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SUMMARY

In a recent study, we discovered that many single load/store operations in embedded applications can be
parallelized and thus encoded simultaneously in a single-instruction multiple-data instruction, called the
multiple load/store (MLS) instruction. In this work, we investigate the problem of utilizing MLS instructions
to produce optimized machine code, and propose an effective approach to the problem. Specifically,
we formalize the MLS problem, that is, the problem of maximizing the use of MLS instructions with an
unlimited register file size. Based on this analysis, we show that we can solve the problem efficiently by
translating it into a variant of the problem finding a maximum weighted path cover in a dynamic weighted
graph. To handle a more realistic case of the finite size of the register file, our solution is then extended
to take into account the constraints of register sequencing in MLS instructions and the limited register
resource available in the target processor. We demonstrate the effectiveness of our approach experimentally
by using a set of benchmark programs. In summary, our approach can reduce the number of loads/stores by
13.3% on average, compared with the code generated from existing compilers. The total code size reduction
is 3.6%. This code size reduction comes at almost no cost because the overall increase in compilation time
as a result of our technique remains quite minimal. Copyright c© 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

As a result of the increasing size and complexity of embedded systems, driven by the need to satisfy
increasingly diverse market demands, the task of reducing code size is becoming an ever more
important issue for compilers targeting embedded processors. Often the reduced code size leads to an
exceptionally large positive impact on the performance of these processors because many of them are
severely limited by storage constraints. To attain a desired performance goal with such limited storage,
embedded processors are designed on the assumption that the software that runs on them would make
heavy use of their various special hardware instructions and addressing modes [1,2].

The existing code size reduction techniques are designed to utilize the special hardware features of
their target processors to satisfy a range of demands in a variety of different contexts. One notable
feature of hardware instructions in modern architectures that exposes the potential for code reduction
is the multiple load/store (MLS) instructions, which are often encountered in existing processors such
as Motorola Mcore, ARM 7/9/10, Fujitsu FR30 and IBM R6000. As an example, the MLS instructions
in an ARM processor [3] are of the form ldm/stm rbase,{r1,r2, . . . ,rm}where m≤ 16 and all the
operands (rbase,r1,r2, . . . ,rm) can be any of the ARM general-purpose registers r0, r1, . . . , r15.
These instructions allow, in a single operation, a large quantity of data to be transferred efficiently
between any subset (or all) of the 16 registers and the memory locations starting at the address
designated by the register content of rbase. For example, the instruction

ldmr1, {r3, r4, r8}
loads a block of three words Mem[r1], Mem[r1+4], and Mem[r1+8] into the registers in increasing
order of their numbers, that is, r3, r4, and r8, respectively. In the instruction, the order of registers
appearing inside the braces does not affect the data transfer result.

To demonstrate the benefits of utilizing MLS instructions in code generation, consider the example
in Figure 1(a) which shows a fragment of C source code with six variables a, b, c, d , e, and f . Note that
since a multiple load instruction allows more than one data value in contiguous memory locations to be
transferred to registers, whereas a multiple store instruction allows data values in more than one register
to be transferred to contiguous memory locations, the generation of MLS instructions is tightly related
to the memory layout of the variables in the code. Figure 1(c) then shows the assembly of the code
in Figure 1(a) translated by a commercial ARM native compiler. Figure 1(b) shows the corresponding
memory layout that the compiler assigns to the variables‡, represented in relative offsets from the stack
pointers. The assembly code in Figure 1(c) has 17 load/store instructions in total, in which there is only
one multiple store instruction (i.e. stmia), and the rest are single load and single store instructions.
The stmia instruction in the code transfers the values of e and d that are stored in registers r0 and
r2, respectively, to the two (contiguous) memory locations, the lower address of which is pointed
by the content of r1. On the other hand, Figure 1(d) shows another assembly for the source code in
Figure 1(a). The corresponding memory layout is shown in Figure 1(e), which consequently enables
the assembly to use only eight load/store instructions including five MLS instructions (i.e. three ldmia
instructions and two stmia instructions).

‡The ARM compiler, as with many other conventional compilers, determine a memory layout for stack variables simply in a
declaration or lexicographic order of the variables.
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a = a + b - c + d;
if (a > b) { qstring(a, d);

f = f - d;
} else { qstring(a, b);

f = a + b;
d = b + d;
e = a + f;

}
f = d * a;
d = f - d;
· · ·

(a)

[sp + #0x04] : f
[sp + #0x08] : e
[sp + #0x0c] : d
[sp + #0x10] : c
[sp + #0x14] : b
[sp + #0x18] : a

(b)

ldr r0,[sp,#0x18]
ldr r1,[sp,#0x14]
ldr r2,[sp,#0x10]
add r0,r0,r1
sub r0,r0,r2
ldr r2,[sp,#0xc]
add r0,r0,r2
str r0,[sp,#0x18]
cmp r0,r1
ble |l1.48|
mov r1,r2
bl ||qstring||
ldr r0,[sp,#4]
ldr r1,[sp,#0xc]
sub r0,r0,r1
str r0,[sp,#4]
b |l1.88|

|l1.48| bl ||qstring||
ldr r0,[sp,#0x18]
ldr r2,[sp,#0x14]
ldr r3,[sp,#0xc]
add r1,r0,r2
str r1,[sp,#4]
add r0,r0,r1
add r1,sp,#8
add r2,r2,r3
stmia r1,{r0,r2}

|l1.88| ldr r0,[sp,#0xc]
ldr r2,[sp,#0x18]
mul r1,r2,r0
sub r2,r1,r0
str r2,[sp,#0xc]
str r1,[sp,#4]

(c)

add r10,sp,#0x10
add r9,sp,#4
ldmia r9,{r0,r1,r2,r3}
add r2,r2,r1
sub r2,r2,r0
add r2,r2,r3
str r2,[sp,#0xc]
cmp r2,r1
ble |l1.48|
mov r0,r2
bl ||qstring||
ldmia r10,{r0,r1}
sub r1,r1,r0
str r1,[sp,#0x14]
b |l1.88|

|l1.48| bl ||qstring||
add r9,sp,#8
ldmia r9,{r0,r2,r3}
add r1,r2,r0
add r2,r2,r1
add r0,r0,r3
stmia r10,{r0,r1,r2}

|l1.88| add r9,sp,#0xc
ldmia r9,{r0,r2}
mul r1,r0,r2
sub r0,r1,r2
stmia r10,{r0,r1}

(d)

[sp + #0x04] : c
[sp + #0x08] : b
[sp + #0x0c] : a
[sp + #0x10] : d
[sp + #0x14] : f
[sp + #0x18] : e

(e)

Figure 1. Benchmark C code, its assembly with the memory layout generated by the ARM compiler
with a ‘O2’ optimization option, and an optimized assembly resulting from an MLS-aware memory
layout. (a) A fragment of C source code; (b) a memory layout of the variables in (a) determined by the
ARM compiler; (c) the assembly generated by the ARM compiler for (a) resulting from the memory
layout decision in (b); (d) an optimal assembly for (a) resulting from the MLS-aware memory layout

in (e); (e) an MLS-aware memory layout for the variables in (a).
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Comparing the code in Figure 1(d) with that in Figure 1(c), we can see that the number of load/store
instructions is reduced by 53% (from 17 to eight). The reduction of loads/stores through converting
single load/store instructions to MLS instructions normally leads to a total code size reduction (in this
example, by 18%) since each MLS instruction takes up only a single instruction word by encoding
each register operand as a single bit. Furthermore, there will also be a certain amount of reduction in
the total memory access time since the hardware can schedule memory accesses in an MLS instruction
to be overlapped through pipelining when data are actually transferred§.

