
Optimizing Top-k Queries for Middleware
Access: A Unified Cost-Based Approach

SEUNG-WON HWANG

Pohang University of Science and Technology

and

KEVIN CHEN-CHUAN CHANG

University of Illinois at Urbana-Champaign

This article studies optimizing top-k queries in middlewares. While many assorted algorithms

have been proposed, none is generally applicable to a wide range of possible scenarios. Existing

algorithms lack both the “generality” to support a wide range of access scenarios and the systematic

“adaptivity” to account for runtime specifics. To fulfill this critical lacking, we aim at taking a cost-

based optimization approach: By runtime search over a space of algorithms, cost-based optimization

is general across a wide range of access scenarios, yet adaptive to the specific access costs at runtime.

While such optimization has been taken for granted for relational queries from early on, it has

been clearly lacking for ranked queries. In this article, we thus identify and address the barriers

of realizing such a unified framework. As the first barrier, we need to define a “comprehensive”

space encompassing all possibly optimal algorithms to search over. As the second barrier and a

conflicting goal, such a space should also be “focused” enough to enable efficient search. For SQL

queries that are explicitly composed of relational operators, such a space, by definition, consists of

schedules of relational operators (or “query plans”). In contrast, top-k queries do not have logical
tasks, such as relational operators. We thus define the logical tasks of top-k queries as building

blocks to identify a comprehensive and focused space for top-k queries. We then develop efficient

search schemes over such space for identifying the optimal algorithm. Our study indicates that our

framework not only unifies, but also outperforms existing algorithms specifically designed for their

scenarios.

Categories and Subject Descriptors: H.2.4 [Database Management]: Systems—Query process-
ing; H.3.3 [Information Storage and Retrieval]: Information Search and Retrieval—Retrieval
models; H.3.4 [Information Storage and Retrieval]: Systems and Software—Performance eval-
uation (efficiency and effective)

General Terms: Algorithms, Performance

Additional Key Words and Phrases: Top-k query processing, middlewares

Authors’ addresses: S.-W. Hwang, Department of Computer Science and Engineering, Pohang Uni-

versity of Science and Technology, San 31, Hyoja Dong, Nam Gu, Pohang, Gyungbuk, Korea 790-784;

email: swhwang@postech.ac.kr; K. C.-C. Chang, Computer Science Department, University of Illi-

nois at Urbana-Champaign, 306 Engineering Hall, MC 266, 1308 West Green Street, Urbana, IL

61801; email: kcchang@cs.uiuc.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or direct commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,

to redistribute to lists, or to use any component of this work in other works requires prior specific

permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn

Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2007 ACM 0362-5915/2007/03-ART5 $5.00 DOI 10.1145/1206049.1206054 http://doi.acm.org/

10.1145/1206049.1206054

ACM Transactions on Database Systems, Vol. 32, No. 1, Article 5, Publication date: March 2007.

2 • S.-W. Hwang and K. C.-C. Chang

ACM Reference Format:
Hwang, S.-W. and Chang, K. C.-C. 2007. Optimizing top-k queries for middleware access: A unified

cost-based approach. ACM Trans. Database Syst. 32, 1, Article 5 (Mar. 2007), 41 pages. DOI =
10.1145/1206049.1206054 http://doi.acm.org/10.1145/ 1206049.1206054

1. INTRODUCTION

To enable nontraditional fuzzy retrieval which naturally arises in many new
applications, top-k (or ranked) queries are crucial for matching data by “soft”
conditions. A top-k query selects the k top answers among a database of n data
objects, each of which evaluates m soft predicates p1, . . . , pm to scores in [0:1] to
be aggregated by some scoring function F (e.g., min). In particular, this article
focuses on top-k queries in a middleware system, that is, a middleware pro-
cesses queries over subsystems (e.g., multimedia subsystems [Fagin 1996]) or
external systems (e.g., web sources [Bruno et al. 2002]), which we will generally
refer to as sources. For such middleware querying scenarios, due to the inherent
“data retrieval” nature of retrieving and combining data from multiple sources,
top-k queries have emerged to be of particular importance.

