V 1

(σ, h′) otherwise

where h′ = λl.

{
h(l) if l ∈ dom(h) and l 6∈ σ(x)
(σ(y) ∪ V )u where h(l) = V u if l ∈ dom(h) and l ∈ σ(x)
undefined if l 6∈ dom(h)

Fig. 7. The Extension for the Heap

These statements may be straightforwardly extended to other cases. For the
loop case, we apply widening to regular strings in both the abstract state and
abstract heap.

3.4 Interprocedural Analysis

The interprocedural version of our analysis employs a standard technique named
1-CFA [10, 9]. We collect the possible states of each procedure at all of its call
sites, making it possible to output states by computing the procedure body. The
analysis result is achieved by a fixed-point iteration. If the procedure is called
more than twice at different call sites, we separately keep the abstract state for



Example Lines Hotspots Calls Objects Loops JSA(s) OSA(s)

Switch 21 1 1 0 0 1.33 0.42

ReflectTest 50 2 15 2 2 1.6 0.43

SortAlgorithms 54 1 3 0 0 1.35 0.4

CarShop 56 2 8 2 0 1.39 0.51

ProdConsApp 3,496 3 1,224 311 34 9.95 25.12

Decades 26 1 9 0 2 1.91 0.47

SelectFromPer 51 1 16 0 1 1.61 0.39

LoadDriver 78 1 20 0 1 1.84 0.4

DB2Appl 105 2 26 0 1 1.74 0.48

AxionExample 162 7 76 1 1 1.83 0.59

Sample 178 4 47 0 1 2.08 0.55

GuestBookServlet 344 4 131 6 3 4.18 0.71

DBTest 384 5 127 13 3 2.88 1.19

CoercionTest 591 4 378 18 11 18.38 1.58

CustomFieldsMain 1648 17 451 24 4 2.96 0.93

CustomProxiesMain 477 9 76 8 1 1.97 0.72

CustomSequenceMain 280 9 38 3 2 1.12 0.47

ExternalizationFieldsMain 666 2 164 21 0 2.09 1.52

TextIndexMain 396 8 71 11 6 1.51 0.46

Fig. 8. Experimental Results

each call site, and separately compute the procedure body for each call site. This
is made possible by annotating contexts to abstract states. Since we use the 1-
CFA technique, in which the context keeps the last call site only, the analysis
precision can be blurred for nested calls.

Since recursive procedures may induce non-termination of our analysis, we
also compute the widening sequence of inputs and outputs of the methods.

4 Experiments

We built a string analyzer for Java applications that employs our approach, and
we tested its performance and precision for comparison with JSA. For a Java
application with hotspots1, our string analyzer produces a set of regular strings
for each hotspot. We used Objective Caml as the implementation language and a
Linux PC with an Intel PentiumD 830 processor (3.0 GHz) and 2 GByte memory.

The table in Fig. 8 shows the experimental results of 19 programs. The first
14 programs were those tested by JSA, and the final 5 programs were selected
from sample programs in the BEA KodoTM Enterprise Data Access library. Both
JSA and our string analyzer were tested for comparison. The number of lines
ranged from 21 to 3,496. To show the characteristics of programs, we collected

1 A hotspot is the program point where an interesting string expression is located.



Example JSA OSA

CustomFieldsMain Inserted:

CustomFields<.?>:.? name:

.? male: .? point: .?

xml: .?

{Inserted:
CustomFields<.?>:.? name:

name.? male: false.? point:

.?[x=1,y=2].? xml: .?}
ProdConsApp .? {Adv SyncGet, Adv SyncPut, .?}

SortAlgorithms DefaultSortAlgorithms$(C
ounting+Quick)Sort

{.?}

Fig. 9. Precision Comparison

the number of hotspots, the number of method calls, the number of new state-
ments, and the number of loops. Columns JSA and OSA indicate analysis run
times, in seconds, of JSA and our string analyzer. Our string analyzer com-
pleted analysis more quickly than JSA of all programs except the ProdConsApp,
for which our analyzer was about 2.6 times slower. The speed-up is probably
due to the implementation language used (Java versus OCaml). For the slower
case, we guess that the large number of calls increased the number of times that
method bodies were analyzed.

The results produced by our analyzer have been as precise as those yielded by
JSA in most of the cases we have tested. However, the precision of some results
differed, as shown in Fig. 9. For CustomFieldsMain, our analyzer gives more
precise results due to its ability to analyze heap variables. For ProdConsApp,
our string analyzer gives extra information than does JSA2, as the two sets of
regular strings are unioned when they are combined. On the other hand, JSA
gives better results for SortAlgorithms because our current implementation
ignores arrays.

5 Conclusion and Future Works

A string analyzer based on the abstract-interpretation framework is designed
and implemented. A carefully crafted widening operator is devised to maintain
the highest possible precision. Our solution generally gives results comparable
to those of previous methods, and it understands heap variables and context
sensitivity unlike others. We expect the method to be more suitable to practical
applications.

Our string analyzer uses regular expressions that lack the expressibility re-
quired for checking the syntax of generated strings and for handling strings with
escaped characters. Future work could aim to produce abstract string represen-
tations with more expression power while still employing the widening operator
of our method.

2 In theory, two results have the same precision. However, the extra information we
get can be useful in practice.
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