The comparison clearly reveals that an MLS-aware compilation technique may significantly reduce
the code size as well as the execution time, and is thus particularly useful in embedded system
design where many applications are memory access intensive. However, the problem of utilizing MLS
instructions has not been fully addressed in the literature despite the fact that finding an effective
solution to the problem can be critically important to the class of embedded system designs with
severely limited memory resource constraints for software storage. This is mainly the result of the
potentially high degree of complexity of identifying an optimal memory layout for stack variables
which is the most critical issue for achieving a maximal use of MLS instructions, as revealed in our
early example.

Therefore, not surprisingly, existing compilers (mostly designed for conventional general-purpose
processors) merely use MLS instructions for special occasions [4], such as exception handlers,
function prologues/epilogues, and context switches, where recognizing block memory copies for
MLS instructions are rather trivial. Inevitably, this implies that, to utilize MLS instructions, the users
should hand-optimize their code in assembly, making programming a complex and time-consuming
process.

In this paper, we present an approach to automate the process of a maximal generation of MLS
instructions such that the total code size is minimized. In Section 2, we start our presentation with
a formal definition of the MLS problem (MLSP), i.e. the problem of maximizing the use of MLS
instructions for code size reduction with unlimited register file size. In fact, our analysis in Section 2
indicates that the MLSP with unlimited register file size, denoted as MLSP-u, is similar in several
aspects to the well-known simple offset assignment (SOA) problem [1,5], the problem of assigning
scalar variables to memory such that the number of explicit address arithmetic instructions is minimized
by using auto-increment/decrement addressing modes. In Section 6, we will continue this analysis and
argue how our MLSP is related to others mostly centering around the SOA problem by showing in
more detail that these two problems are broadly similar but completely different in nature.

In Section 3, we propose a solution to a core part of the MLSP-u problem. Then in Section 4,
we provide an extended solution to the general MLSP, where we allow for the constraints of
register sequencing in MLS instructions and for the limited register resources available to the
hardware.

We have tested our techniques experimentally by using a set of benchmark suites and in Section 5
we provide our empirical results and compare them against other compiler results.

§However, for some processors, such as ARM, we cannot gain a visible execution time reduction because these processors do
not support pipelining for their MLS instructions. Therefore, in the ARM example of Figure 1, the optimized code would not
reduce the execution time even though it achieves a 53% load/store reduction.
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2. PROBLEM FORMULATION

We first define the MLS instructions used in our technique, and list a set of constraints that should be
satisfied in the process of generating MLS instructions. Then, we formally define the MLSP.

Definition 1. We define MLS instructions, following the convention of the ARM architecture, to be of
the forms:

{r1,r2,. . . ,rm} = Mem[rbase]; // multiple load

Mem[rbase] = {r1,r2,. . . ,rm}; // multiple store

where n is the number of general-purpose registers on the target architecture and m≤ n. The multiple
load instruction transfers the data values in m memory locations,

Mem[rbase], Mem[rbase]+4, . . . , Mem[rbase]+4m−4
to registers r1, r2, . . . , rm, respectively. Conversely, the multiple store instruction transfers the
data values in the m registers r1, r2, . . . , rm to the corresponding memory locations.

There are a few variants of MLS instructions that are different in meaning from those in Definition 1.
Our proposed technique is designed to be flexible enough to take care of most of the variants.

Definition 2. The M-sequence constraint ensures that, in an MLS instruction, the sequence of memory
locations from/to which m data values, m≤ n, are fetched/stored must be contiguous, starting from
the address specified by the content of rbase, i.e. Mem[rbase], Mem[rbase + 4], . . . , Mem[rbase +
4m− 4].

Definition 3. The R-sequence constraint ensures that, in an MLS instruction, the number sequence of
the m registers from/to which m data values are transferred may not be contiguous, but the sequence
must be strictly increasing.

From the above definitions, we can see that when an MLS instruction is to be formed from loads or
stores, the task of satisfying the M-sequence constraint is closely related to that of assigning variables to
memory (i.e. memory layout), while the task of satisfying the R-sequence constraint is closely related
to the task of register allocation.

Definition 4. The RF-size constraint ensures that the maximum number of registers to be used
simultaneously is limited by the register file (RF) size constraint of the corresponding processor.

Notice in Definition 4 that when a few loads or stores are grouped to form an MLS instruction,
it normally increases the life span of each value associated with them, and consequently increases the
overall register pressure in the code as well. This means that, if there exists a point where the register
pressure comes to be higher than the available RF size in the formation of an MLS instruction, some
of those loads/stores involved in the formation need to be excluded from the instruction to reduce
the resulting pressure. Otherwise, the increased pressure would very likely cause more register spills,
which in turn normally offset the gains from our MLS uses in terms of code size and run time.
To prevent this potential problem the RF-size constraint is enforced in our algorithm, and will be
discussed in more detail in Section 4.1.
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Definition 5. Given a set Sinit of load/store instructions in assembly code C, the problem MLSP is to
generate a set SMLS of MLS instruction from Sinit while satisfying the M-sequence, R-sequence and
RF-size constraints as well as the data dependency constraint of C with the objective of minimizing the
following factors:
(1) the total sum of the number of MLS instructions, i.e. the quantity of |SMLS|; and
(2) the number of instructions (denoted as |Srest|) that have not been involved in the formation of

the MLS instructions in Sinit, i.e. minimizing the quantity of

Nld/st = |SMLS| + |Srest| (1)

As stated earlier, in our approach, we first consider MLSP-u as a restricted case of MLSP in which we
ignore the RF-size constraint by assuming that there is an infinite number of registers available. Then,
we can easily see that the assumption of a sufficiently large number of registers makes the satisfaction
of R-sequence and RF-size constraints trivial.

Definition 6. Given a set Sinit of load/store instructions in assembly code C, the problem MLSP-u is to
generate a set SMLS of MLS instructions from Sinit while satisfying the M-sequence and dependency
constraints in C with the objective of minimizing the quantity of Equation (1).

We describe the MLSP-u problem and our proposed solution to the problem using the example
shown in Figure 2 where the original ARM code (see Figure 1) is translated into 3-address form
for improved readability. Loadable regions (L-regions) and storable regions (S-regions), marked with
vertical bars on the right-hand side of Figure 2, represent the maximum ranges of cycle steps in code,
in which the corresponding load and store instructions can be executed without violating the data
dependency specified in the code. For example, the load from the variable d in the basic block B1 of
the code has an L-region stretching from cycle 0 to cycle 6 in B1 because there is no store before the
load in B1 and the value loaded to r2 is first used at cycle 6. Similarly, the S-region for the store into
the variable f in the block B3 stretches from cycle 5 to cycle 9 in B3 since the stored value is defined
at cycle 4 and there is no load from f in B3 after the store.

Then, the problem is to generate MLS instructions by grouping the load/store instructions whose
L/S-regions are overlapped, so that the value in Equation (1) is as small as possible while still satisfying
the M-sequence constraint. By a simple check we can see that the results of the memory layout for
the variables would critically affect the ability to satisfy the M-sequence constraint for each MLS
instruction, and thus affect the quality of the solution. The MLSP-u problem is obviously an
NP-complete problem since a similar but even simpler problem has already been proven NP-complete
by Nandivada and Palsberg [6] who use a reduction from the Hamiltonian path problem to their
problem. According to their proof, even the MLSP with only double loads and stores (i.e. m= 2)
is NP-complete. Therefore, it is clear from their proof that our general MLSP with m≥ 2 should be no
easier than NP-complete.