For top-k queries in such settings, a middleware relies on accessing sources
for query processing. Since a middleware cannot manipulate data directly, it
must use some access methods (for finding objects and their scores) supported
by sources to gather predicate scores. For access methods, a source may support
for each predicate pi: (1) sorted access, which returns object scores in descend-
ing order, one in each access, or (2) random access, which returns the score
for a given object. As a main motivation of this article, in a middleware set-
ting, such accesses are typically expensive (compared to local computation)
with varying latencies, which we denote as csi and cri for sorted and ran-
dom access, respectively, for each predicate pi. To illustrate a concrete real
scenario, consider a travel agent scenario over the web middleware sources in
Example 1 (which will be used as benchmark queries, as well for experiments in
Section 9):

Example 1. A user may ask a ranked query to find the top-5 restaurants
(say, in the Chicago area) that are highly rated and close to the user’s preferred
location "myaddr", as Q1 illustrates (in SQL-like syntax):

select name from restaurant r
order by min(p1 : rating(r.stars), p2 : close(r.addr, myaddr))
stop after 5 (Query Q1)

To answer this query, our middleware will access web sources to evaluate
predicate p1 and p2. Figure 1(a) shows one possible scenario: For evaluating
close: superpages.com is capable of (1) returning the close score for a specific
restaurant (i.e., random access) and (2) returning restaurants in their descend-
ing order of scores (i.e., sorted access). For rating: dineme.com similarly provides
both sorted and random accesses.1

1While these sources may support a multidimensional sorted access, for example, sorted by

price + location, such access is ordered by a fixed and implicit combining function. As it is not clear

ACM Transactions on Database Systems, Vol. 32, No. 1, Article 5, Publication date: March 2007.

Optimizing Top-k Queries for Middleware Access • 3

Fig. 1. Scenarios for (a) Q1 and (b) Q2.

The middleware will coordinate these accesses to find the top results. To char-
acterize this particular scenario, Figure 1(a) shows the average access latency
for each predicate pi: In this scenario, random accesses are more expensive in
both sources (i.e., cri > csi), but with varying scales (i.e., cr1 = 700ms = 1

2
· cr2)

and ratios (i.e., cr1

cs1
= 700ms

32ms ∼ 22; cr2

cs2
= 1400ms

344ms ∼ 4).

Access scenarios can vary widely, depending on the sources involved, due to
source heterogeneity: By contrast, consider another scenario in which our mid-
dleware now works with a different source, for example, hotel.com, to answer
query Q2:

select name from hotel h
order by avg(p1 : close(h.addr, myaddr), p2 : rating(h.stars),

p3 : cheap(h.price))
stop after 5 (Query Q2)

In this setting, since a sorted access (e.g., for close) on a hotel object also
retrieves its other attributes (e.g., stars and price), the subsequent random
accesses2 incur zero access costs, for example, by locally computing rating and
cheap on stars and price already retrieved. We note that this scenario of expensive
sorted accesses significantly contrasts with that of expensive random accesses
in Figure 1(a).

Existing algorithms. To support these top-k queries in middlewares, many al-
gorithms have been proposed for various cost scenarios. Figure 2 summarizes a
“matrix” of access scenarios that have been studied, each characterized by how
sources relatively support each type of access, such as, cheap (cost = 1), expen-
sive (= h), or impossible (= ∞). As the matrix summarizes, existing algorithms
are designed with a specific cost scenario in mind. For instance, a pioneering

how to leverage this to support arbitrary ranking functions, we focus on leveraging one-dimensional

accesses, as do other middleware top-k algorithms.
2In a middleware, random accesses to an object h can only occur after h is first seen from sorted

accesses, or “no wild guess” [Fagin et al. 2001].

ACM Transactions on Database Systems, Vol. 32, No. 1, Article 5, Publication date: March 2007.

4 • S.-W. Hwang and K. C.-C. Chang

Fig. 2. Access scenarios and algorithms.

and influential existing algorithm TA [Fagin et al. 2001] is intended for sce-
narios where sorted and random access costs are comparable, while Algorithm
MPro [Chang and Hwang 2002] is specifically designed for scenarios where
sorted access is impossible.3 While these algorithms are appropriate for their
specific scenarios, we are clearly lacking “generality” such that an algorithm is
not generally applicable to real-life scenarios where sources differ in cost char-
acteristics (e.g., random access is inexpensive in some source, while impossible
in another) which may even change over time (e.g., depending on server loads).
Second, existing algorithms generally lack runtime “adaptivity” such that an al-
gorithm typically cannot adapt to the specific scenario at hand, except for some
limited attempts with rather ad hoc heuristic-based adaptation (as Section 2
discusses). In contrast, as we will argue to follow, a systematic adaptation to
runtime specifics can make a significant difference in performance.

Our approach. To fulfill this critical lack of generality and adaptivity, this
article aims at a general framework over such various scenarios that is adaptive
to the given scenario so as to minimize access costs. We note that such access
costs (much like I/O in relational DBMS) dominate the overall query process-
ing in a middleware context, and thus their minimization is critical for query
efficiency. For this objective, we first model the cost of algorithm M as the costs
of all access, parameterized by csi and cri, which vary over cost scenarios at
runtime (e.g., Figure 1). Such an aggregate cost model is rather standard in
many top-k querying settings (e.g., Fagin et al. [2001]). In other words, given
some algorithm M, and letting. Si and Ri be the number of sorted and random
accesses, respectively, for predicate pi, the total cost is

C(M) =
∑

i

Si · csi + Ri · cri. (1)

In particular, as the main thesis of this article, we propose a systematic and
unified “cost-based optimization” framework which will adapt to various cost
scenarios. Specifically, given a specific setting of cost parameters cri and csi (e.g.,
Figure 1 represents two different settings), we want to generate an algorithm
M that minimizes the cost for the given setting. While cost-based optimization
has been taken for granted for relational queries from early on [Selinger et al.
1979], it has been clearly lacking for top-k queries.

3We note that our approach does not make the “no wild guess” assumption and thus works both

with and without constraint, as discussed in Section 8.

ACM Transactions on Database Systems, Vol. 32, No. 1, Article 5, Publication date: March 2007.

Optimizing Top-k Queries for Middleware Access • 5

Fig. 3. Adaptivity over costs.

Our cost-based optimization framework complements existing algorithms
with its generality and adaptivity: First, our framework aims at providing a
unified framework that is general over any arbitrary scenario. We prove the
generality by showing that any possible algorithm has a counterpart algorithm
generated by our framework, which performs the same job with no more access
(Theorem 4). Our framework, being general, not only generates the behaviors
of the existing algorithm (as we further discuss in Section 8), but also handles
unstudied scenarios. One example of such unstudied scenarios is illustrated in
Figure 1(b), in which sorted accesses (cost 44ms per access) are more expensive
than random accesses (zero cost), namely, corresponding to the “none” cell in
Figure 2.

Second, in terms of performance, our framework is adaptive and thus en-
ables a potentially significant speedup from existing algorithms by a system-
atic adaptation to runtime specifics. As an illustration, Figure 3 summarizes
our evaluation results (reported in detail in Section 9, Figure 18(b), comparing
the cost of the existing algorithm TA and ours over a systematic enumeration of
a wide range of cost scenarios. Observe that our framework (by runtime adap-
tation) is robust over a wide range of scenarios and significantly outperforms
TA by orders of magnitude. This cost difference results from our ability to adapt
to runtime parameters, such as query size or varying access costs of predicates.

Considering all these benefits of a unified framework, we now investigate
and address the major barriers of realizing cost-based optimization for top-k
queries. As the first barrier, we need to define a “comprehensive” space, which
we denote as �, encompassing all possibly optimal top-k algorithms to search
over. Second, as a conflicting goal, such � should also be “focused” enough to
enable efficient search. For SQL queries, since a space is explicitly composed

ACM Transactions on Database Systems, Vol. 32, No. 1, Article 5, Publication date: March 2007.