3. SOLVING MLSP-u

Since MLSP-u is intractably complex as proven in [6], we attempt to circumvent the complexity using
an efficient algorithm, called Solve MLSP-u, to solve the MLSP-u problem quickly in a polynomial
time bound. The Solve MLSP-u algorithm consists of three steps.
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r0 = a ;
r1 = b ;
r2 = c ;
r0 = r0 + r1 ;
r0 = r0 r2 ;
r2 = d ;
r0 = r0 + r2 ;
a = r0 ;
goto L1 if r0 = r1 ;

call qstring ;
r0 = f ;

r1 = r2 ;

r1 = d ;
r0 = r0 r1 ;
f = r0 ;
goto L2 ;
call qstring ;
r0 = a;
r2 = b ;
r3 = d;
r1 = r0 + r2 ;
f = r1 ;
r0 = r0 + r1 ;
r2 = r2 + r3 ;
e = r0 ;
d = r2 ;
r0 = d ;
r2 = a ;
r1 = r2 r0 ;
r2 = r1 r0 ;

f = r1 ;
d = r2 ;

13
14

15 16

17

18

L-regions
3-address code w/ 4 blocks

S-regions

Figure 2. Four basic blocks (B1, B2, B3, B4) of the 3-address code rewritten from Figure 1(a) and
the L/S-regions for loads/stores of each block.

• Step 1. From Sinit = {I1, I2, I3, I4, . . . , Im−1, Im}, where all instructions Ij in Sinit are loads
and stores, a group of instructions can be merged into an MLS instruction only if it satisfies the
M-sequence constraint. To this end, we build a graph, called the multiple load/store graph, GMLS,
which fully describes relations between load/store instructions when forming MLS instructions.
• Step 2. We propose a memory layout technique and apply it to the GMLS obtained in Step 1, to

generate MLS instructions that minimize the value of Nld/st (= |SMLS| + |Srest|) in Equation (1).
• Step 3. Finally, registers in MLS instruction are assigned, which is a rather trivial task because it

is assumed that there is a sufficiently large number of registers in MLSP-u.

3.1. Building the GMLS graph

Nodes of the GMLS graph represent the variables used in the load/store instructions in Sinit. The GMLS
graph is a multi-graph, and there is a unique edge between two nodes ni1 and ni2 if there is a pair of
load or store instructions Ij1 and Ij2 in Sinit that satisfy the following two conditions.
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Figure 3. The GMLS graph derived from the code in Figure 2.

• Condition 1. {var(ni1), var(ni2)} = {var(Ij1), var(Ij2)}, where var(x) indicates the variable
loaded or stored by x if x is a load or store instruction, or indicates the corresponding variable if
x is a node in GMLS.
• Condition 2. The lifetimes of var(Ij1) and var(Ij2) overlap.

Figure 3 shows the GMLS graph of the code in Figure 2. The graph consists of nodes, each of
which represent a distinct variable used in the loads/stores. Note that each edge of the GMLS graph
is labeled with a pair of instructions. These instructions are a pair of loads or stores for the variables
corresponding to the end nodes of the edge. For example, ‘I3/I2’ is labeled on the edge (c, b) because
I3 and I2 respectively perform loads for c and b, satisfying Condition 1, and the lifetimes of var(I3)

and var(I2) overlap, as shown at the L-regions of I3 and I2 in Figure 2, meeting Condition 2.

3.2. Generating MLS instructions

Step 2 groups load/store instructions to form MLS instructions using the GMLS graph obtained in
Step 1. Since the formation of MLS instructions should satisfy the M-sequence constraint, and the
M-sequence constraint is closely related to the result of the memory layout of the variables, our key
algorithm in this step is to find a memory layout for the variables that leads to the formation of MLS
instructions with a minimum value of Nls/st in Equation (1). Our approach in Step 2 is to formulate the
problem of finding such a memory layout into a problem of finding a path cover in GMLS. The rationale
of this approach and the algorithm based on this approach are respectively presented as follows.

• Rationale of our approach for Step 2. As mentioned in Section 1, MLSP-u seems to be to
some extent similar to the SOA problem in that the optimal solutions of both the problems
are among all possible memory layouts of variables (i.e. all path covers in the access graph for
the SOA problem and in the GMLS graph for the MLSP) that lead to a minimum code size.
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For the SOA problem, the minimum code size is achieved by maximizing the use of auto-
increment/decrement mode accesses, whereas in the MLSP, the minimum code size is achieved
by merging as many single loads/stores into MLS instructions as possible.
However, our MLSP is in fact more complex than the SOA problem, mainly because the SOA
problem deals with an ordinary static weighted graph while ours must deal with a dynamic
weighted graph where edge weights are dynamically changed as the problem is being solved.
In other words, in the SOA problem, the cost (i.e. code size) of a path cover in the access graph
is simply obtained by summing the weights of the edges on the path cover, but in the MLS
problem the cost of a path cover in the GMLS graph cannot be obtained in a straightforward
manner because there might be multiple ways of merging the load/store instructions in the edges
of the path cover. This means that we need a careful merging process to consider the merging
conflicts among the instructions. Unlike solving the SOA problem, our version includes a new
feature for dynamically updating nodes and edges in the GMLS graph during the iteration process
of edge selections to resolve the merging conflicts among the instructions.
• Algorithm for finding memory layouts. Based on the above analysis, the proposed strategy for

Step 2 is an iterative one. Initially, we have an empty path P and the GMLS graph. At each
iteration, we select an edge in the GMLS among the ‘candidate’ edges and expand P by including
the edge to P and update the GMLS graph by merging the two end nodes of the edge into a new
node. More precisely, in the ith iteration of the algorithm, for every edge (vi , vj ) in the GMLS
graph such that the inclusion of (vi, vj ) to P does not cause a cycle in the initial GMLS graph,
the instructions corresponding to vi and vj are merged into an MLS instruction, and we compute
the cost

�Nls/st =�|SMLS| +�|Srest| (2)

where �|SMLS| and �|Srest| are the decreased numbers of MLS instructions and non-MLS
instructions for the merge, respectively. We then select, among the candidate edges, the edge
(vi , vj ) with the largest value of �Nls/st, and merge the instructions of vi and vj into MLS
instruction(s). The empty path P is then updated by including (vi , vj ), and the GMLS graph is
also updated by merging the nodes vi and vj and updating the connected edges accordingly.
The process repeats until P becomes a path that covers all the nodes in the initial GMLS.
Figure 4 shows a step-by-step procedure for the generation of MLS instructions by our
proposed algorithm from the GMLS graph in Figure 3. The table in Figure 4(a) summarizes
the values of �Nls/st of edges in the initial GMLS graph. Edge (a, d) is selected because
its �Nls/st is the largest. In consequence, three new MLS instructions, I(1,4), I(9,11),
and I(16,15), which respectively come from the results of merging instructions I1 and I4,
I9 and I11, and I16 and I15, are produced. The left-hand side of Figure 4(b) shows the
updated GMLS graph where the thick edge indicates a (partial) path cover (i.e. P ). The table
in Figure 4(b) shows the �Nls/st values of edges. Edge (d, f ) is then selected, and thus three
new MLS instructions are generated accordingly. Figures 4(c)–(e) show the updated GMLS
graph and computations of �Nls/st values in the third, fourth, and fifth iterations in Step 2 of
Solve MLSP-u, respectively. Finally, Figure 4(f) shows the final path cover c − b − a − d −
f − e, which becomes exactly the memory layout of variables. From the results, we can see
that the total reduction of instructions is 10, which is from 3, 3, 2, 1, and 1 reductions in the
first, second, third, fourth, and fifth iterations. We summarize our algorithm for finding memory
layout in Figure 5.
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Figure 4. Example to illustrate the detailed procedure of Step 2, generation of MLS instructions from GMLS.
(a) Initial GMLS and the cost computation for each pair of nodes in the first iteration; (b) the updated GMLS and
the cost computation for each pair of nodes in the second iteration; (c) the updated GMLS and the cost computation
for each pair of nodes in the third iteration; (d) the updated GMLS in the fourth iteration (node c is selected and
merged); (e) the updated GMLS in the fifth iteration (node e is selected and merged); (f) final results of MLS