6 • S.-W. Hwang and K. C.-C. Chang

of relational operators (e.g., joins and selections), an algorithm space � is com-
prised of all query plans of such operators that are algebraically equivalent (e.g.,
by their commutativity and associativity). However, what is a “query plan”4 for
a top-k query? It is not obvious how a top-k query, as an arbitrary scoring func-
tion, such as F= min(p1, p2), can be decomposed into logical tasks, analogously
to relational queries.

To the best of our knowledge, our work is the first to realize systematic cost-
based optimization for top-k queries by overcoming these dual barriers. First,
to define a comprehensive space, we show that abstracting a top-k algorithm
as an access scheduling problem enables us to define a comprehensive space
� (Section 4). Second, to define a focused space, we develop an insight that
the query processing can focus, without compromising any generality, only on
necessary choices (Section 5). Based on this development, we define a compre-
hensive and focused algorithm space � (Section 6). We then further reduce
the search space to reduce the overhead of finding the optimal algorithm in
this space. In particular, we adopt systematic space reduction schemes, such
as focusing on algorithms performing sorted access first and performing global
random access scheduling, which we show reduces the space without signifi-
cantly compromising comprehensiveness (Section 7). With this reduced space
�, cost-based optimization is to identify the optimal algorithm Mopt in � with
respect to the cost model C, that is

Mopt = argminM∈�C(M). (2)

This article is based on and extends the “necessary-probe principle” studied in
our preliminary work [Chang and Hwang 2002] (similar heuristics, but specific
to weighted sum scoring functions, were also studied in Bruno et al. [2002]).
However, as our preliminary work focuses on specific scenarios where random
access cost dominates, it focuses only on scheduling random accesses. In a clear
contrast, we generalize the techniques to arbitrary accesses (i.e., sorted and
random access) and thus achieve general applicability to any top-k scenario. As
we will discuss in Section 8, such generalization in fact requires considerable
extensions, as sorted access fundamentally differs from random access and thus
significantly complicates optimization.

We extensively validate the practicality and generality of our framework us-
ing both real-life sources (using our travel agent benchmark scenarios) and syn-
thesized arbitrary middleware scenarios. The results are indeed encouraging;
our framework not only unifies, but also outperforms the existing algorithms
specifically designed for respective scenarios.

In summary, we highlight our contributions as follows:

—We define a comprehensive and focused algorithm space for top-k queries as
an essential foundation for cost-based optimization.

4We view our top-k retrieval as a “query” with a “query plan”—in a different view, we may think of

ranking as part of a relational query, thus corresponding to only an “operator.” To clarify, we stress

that we focus on middleware scenarios where a ranking query itself is a complete query specified

by a scoring function F and retrieval size k. Thus, we view top-k optimization as identifying the

optimal plan of scheduling various accesses as operators.

ACM Transactions on Database Systems, Vol. 32, No. 1, Article 5, Publication date: March 2007.

Optimizing Top-k Queries for Middleware Access • 7

—We develop runtime optimization schemes for searching over the space to find
a cost-minimal algorithm.

—We realize a conceptual unification of existing algorithms. Our framework
unifies and generalizes beyond existing algorithms.

—We report experimental evaluation using both real-life and synthetic scenar-
ios to validate the generality and adaptivity of our framework.

2. RELATED WORK

As overviewed in Section 1, many algorithms have been proposed to support
top-k queries for various cost scenarios, as summarized in Figure 2. In partic-
ular, Fagin pioneered with Algorithm FA [Fagin 1996] for scenarios where ran-
dom and sorted accesses are supported with uniform cost (the diagonal cells in
Figure 2). Reference [Fagin et al. 2001] then followed to propose a suite of algo-
rithms for various access scenarios with a stronger sense of optimality, such as
TA (for uniform-cost scenarios), NRA (when random access is impossible), and
TAZ (when sorted access is impossible).

While these algorithms only follow statically designed behaviors and
thus do not adapt to runtime access costs, CA [Fagin et al. 2001],
SR-Combine [Balke et al. 2002], Quick-Combine [Guentzer et al. 2000], and
Stream-Combine [Guentzer et al. 2001] attempt limited runtime optimiza-
tion. In particular, a representative algorithm CA [Fagin et al. 2001] alter-
nates sorted and random access phases according to a runtime cost parameter
h = cri/csi. More specifically, unlike TA, which alternates a sorted access phase
and random access phase, CA alternates h sorted access phases and then a ran-
dom access phase so as to use more sorted accesses (which is h times less expen-
sive) over random accesses. However, such heuristics-based optimization has
limited applicability: Algorithm CA assumes h to be the same for all predicates,
while such an assumption is unlikely to hold in practice: Across autonomous
sources, this ratio may vary (for Figure 1(a)) or can be zero (for 1(b)). Similarly,
Algorithms SR-Combine, Quick-Combine, and Stream-Combine use the partial
derivative of scoring functions as an indicator to optimize, which restricts their
applicability to differentiable ranking functions.

In comparison, by a systematic “cost-based” optimization, our framework
complements the current matrix of existing algorithms: (1) By enumerat-
ing a comprehensive space of algorithms, our framework not only unifies
existing algorithms, but also extends to scenarios which current algorithms
have not covered (e.g., “none” cell in Figure 2 and more scenarios not de-
scribed by the figure); (2) by runtime search over such space, our cost-
based optimization systematically optimizes with respect to runtime pa-
rameters, unlike existing algorithms that have rather limited and partial
adaptation.

Our framework extends and generalizes our preliminary work MPro [Chang
and Hwang 2002]. In particular, we extend MPro from focusing only on schedul-
ing random accesses into a complete framework with general applicability
to any top-k scenario. Section 8 will further discuss the implication of such
extension.

ACM Transactions on Database Systems, Vol. 32, No. 1, Article 5, Publication date: March 2007.

8 • S.-W. Hwang and K. C.-C. Chang

Meanwhile, we note that Upper [Bruno et al. 2002] has also developed similar
heuristics for the same expensive random access scenarios as MPro. However,
in addition to the same limited focus on only random accesses, their runtime
adaptation heuristics specifically assume weighted average scoring functions.
In contrast, we propose a more general adaptation framework which enables
generalizing Upper not only so as to schedule arbitrary (random and sorted)
accesses, but also to support arbitrary monotonic ranking functions.

Finally, ranked queries have also been studied for relational databases: Ref-
erences [Carey and Kossmann 1997, 1998] present optimization techniques for
exploiting the limited cardinalities of ranked queries. References [Chaudhuri
and Gravano 1999; Donjerkovic and Ramakrishnan 1999] then propose to ex-
ploit probabilistic distributions and histograms, respectively, to process rank
queries as equivalent Boolean selections.

3. MOTIVATION

While assorted algorithms have been proposed for supporting top-k queries, as
summarized by the matrix over various access scenarios (in Figure 2), the cur-
rent matrix lacks in many aspects: In addition to lacking in terms of generality
and adaptivity, as Section 1 discussed, the current matrix lacks conceptual uni-
fication. While these assorted algorithms, as designed for different scenarios,
naturally behave differently, they seem to share some subtle similarities. For
example, they keep retrieved objects in order and terminate at a threshold con-
dition. Such resemblance makes us naturally wonder if they can be subsumed
by a unified framework: This framework will complement existing works by
combining them into a single one-fits-all implementation, while providing in-
sights on how to support the access scenarios yet to be studied.

Our goal is thus to propose a general and unified runtime optimization.
We stress that, in contrast to our runtime optimization, most current algo-
rithms are provided with a static (by design) guarantee of instance optimality
[Fagin et al. 2001]: An algorithm B is optimal over a class of algorithms A and
class of databases D if for every A ∈ A and D ∈ D, C(B, D) = O(C(A, D)) for a
chosen cost function C. Thus, it allows an optimality ratio c such that C(B, D) ≤
c · C(A, D) + c′ as a tolerable cost distance to “absolute optimality.” In the lack of
runtime optimization, such a static guarantee has prevailed in previous top-k
works, as it provides a rather strong optimality guarantee, that is, over any
algorithm A and data instance D. However, we stress that the optimality ratio
c is not a constant, but varies over problem sizes. For instance, according to
Fagin et al. [2001], c can be up to m(m − 1) + mcri