instructions and memory layout (path cover).
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MLSGen(Program P)
GMLS← Construct MLS Graph(P );
for each edge e in GMLS

e.gain = ComputeDelta(e);
Q← priority queue of edges using gain as key;
Path←∅;
while Q is not empty do

e← Pop(Q);
if (Path ∪ {e}) results in a cycle then continue;
else add e to Path;

od
Assign memory offsets to memory variables

according to their position in the Path;
end

Figure 5. Greedy algorithm designed to satisfy the M-sequence constraint.

3.3. Assigning registers

In Step 2, we satisfied the memory sequence constraint of the MLS instruction. To complete the
work, register reassignment is necessary to satisfy the R-sequence constraint. Although we have made
the assumption of infinite registers for MLSP-u, register assignment is not trivial since there can be
conflicts between R-sequences imposed by MLS instructions from Step 2. For example, in the code

{sr1, sr2, sr3} = Mem[sraddr] // multiple load

...

Mem[sraddr] = {sr2, sr1, sr3} // multiple store

the multiple load instruction requires that sr1 should be assigned a smaller physical register number
than sr2, while the multiple store instruction requires the opposite. To solve this problem, we check
conflicts between all MLS candidates before register reassignment. If any conflict exists, the conflicting
MLS instructions are split one by one until all the conflicts are resolved. This procedure is described
in greater detail later in Section 5.2.

The time complexity of the Solve MLSP-u is dominated by that of Step 2, which is bounded by
O(N3) where N is the number of variables, because the number of iterations in Step 2 is exactly N and
each iteration considers at most N2 pairs of nodes in graph GMLS.

4. SOLVING MLSP

In this section, we describe our algorithm, called Solve MLSP, which is an extension of
Solve MLSP-u, to the general MLSP. Our approach to solving MLSP extends Solve MLSP-u by
satisfying two additional constraints: R-sequence and RF-size. Figure 6 shows the flow of our
integrated solution to MLSP where Step 1 of Solve MLSP-u is extended to support the RF-size
constraint while Step 3 is carefully designed to support the R-size constraint.
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Generation of MLS instructions
Step 2

Step 1
Construction of load/store graph

Step 3

Assigning registers

R-sequence constraint

RF-size constraint

M-sequence constraint

Figure 6. The flow of Solve MLSP.

4.1. Supporting the RF-size constraint

One central task of Step 1 in Solve MLSP is to use the L/S-regions to identify parallel loads/stores.
For this, it first divides the input procedure into basic blocks, and, for each block, computes the
L/S-regions as shown in Figure 2. We define the L-Region and S-Region as follows.

Definition 7. (Loadable region) Suppose a basic block B contains a load r = v at the cycle t that loads
the value into the register r from the memory location denoted by the variable v. Then, the Loadable
region (L-region) of the load is the time interval intv =[lb,ub] where its lower and upper bounds lb and
ub are respectively defined as follows.

• If there occurs the last store into v or use of v at some cycle t ′ in B before the load, then
intv.lb = t ′ + 1. Otherwise, intv.lb = 0.
• If the value loaded at t is first used at some cycle t ′′ in B, then intv.ub = t ′′. Otherwise,

intv.ub = |B| − 1.

Definition 8. (Storable region) Suppose a basic block B contains a store v = r at the cycle t that stores
the value from the register r into the memory location denoted by the variable v. Then, the Storable
region (S-region) of the store is the time interval intv = [lb, ub] where its lower and upper bounds lb

and ub are respectively defined as follows.

• If the register value stored at t was last defined at the cycle t ′ in B, then intv.lb = t ′ + 1.
Otherwise, intv.lb = 0.
• If there is the first load from v or defined v at the cycle t ′′ in B after the store, then intv.ub = t ′′.

Otherwise, intv.ub = |B| − 1.
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Figure 7. RF-size constraint test for four available registers: (a) intz as the seed
interval; (b) intw as the seed interval.

In principle, any loads/stores are parallel as long as their L/S-regions are overlapped. So, in
forming MLS instructions, these parallel loads and stores may initially all be gathered to form an
MLS instruction. However, this naive gathering may cause many new register spills in the final code.
To explain this with an example, suppose in Figure 2 that we combine a load for d in block B1 with
those for a, b, and c to form an MLS instruction. The generation of an MLS instruction requires that
the load for d should move up from cycle 5 to 2 or even earlier. This movement would prolong the
lifetime of the value in the register r2, possibly also increasing the register pressure. As discussed in
Section 2, to prevent extra spills resulting from the increased register pressure, the RF-size constraint
is enforced during Step 1 when parallel loads/stores are collected from the top of the code.

If the current configuration of collection of loads/stores violates the RF-size constraint, some
L/S-regions (i.e. intervals) are removed from the configuration until the constraint is satisfied.
To explain this more precisely, consider Figure 7 where each L-region is extended with a gray
line to represent the whole life span of the value loaded from a memory location. Assume that the
target machine currently has only four registers available for loads/stores in this part of the code.
In Figure 7(a), a collection of L-regions is first formed with four intervals (intx, inty, intz, intv),
beginning with intz as the seed interval, the interval whose upper bound is the lowest in the block.
However, under the register file size limit (= 4), moving up the two loads for v and y to join I before
cycle 2 would cause the resulting pressure to violate the RF-size constraint by exceeding the limit at
cycle 4. When this violation is reported, the load for v to move up before cycle 5 is not considered by
eliminating it from the collection of L-regions and adjusting its lower bound intv.lb to 5, as shown in
Figure 7(b), where we can now see that the constraint is no longer violated. Although we could also
prevent the violation by choosing inty instead of intv , we choose the interval with the longest tail since
its life span stretches longest having more chance of overlapping with other intervals. After intv is
removed, the three intervals remaining in I will form a block of parallel loads, as shown in Figure 7(b).
Then, by the definition of a seed interval, the interval intw will be selected as the next seed, and
clustered with the other two intervals, intv and intu.
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remaining symbolic-registers
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Algorithm

Figure 8. MLS register allocation flow.

4.2. Supporting the R-sequence constraint

Each of the MLS instructions produced in Step 2 should be a block of parallel loads/stores accessing
contiguous memory locations starting at their base offset mbase from the stack pointer. Since the
M-sequence constraint was satisfied during the process of Step 2, each MLS with k loads or stores
can, for a multiple load, be of the form

rbase = sp+#mbase

{r1,r2,. . . ,rk} = Mem[rbase]

or for a multiple store

rbase = sp+#mbase

Mem[rbase] = {r1,r2,. . . ,rk}
The definition of the R-sequence constraint can be divided in two parts:

(1) all register operands in an MLS instruction must be distinct;
(2) the memory words are transferred from/to the registers in increasing order of the register

numbers.

The first part of the R-sequence constraint is trivially met in Step 3 since the RF-size constraint,
enforced in Step 1, ensures that the register pressure always stays within the register file size. However,
the second part is not easy to satisfy since it requires register reallocation.

Figure 8 shows the flow of the register allocation algorithm. The work is done in two steps. In the
MLSRegAlloc step, we pre-allocate physical registers to the operands of MLS instructions such that
they satisfy the R-sequence constraint. Then, a general graph coloring register allocation algorithm is
invoked to assign registers to the remaining symbolic registers. Since the second step is the same as a
traditional graph coloring register allocation, we concentrate on the MLSRegAlloc step in this section.

In MLSRegAlloc, we first extract the R-sequence constraint of each MLS instruction and resolve
conflicts between them. Then, all the R-sequence constraints are summarized in graph form, which, in
turn, is used to guide the register allocation to satisfy the R-sequence constraint.
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...
add sr15,SP,#0x10
ldmia sr15,{sr0,sr1,sr2,sr3}
add sr11,sr1,sr2
add sr4,sr11,sr3
sub sr5,sr3,sr4
stmia sr15,{sr0,sr4,sr5,sr3}
add sr12,sr3,#0x10
mult sr6,sr7,sr0,sr12
add sr16,SP,#0x20
stima sr16,{sr6,sr7,sr0}
add sr17,SP,#0x10
ldmia sr17,{sr8,sr9,sr10}
stmia sr17,{sr9,sr8,sr10}

...

order1: sr0<sr1<sr2<sr3
order2: sr0<sr4<sr5<sr3
order3: sr6<sr7<sr0
order4: sr8<sr9<sr10
order5: sr9<sr8<sr10

order1: sr0<sr1<sr2<sr3
order2: sr0<sr4<sr5<sr3
order3: sr6<sr7<sr0
order4: sr8<sr9<sr10
order5: sr9
order6: sr8<sr10

(a) (b) (c)

Figure 9. An example assembly code generated after satisfying M-sequence constraint. (a) Example assembly
code generated from Step 2 (MLS Generation); (b) R-sequence constraints of code (a); (c) R-sequence constraints

of code (b) after resolving conflicts.

4.2.1. Conflict resolution

The R-sequence constraint of each MLS instruction can be represented as an ordered set O which
is defined as (X, <), where X is the set of symbolic registers sri and < is the total order between
two symbolic registers sri , srj , such that sri should be assigned a smaller physical register number
than srj . In the example in Figure 9, we can observe three ordered sets order4, order5, and
order6 in Figure 9(c) instead of two ordered set order4 and order5 in Figure 9(b), because
order4 requires sr8 < sr9 while order5 requires sr9 < sr8 after register allocation and then we
have to split order5 into sr9 and sr8 < sr10 resulting in two memory access operations to resolve
this conflict.

To resolve the conflicts, we first check conflicts between all pairs of MLS instructions and summarize
the result in a graph called a conflict graph. In the conflict graph, each node denotes an MLS instruction
and each edge denotes a conflict between two corresponding MLS instructions. The conflicts are
resolved by splitting the MLS instruction corresponding to the maximum-degree node one by one
until all the conflicts are eliminated. In our example code, order5 is split into sr9 and sr8 < sr10
resulting in two memory access operations.

4.2.2. ROG/MIG construction

To satisfy the R-sequence constraint, we need to express both the R-sequence constraint and any
interference between symbolic registers in a single data structure. For this, we first combine all the
R-sequence constraints and represent it as a directed acyclic graph (DAG) called register order graph
(ROG). The ROG summarizes the whole order of symbolic registers related to MLS instructions.
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Figure 10. Modified interference graph (MIG).

Then we merge the ROG and the conventional interference graph (IG) to generate a multi-graph
called a modified interference graph (MIG). The MIG contains both the R-sequence and interference
information, and is thus used to guide register reassignment.

Definition 9. (ROG) Let V be the set of all symbolic registers related to MLS instructions. Then a
ROG = (N, E) is defined as follows:

(1) N = V ;
(2) for any edge u→ v in E, there exists an order set O such that u and v are adjacent in O and

u < v, where the adjacency in the ordered set O means that there is no elements between nodes
u and v in sorted manner.

Definition 10. (MIG) For a ROG R = (NR, ER) and IG I = (NI , EI ), let MIG M = (NM, EM).
Then M is a multi-graph and is defined as follows:

(1) NM =NI ;
(2) EM = ERUEI .

Figure 10 shows the resulting MIG for the code in Figure 9. The directed edges denote the edges of
ROG and the undirected edges represent those of the IG.

After constructing ROG, we can see that the height¶ of the ROG indicates the minimum number
of physical registers required to satisfy the R-sequence constraint. Therefore, when the height of
the ROG is greater than the number of physical registers (=N), the condition should be relaxed by
splitting one or more MLS instructions. The relaxation is accomplished by a MinCostCut routine in

¶Defined as the longest path from the top node to the leaf node.
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// OrderSet : set of R-sequence constraints.
// GIG : original interference graph.
// N : number of physical registers.
build MIG(OrderSet, GIG, N)

GROG← ConstructROG(OrderSet);
while the height of GROG > N do // Relax height

Esplit←MinCostCut(GROG); // edges to cut
GROG←GROG − Esplit; // Update GROG
od

GMIG←GROG ∪GIG; // Construct GMIG
return GMIG;

// GROG : Register Order Graph.
// GMIG : Modified Interference Graph.
MLS RegAlloc(GMIG, GROG, N)

remove non-MLS nodes from GMIG;
for each connected component C of GROG do

while DepthFirstAlloc(GROG, N) is failed do
Esplit←MinCostCut(C);
C← C − Esplit;

od
od

DepthFirstAlloc(GROG, N)
DFO←GetDepthFirstOrder(GROG);
for each node n in DFO in sequential order do

flag← AssignReg(GROG, N, n);
if flag == failure then return failure;

od

// n : Target node for register allocation
AssignReg(GROG, N, n)

for(r =N − 1; r ≥ 0; r −−) do
if r violates R-sequence constraint or r is already
used by one of its neighbors then

continue; // try next register
else do

assign r to node n;
return success;

od
return failure; end

Figure 11. Algorithm to assign physical registers to MLS register operands.
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(a) (b)

Figure 12. A MIG example where register allocation is still impossible even after adjusting the height of ROG:
(a) before the R-sequence constraint is relaxed; (b) after the R-sequence constraint is relaxed.

the following manner. For every edge in the ROG, it computes the expected gain using

Gain = (� Height of ROG) / (� CodeSize) (3)

and cuts the edge with maximum gain. The corresponding MLS instructions are split accordingly.
The MinCostCut routine is invoked repeatedly until the height becomes less than or equal to N .

4.2.3. Register allocation

At the final step, physical registers are allocated to register operands of MLS instructions guided by the
ROG and MIG. Since we consider only MLS operands, non-MLS nodes are removed from the MIG
and physical registers are sequentially assigned to MLS nodes in depth first traversal order, starting
from the largest register number available. Figure 11 lists the MLSRegAlloc algorithm.