csi
for TA, which varies over

cost ratio cri
csi

and query size m. As cost ratios and query sizes typically vary

in practice, the distance c in many cases is not a constant to be ignored in
optimization: First, by ignoring access cost ratios in optimization, namely, as-
suming that ∀i, j : csi

cs j
= cri

cr j
= 1, the optimality is meaningful only to limited

uniform-cost scenarios. However, actual application scenarios are unlikely to
be uniform, especially over autonomous middleware sources (e.g., cr2

cr1
= 20 in

Figure 1(a). Second, by ignoring query size in optimization, or the number of
predicates, the optimality is reduced only with respect to database size. For

ACM Transactions on Database Systems, Vol. 32, No. 1, Article 5, Publication date: March 2007.

Optimizing Top-k Queries for Middleware Access • 9

processing a top-k query (as well as traditional Boolean queries), the problem
size of answering Q over database D is characterized by both query size (i.e.,
|Q | = m) and database size (i.e., |D| = n). However, instance optimality as-
sumes m as a constant, which reduces the optimality only with respect to the
number of objects evaluated, regardless of the predicates each object evalu-
ates (by contrast, Boolean query optimizers, e.g., Hellerstein and Stonebraker
[1993], mainly strive to minimize such predicate evaluation costs). By system-
atically adapting to all these runtime cost parameters, our framework aims at
generally optimizing virtually all access scenarios.

Our goal is thus to develop an optimization framework that conceptually
unifies existing algorithms. For such a framework, we take a cost-based opti-
mization approach: Our first task is to define the algorithm space � (Eq. (2))
to search over. As motivated in Section 1, such a space must be comprehen-
sive space for top-k queries. Section 4 defines a comprehensive space for top-k
queries by abstracting a top-k algorithm as an access scheduling problem. We
then study, to define a focused space, how to decompose a top-k query into logi-
cal tasks so as to narrow down the space, just as we enumerate a comprehensive
and focused space for SQL queries by enumerating all query plans of logical
relational operators. Section 5 identifies the required information for answer-
ing a top-k query and decomposes it into logical tasks, on the basis of which
we define a comprehensive and focused algorithm space for top-k queries in
Section 6.

4. DEFINING A COMPREHENSIVE SPACE

This section now tackles the first challenge of defining a comprehensive space
that encompasses all possible algorithms. To understand a top-k algorithm
constituting such a space, we begin with considering an example algorithm
(as Example 2 will show). As our running example query, we will consider Q1

(from Example 1) for finding the top restaurant, thus setting the retrieval size
to k = 1. For our illustration, assume that Dataset 1 (Figure 5) represents our
example restaurant “objects” (i.e., u1, u2, and u3) and their scores (which can
only be known by accessing the sources). Given Q1 as an input, top-k algorithms
will return K = {u3:0.7} as an answer, that is, u3 is the top-ranked object with
score F[u3]=0.7.

Recall that, as Section 1 mentioned, this article focuses on middleware algo-
rithms. Since a middleware cannot manipulate data directly, it relies on access
methods supported by sources: (1) sorted access on predicate pi, denoted by sai;
or (2) random access on predicate pi for object u j , denoted rai(u j). To contrast,
we note that the two types of accesses differ fundamentally in two respects:

—Side-effects: Sorted access sai has side-effects. To illustrate, in Figure 5, the
first sa1 not only evaluates p1[u3]=.7 with the highest p1 score, but also
bounds the “maximal-possible” score of p1 for every “unseen” objects, for
example, u1 and u2, with this last-seen score, for example, p1[u1] ≤ .7. In
contrast, random access rai(u j) has no effect on objects other than u j itself.

—Progressiveness: Sorted access sai is progressive in that repeated accesses
give more information. For instance, repeated sa1 evaluates u3, u1, and u2

ACM Transactions on Database Systems, Vol. 32, No. 1, Article 5, Publication date: March 2007.

10 • S.-W. Hwang and K. C.-C. Chang

Fig. 4. Cost comprehensiveness.

in turn, as accessing deeper into p1’s sorted list. Meanwhile, rai(u j) returns
pi[u j] every time and thus need not be repeated.