Although the height of the ROG is adjusted in the previous step, there can still be cases
where register allocation is impossible as a result of the R-sequence constraint. In the case
shown in Figure 12, even with height 8, more than eight registers are required to meet the
R-sequence constraint. The smallest register number that can be assigned to symbolic register s8 is r3
since four symbolic registers s6, s9, s10, s11 should be assigned unique register numbers satisfying
the R-sequence constraint at the same time. However, the remaining three registers (r0, r1, r2) are
insufficient to satisfy the R-sequence constraint of s1, s2, s3, s7. We solve this problem by using the
same MinCostCut routine as before. Whenever such cases are met, the MinCostCut is invoked to relax
the R-sequence constraint. Figure 12(b) shows the relaxed version of the MIG in Figure 12(a).
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Figure 13. The final result of register allocation on the MIG of Figure 10.

After assigning registers to MLS operands, we assign registers to the remaining non-MLS nodes
using a traditional graph coloring register allocation algorithm. The MLS nodes are regarded as pre-
assigned nodes. Figure 13 shows the final result on the MIG of Figure 10 assuming eight physical
registers.

5. EXPERIMENTAL RESULTS

We implemented the proposed algorithm Solve MLSP in C++ and evaluated it on a set of two
embedded benchmark suites in DSPStone [7] and MediaBench [8]. DSPStone consists of well-known
digital signal processing (DSP) benchmark kernels. Unlike DSPStone, MediaBench consists of full
codes for complete media applications. Solve MLSP is attached to the GCC-ARM compiler as a
post-optimization phase and optimizes only local stack variables; arrays or global variables are not
touched. The evaluation was conducted on an ARM 7 processor. For each benchmark, the GCC-ARM
compiler is used to generate the initial assembly code and then our technique is applied to obtain an
MLS-optimized version of the code. We measured the compile time cost on an Intel machine with one
3.4 GHz Pentium 4 processor and 1 GB RAM and report the result for MediaBench.

There are several issues to address before going into the experimental results.

(1) The Solve MLSP algorithm is designed to be applied to the assembly code, so before applying
Solve MLSP we computed a web of physical registers and converted them into symbolic
registers except for special purpose registers.

(2) When computing L-regions and S-regions, the results depend on the computation order
of candidate load/store instructions. This is because the extended lifetime of precomputed
L-regions (or S-regions) affects the RF-size constraint of the remaining (unprocessed) load/store
operations. In our implementation, we first computed L-regions for all load operations in order,
and then computed S-regions for all store operations in order.

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. (in press)
DOI: 10.1002/spe



Y. PAEK ET AL.

Table I. Comparisons of code size before and after the application of Solve MLSP to the unoptimized
codes by the GCC compiler for DSPStone benchmarks.

Original MLS Opt
Difference (%)

Benchmark code Total size Mem size Total size Mem size Total size/mem size

DOT PRODUCT 37 16 37 16 0.0/0.0
CONVOLUTION 50 18 50 17 0.0/5.6
N REAL UPDATES 76 36 74 33 2.6/8.3
FFT BIT REDUCT 112 38 112 38 0.0/0.0
LMS 115 51 110 43 4.3/15.7
MATRIX1 117 44 115 39 1.7/11.4
BIQUAD N SECTIONS 124 58 122 53 1.6/8.6
N COMPLEX UPDATES 128 60 126 57 1.6/5.0
FIR2DIM 229 85 227 82 0.8/3.5

Average — — — — 1.4/6.5

5.1. Results on two embedded benchmarks

5.1.1. DSPStone benchmark

In this experiment, two versions of the codes are generated and compared. The first version is an
unoptimized ARM assembly code generated by GCC-ARM Compiler 3.3. The second version is
generated after applying Solve MLSP to the first version. Table I summarizes and compares the
two code versions. Original and MLS Opt indicate the first and the second version respectively, and
total size and mem size indicate the total code size and the number of memory access instructions,
respectively. Mem size and total size may be expressed as

mem size = loads/stores + MLSs

total size = mem size + BRSs + other instructions

where BRSs represents the number of base register setting instructions which are additional address
computation instructions for initializing the base register for each MLS.

The table shows that Solve MLSP is able to reduce the memory access code size by 6.5% on
average and the total code size by 1.4% when a normal ARM 7 processor is used. For the DSPStone
benchmark suite, Solve MLSP is not very effective as a result of the small code size of DSPStone code.
Since DSPStone benchmark is a set of synthesized programs of small kernel routines, there is little
opportunity for MLS optimization.

5.1.2. MediaBench benchmark

To evaluate the effect of Solve MLSP on practical cases, we performed a second experiment with
larger codes than those from DSPStone. For this, we chose benchmark programs from MediaBench,
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Table II. Comparisons of code size before and after the application of Solve MLSP to each function body
optimized by the GCC 3.3 compiler for MediaBench benchmarks.

Original MLS Opt
Difference (%)

Benchmark code Total size Mem size Total size Mem size Total size/mem size

COMPUTE COLOR 119 66 113 47 5.0/29.0
QUANTIZE FS DITHER 137 78 129 58 5.8/25.6
DPFIELD ESTIMATE 147 73 136 54 7.5/26.0
FULL SEARCH 193 69 189 56 2.1/18.8
FRAME ESTIMATE 200 142 195 130 2.5/8.5
PASS2 FS DITHER 202 116 182 79 9.9/31.9
FIELD ESTIMATE 317 198 317 190 0.0/4.0
DPFRAME ESTIMATE 369 161 343 115 7.0/28.6
FIELD ME 1008 458 972 380 3.6/17.0
FRAME ME 1039 528 1008 446 3.0/15.5

Average — — — — 4.6/20.5

which have already been optimized with a ‘O2’ option, and, as in the first experiment, we generate two
versions of the machine codes from them.

The ARM native compiler we tested in this experiment utilizes MLSs instructions that are highly
efficiently for function calling conventions where various parameters and pointers are saved and loaded
during function calls. Its function call optimizations use MLSs to reduce memory instructions needed to
implement calling conventions. However, the compiler does not utilize MLSs instructions for ordinary
loads/stores within a function body. To isolate these interprocedural optimization effects of the ARM
compiler from its intraprocedural effects and compare them with our algorithm, we conducted two
different levels of experiments.

• Intraprocedural level. We exclude the interprocedural effect by comparing the output results only
for each individual function body without function prologues/epilogues for calling convention.
• Interprocedural level. We include the effects of functional call optimizations by comparing the

output results for the full codes of the benchmarks containing multiple functions. It also shows
the overall effectiveness of our algorithm.

Tables II and III respectively show the intraprocedural and interprocedural experimental results.
As expected above, owing to the limited intraprocedural utilization of MLSs instructions of the ARM
compiler, Solve MLSP outperforms the compiler in Table II more than in Table III.

In an experiment using full codes, Solve MLSP achieved a 1.8 to 23.6% reduction of memory code
size, and up to a 5.6% reduction to the total code size. On average, the total code size is decreased by
3.6%, and memory code size is decreased by 13.3%. For MediaBench, Solve MLSP achieves much
better improvement than it does for the DSPStone benchmark.

The main reason for this difference is the fact that MediaBench has a larger code size and accesses
memory variables more frequently. In fact, observations on the MediaBench suite reveals that memory
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Table III. Comparisons of code size before and after the application of Solve MLSP to each full
code optimized by the GCC 3.3 compiler for MediaBench benchmarks.

Original MLS Opt
Difference (%)

Benchmark code Total size Mem size Total size Mem size Total size/mem size

G721 748 279 736 248 1.6/11.1
GSM 3097 1231 2952 1060 4.7/13.9
RASTA 4487 2159 4447 2119 0.9/1.8
MPEG2 DECODER 4372 2015 4160 1813 4.8/10.0
EPIC 5066 1974 4871 1587 3.8/19.6
MPEG2 ENCODER 9204 4268 8684 3259 5.6/23.6

Average — — — — 3.6/13.3

access instructions (such as load/store) occupy a significant portion of the program. For instance, 46.4%
of MPEG2 ENCODER, 38.9% of EPIC, and 39.7% GSM are memory access instructions. A second
reason is that the GCC-ARM compiler lacks the optimization techniques to exploit MLS instructions.
By examining the assembly code generated by existing compilers, we found that, even at the full
optimization level, the GCC-ARM compiler as well as the ARM native compiler [9] generate MLS
instructions in a very limited way such as register–save–restore instructions at function prologue and
epilogue.

Note that, as we would expect, the exploitation of MLS instructions by Solve MLSP does not lead
to a dramatic decrease in the total code size. However, considering that we can successfully further
reduce the code size even after every effort has been made by both compilers for code optimizations,
we believe these results are significant. Besides, although it is not shown explicitly in the experimental
results, we believe that the percentage reduction in loads and stores (about 10–20%) would bring about
a tangible reduction in execution time and energy consumption‖, which are also equally important
performance metrics in embedded processors.

5.1.3. Compile time cost

To see the compilation overhead resulting from the use of our technique, we measured the time taken to
perform the Solve MLSP algorithm as illustrated in Figure 14. The figure shows that the compile time
is given as a ratio, in percent, of MLSGen and MLSRegAlloc with respect to the total compile time;
MLSGen denotes the time taken at Step 1 (GMLS) + Step 2 (MLSGen), and MLSRegAlloc denotes
the time taken for allocating registers to MLS operands. As you can see in the figure, MLSRegAlloc
is the most dominant factor since it involves many complex graph data structures, such as ROG, IG,
and MIG. Figure 15 shows the relationship between the input code size and the compile time cost.

‖Many studies report that in most embedded system applications a large portion of energy consumption and execution time is
due to memory access operations [10,11].
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Figure 14. Compile time cost taken at each step of the Solve MLSP algorithm.

At the end of Section 3, we stated that the time would increase as O(N3) for N variables in the input
code. Figure 15 roughly confirms our time analysis. This empirical result ensures that the Solve MLSP
does not add a heavy burden to existing compilers.

5.2. Statistics of generated MLS instructions

To analyze the effect of Solve MLSP, we classified the resulting MLS instructions with respect to the
number of associated memory access operations. Figure 16 shows the statistics for the MediaBench
suite. As you can see in the figure, more than 90% of MLS instructions are composed of less than
six memory access operations. Specifically, 93% of MLS instructions consists of two to five loads
(or stores) and MLS instructions with more than 12 loads (or stores) are not generated at all. This can
be explained by the following reasons.

(1) Most of the basic blocks contain small number of instructions; around 10 instruction on average.
This limits the size of parallel loads/stores, which in turn leads to dominance of small-size MLS
instructions.

(2) The RF-size constraint limits the size of possible parallel loads/stores.
(3) Even if the code contains large-size parallel loads/stores, most of them are likely to split in the

course of applying the M-sequence and R-sequence constraints.
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Figure 15. The relationship between compile time cost and input code size.

We can also observe that double load/store (MLS instructions with two loads/stores) occupies
approximately 50% of the resulting MLS instructions. Note that double load/store does not affect
the code size since almost all MLS instructions require one additional arithmetic operation for address
computation. Thus, from this observation, we have found that only half of the total MLS instructions
found by our technique contribute to the reduction of our code size.

One potential concern for an MLS instruction is that, in most architectures, interrupts are disabled
while all data values in the instruction are completely transferred. For some hard real-time applications,
this may lead to undesirable system behavior because the handling of interrupts may become too
delayed for an MLS instruction with a long list of data values. This is, in fact, one reason why the
ARM native compiler limitedly uses MLS instructions. Nonetheless, Figure 16 reveals that the adverse
effect of the Solve MLSP algorithm on the interrupt response time may be safely ignored or minimized
in practice owing to the dominance of small-size MLS instructions.
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Figure 16. Ratio of MLS instructions with respect to MLS size.

6. COMPARISON WITH PREVIOUS WORK

Finding an optimal memory layout for scalar variables in a stack frame had hardly been a crucial
issue in compiler research until about a decade ago when the utilization of special addressing modes
became important for typical embedded processors. Since then, there has been much work on code size
reduction through optimal memory assignment for such addressing modes. One of the earliest works
was undertaken by Bartley [5] who first addressed the SOA problem. Later, Liao et al. [1] formally
proved that the SOA problem can be reduced to the MWPC problem, and thus that it is NP-complete.
Hence, to cope with the SOA problem quickly in polynomial time, they, in common with our approach,
proposed a heuristic based on the Kruskal’s MST algorithm. They also extended the SOA problem to
the GOA problem that handles multiple index registers.

Inspired by the previous work, many researchers extended the work in various aspects. Leupers
and David [12] developed a genetic-algorithm-based technique to solve the SOA/GOA problem by
simultaneously handling arbitrary register file sizes and auto-increment ranges. Rao and Pande [2]
optimized the access sequence of variables by applying algebraic transformations on expression trees
to obtain the least cost offset assignment for the SOA/GOA problem. Zhuang et al. [13] discussed an
approach of variable coalescence which enables both code and data size reduction, and simplifies the
access graph yielding better SOA solutions. A similar study was also conducted simultaneously by
Ottoni et al. [14] who proposed a coalescing SOA-based algorithm that performs variable coalescing
and offset assignment simultaneously.

All of these previous studies are in some sense related to our work in that they are aimed at finding
an ‘optimal memory (offset) assignment’, and so are mostly based on the MST algorithm. However, as
discussed in Section 3, our work is fundamentally different from previous research as our approach is
concerned with solving the MLSP, rather than the SOA/GOA problem. Consequently, while previous
techniques are only able to handle static weighted graphs, our approach must be capable of handling
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dynamic weighted graphs, which makes the algorithm more complicated. To the best of our knowledge,
two works that addressed the optimization with MLS instructions are [6] and [15]. Nandivada [6]
investigated the use of synchronous dynamic random access memory (SDRAM) for the optimization
of spill code, and proposed an approach that arranges the variables in the spill area, so that loading
to and storing from the SDRAM is optimized by utilizing MLS instructions. This work is different
from ours in two respects. First, their technique focuses on improving the execution speed of the
code rather than reducing the code size in the sense that it generates MLS instructions only from
‘double’ load/store. For this reason, we deem their problem to be a special case of the MLSP for
double load/store instructions, which is much simpler than the problem we want to solve. Second,
their optimization algorithm is based on integer linear programming (ILP). In contrast, our approach
is based on an efficient graph-based heuristic, which guarantees a polynomial-time bound in run time
while producing global solutions.