To answer a query, an algorithm performs accesses so as to gather necessary
scores. To illustrate how this works, Figure 6 illustrates example algorithms
using a sorted list for each predicate. The objects in each list are ordered by
corresponding predicate scores, as illustrated in Figure 6(a). On the sorted list,
we will use ↓ and ← to represent the sorted and random accesses performed,
respectively, annotated by their time of access. For instance, ←2 in Figure 6(a)
on p2 represents that Algorithm M1 performs a random access at time 2, for
p2 on the pointed object u3.

Example 2 (Example Algorithm). We illustrate, as Figure 6(a) shows, how
Algorithm TA [Fagin et al. 2001], a representative algorithm, processes Q1:
At time 1, it performs sorted accesses sa1 and sa2 in parallel (as repre-
sented by ↓1), which evaluate p1[u3]=.7 and p2[u2]=.9 with the highest p1

and p2 score, respectively. At time 2, it computes the final scores of the ob-
jects just seen, namely, u3 and u2, by performing random accesses ra2(u3)
and ra1(u2) (as represented by ←2). The algorithm can now terminate, as
the final score of u3, namely, F[u3] = min(0.7, 0.7) = 0.7, is no less than
that of the “unseen” object (i.e., u1): As p1[u1] is bounded by the “side-
effect,” that is, p1[u1] ≤ .7, F[u1] = min(p1[u1], p2[u1]) cannot be higher than
F[u3] = .7.

Example 2 shows one possible algorithm (i.e., M1 as TA). However, there can
be many more algorithms which differ in the accesses they perform. To illus-
trate, consider the example algorithms answering Q1 in Figure 6: M2 performs
the same accesses as TA, but one-at-a-time, and M3 evaluates exhaustively us-
ing sorted accesses. Different algorithms, by performing different accesses in
various orders, incur different costs. For instance, M4 can answer the same
query, performing only a part of the accesses that Algorithm TA performs (as
we will see in Example 6). Our goal is thus to identify the cost-optimal algo-
rithm among many possible algorithms. Hence, we must guarantee that the
algorithm space includes the optimal algorithm. For this, we first formalize the
notion of cost comprehensiveness (as Figure 4 illustrates): While a space � may
not encompass the “universe” U of all possible algorithms, it is comprehensive
with respect to some cost function if any arbitrary algorithm M in U can find its
“counterpart” M′ in the � that answers the same query with no more cost. Such
� is thus comprehensive enough for optimization; no algorithms outside of the
space can be better than those inside, since its counterpart M′ is at least as

ACM Transactions on Database Systems, Vol. 32, No. 1, Article 5, Publication date: March 2007.

Optimizing Top-k Queries for Middleware Access • 11

Fig. 5. Dataset 1.

Fig. 6. Example algorithms.

good as M. We formalize this notion of comprehensiveness next, which provides
a foundation for finding such a space.

Definition 1 (Cost Comprehensiveness). A space � is cost comprehensive
with respect to cost function C if for any arbitrary algorithm M, query Q , and
dataset D, there exists an algorithm M′ ∈ � answering Q over D with no more
cost, namely,

C(M′) ≤ C(M).

In summary, while U is our universe in principle, if some space � satisfies cost
comprehensiveness (Definition 1), it is sufficient to search in � instead of U ,
that is, argminM ∈UC(M) = argminM ∈�C(M). As a key contribution, we iden-
tify such comprehensive space � for our objective of minimizing total access
costs (Eq. (1)): As a key insight, observe Algorithm M2 (Figure 6(b)) perform-
ing the exact same set of accesses as M1 (Figure 6(a)) only one-at-a-time: By
performing the same set of accesses, the two algorithms answer the same query
with the exact same cost with respect to our objective cost function (Eq. (1)),
which aggregates the costs of all accesses.

Generalizing the observation, just as M1 has a sequential counterpart M2,
any M ∈ U has a sequential counterpart M′ which performs the same accesses
sequentially such that C(M′) ≤ C(M). Consequently, a space of all sequential
algorithms is, indeed, comprehensive with respect to our objective cost function:
No algorithm outside of the space can be better than all algorithms in the space.