The work reported in this paper is an extension of some of our authors’ early work. In [16], we
proposed an integrated approach where the SOA/GOA problem is coupled with instruction scheduling
to more efficiently exploit scheduling by minimizing addressing instructions. This differs from our
current work as, in common with the majority of the previous work, it targets the SOA/GOA problem.
In the other study [17], we targeted the MLSP and proposed a heuristic algorithm to tackle the problem.
Although that work offered us a glimpse of the benefit of exploiting MLS instructions in our code
generation [18], it was somewhat premature since it has one fundamental shortcoming: the proposed
algorithm was not specifically targeted to the MLS problem, owing mainly to an insufficient formal
analysis of the problem itself. In addition, the problem MLSP-u was not separately addressed in
this preliminary study. This is also the case with another related work by Johnson and Mycroft [15]
who conducted a similar experiment independently, and almost simultaneously published a paper that
happens to be quite close to our work [17].

7. CONCLUSIONS

This work was motivated by our previous project to build an optimizing compiler for a commercial
embedded media processor under development. In the processor, we found a variety of instructions
specifically designed to accelerate media applications, and among them there was a class of single-
instruction multiple-data (SIMD) instructions, called MLS instructions. In our efforts to exploit a
SIMD-style parallelism in memory operations for code optimization, we found that no previous
compilers had made a serious attempt to address this optimization problem. For this reason, in our
research we chose to devise an effective algorithm that tackles this exponential-time problem quickly.
More precisely, in this work we rigorously analyzed the MLSP, from which we proved that it is
intractable, and proposed a polynomial-time bounded algorithm, Solve MLSP, to solve the problem
efficiently. Solve MLSP attacks the problems in three steps: (1) constructing a graph with parallel
load/store relations among instructions; (2) formulating the problem into a problem of finding a path
cover in the graph; and (3) assigning registers.

From experimental results on a set of benchmark suites in multimedia applications, it is shown
that Solve MLSP was able to reduce the load/store codes by on average 6.5–13.3%, indicating that it
exploits MLS instructions successfully to further reduce the size of code even after the code has been
fully optimized by existing production-quality compilers. Although our technique cannot reduce the
total code size on a dramatic scale (i.e. 3.6%), we believe that it has been proven effective and valuable
to the applications of memory-resource-limited embedded system designs.

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. (in press)
DOI: 10.1002/spe



EFFICIENT EMBEDDED CODE GENERATION WITH MLS INSTRUCTIONS

REFERENCES

1. Liao S, Devadas S, Keutzer K, Tjiang S. Storage assignment to decrease code size. ACM Transactions on Programming
Languages and Systems 1996; 18(3):235–253.

2. Rao A, Pande S. Storage assignment optimizations to generate compact and efficient code on embedded DSPs. Proceedings
of the ACM SIGPLAN 1999 Conference on Programming Language Design and Implementation. ACM Press: New York,
1999; 128–138.

3. ARM. ARM Instruction Set Quick Reference Card. http://www.arm.com [2005].
4. Embedded Concepts and Solutions, Inc. ARM Technical Tidbits. http://www.go-ecs.com [2005].
5. Bartley B. Optimizing stack frame accesses for processors with restricted addressing modes. Software—Practice and

Experience 1992; 22(2):101–110.
6. Nandivada V, Palsberg J. Efficient spill code for SDRAM. Proceedings of the 2003 International Conference on Compilers,

Architectures and Synthesis for Embedded Systems. ACM Press: New York, 2003; 24–31.
7. Zivojnovic V, Velarde JM, Schager C, Meyr H. DSPStone—A DSP oriented benchmarking methodology. Proceedings of

the International Conference on Signal Processing and Technology, Dallas, TX, October 1994; 715–720.
8. Lee C, Potkonjak M, Mangione-Smith W. MediaBench: A tool for evaluating and synthesizing multimedia and

communications systems. Proceedings of the 30th Annual ACM/IEEE International Symposium on Microarchitecture.
IEEE Computer Society Press: Washington, DC, 1997; 330–335.

9. ARM. ARM Developer Suite—Version 1.2. http://www.arm.com [2005].
10. Franklin M, Wolf T. Power considerations in network processor design. Network Processor Design–Issues and Practices,

vol. II. Morgan Kaufmann: San Francisco, CA, 2003.
11. Sanchez-Elez M, Fernandez M, Anido M, Du H, Bagherzadeh N, Hermida R. Low energy data management for different

on-chip memory levels in multi-context reconfigurable architectures. Proceedings of the Conference on Design, Automation
and Test in Europe, vol. 1. IEEE Computer Society Press: Washington, DC, 2003.

12. Leupers R, David F. A uniform optimization technique for offset assignment problems. Proceedings of the 11th
International Symposium on System Synthesis. IEEE Computer Society Press: Washington, DC, 1998; 3–8.

13. Zhuang X, Lau C, Pande S. Storage assignment optimizations through variable coalescence for embedded processors.
Proceedings of the 2003 ACM SIGPLAN Conference on Language, Compilers, and Tools for Embedded Systems.
ACM Press: New York, 2003; 220–231.

14. Ottoni D, Ottoni G, Araujo G, Leupers R. Improving offset assignment through simultaneous variable coalescing.
Proceedings of the 7th International Workshop on Software and Compilers for Embedded Systems, September 2003
(Lecture Notes in Computer Science, vol. 2826). Springer: Berlin, 2003; 285–297.

15. Johnson N, Mycroft A. Using multiple memory access instructions for reducing code size. Proceedings of the International
SIGPLAN Symposium on Compiler Construction (Lecture Notes in Computer Science, vol. 2985). Springer: Berlin, 2004;
265–280.

16. Choi Y, Kim T. Address assignment combined with scheduling in DSP code generation. Proceedings of the 39th
Conference on Design Automation. ACM Press: New York, 2002; 225–230.

17. Paek Y, Choi J, Joung J, Lee J, Kim S. Exploiting parallelism in memory operations for code optimizations. Proceedings
of the International Workshop on Languages and Compilers for Parallel Computing, September 2004 (Lecture Notes in
Computer Science, vol. 3602). Springer: Berlin, 2005.

18. Paek Y, Ahn M, Lee S. Case studies on automatic extraction of target-specific architectural parameters in complex code
generation. Proceedings of the International Workshop on Software and Compilers for Embedded Systems, September 2003
(Lecture Notes in Computer Science, vol. 2826). Springer: Berlin, 2003; 151–166.

19. Buchsbaum A, Giancarlo R, Westbrook J. On reduction via determinization of speech recognition lattices. Technical
Report, AT&T Bell Labs, 1997.

20. Chaitan G. Register allocation and spilling via graph coloring. Proceedings of the 1982 International SIGPLAN Symposium
on Compiler Construction. ACM Press: New York, 1982; 98–105.

21. Stallman R. Using the GNU Compiler Collections. http://gcc.gnu.org [2005].

Copyright c© 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. (in press)
DOI: 10.1002/spe


	1 INTRODUCTION
	2 PROBLEM FORMULATION
	3 SOLVING MLSP-u
	3.1 Building the $G_{MLS}$ graph
	3.2 Generating MLS instructions
	3.3 Assigning registers

	4 SOLVING MLSP
	4.1 Supporting the RF-size constraint
	4.2 Supporting the R-sequence constraint
	4.2.1 Conflict resolution
	4.2.2 ROG/MIG construction
	4.2.3 Register allocation


	5 EXPERIMENTAL RESULTS
	5.1 Results on two embedded benchmarks
	5.1.1 DSPStone benchmark
	5.1.2 MediaBench benchmark
	5.1.3 Compile time cost

	5.2 Statistics of generated MLS instructions

	6 COMPARISON WITH PREVIOUS WORK
	7 CONCLUSIONS