This comprehensiveness ensures that we will not miss the optimal algo-
rithm by considering only sequential algorithms.5 More formally, we model such

5While parallelization cannot contribute to our optimization objective of Eq. (1) (or total resource

usage), it may benefit elapsed time when sources can handle concurrent accesses, such as web

ACM Transactions on Database Systems, Vol. 32, No. 1, Article 5, Publication date: March 2007.

12 • S.-W. Hwang and K. C.-C. Chang

Fig. 7. Algorithm “skeleton” SEQ.

sequential algorithms by the skeleton SEQ in Figure 7, generating all possible
sequential algorithms: At any point during such execution, let P (the “accesses-
so-far”) be the accesses performed so far (initially empty). Sequential algorithms
continue (in the while-loop) to select and perform an access, one at each it-
eration, until P has gathered sufficient information to determine the top-k
answers K.

We can now abstract a top-k algorithm as an access scheduling problem
to minimize access costs. Our goal is thus among a space of possible access
scheduling, or a space generated by the skeleton SEQ, which we denote as
G(SEQ), to search for the cost-optimal one Mopt, namely,

Mopt = argminM∈G(SEQ)C(M). (3)

While we have successfully fulfilled our first objective of achieving compre-
hensiveness (as Section 3 motivated), we are now facing the second challenge
of defining a focused space: Unfortunately, although comprehensive, G(SEQ)
is extremely large, since algorithms vary depending on access A selected at
each iteration, which can be any among a huge set of supported accesses. To
illustrate, for n = 100, 000 objects with m = 5 predicates, at each iteration,
there can be as many as m + m·n = 500, 005 different supported accesses to
choose from, as our framework does not make, the “no wild guess” assump-
tion (note that with this assumption, random accesses are restricted to seen
objects and thus, the upper bound will be smaller). G(SEQ) is thus simply too
large to identify the optimal algorithm efficiently. Therefore, our next goal is to
refine the space so as to be as focused as possible, without compromising the
comprehensiveness.

To achieve this goal, we first decompose a top-k query into “logical tasks” as
building blocks. Section 5 will use such building blocks to define a comprehen-
sive and focused search space in Section 6.

5. DEFINING A FOCUSED SPACE

We now ask a fundamental question: While access methods are the physical
means for gathering object scores, what are the logical tasks that a top-k query
must fulfill? Such logical tasks are determined only by the objective of a query,
and this is independent of the physical implementation access methods. In other
words, any algorithm, regardless of the access methods used, must successfully
carry out these tasks. Such a logical view serves as a critical foundation for
systematic algorithm design.

sources typically do. Section 9 will show that such parallelization can successfully build upon our

access minimization framework.

ACM Transactions on Database Systems, Vol. 32, No. 1, Article 5, Publication date: March 2007.

Optimizing Top-k Queries for Middleware Access • 13

5.1 Logical View: Scoring Tasks

Since a top-k query is not explicitly constructed with operators (unlike rela-
tional queries), its logical tasks are not clear from the query itself. To iden-
tify logical tasks, we take an information-theoretic view and ask: What is
the required information for answering a top-k query? Given a database D =
{u1, . . . , un}, any algorithm M must gather certain score information for each
object u j so as to determine the top-k results. We can thus “compose” the work
of M by a set of required scoring tasks {w1, . . . , wn}. To define such tasks, let
K = {v1, . . . , vk} be the top-k answers (where each vi represents some u j from
D). In this article, we assume that applications require top-k answers to be
completely evaluated. A task wj is thus to gather the (exact or partial) scores
of object u j by using relevant accesses in order to either (if u j ∈ K) compute
u j ’s complete score or else prove that it cannot score higher than vk (the kth
answer).

Definition 2 (Scoring Tasks). Consider a top-k query Q = (F , k) with top-k
answers K = {v1, . . . , vk}. The scoring task wj for object u j is:

(1) For u j ∈ K: wj must compute the final F[u j] score.

(2) For u j /∈ K: wj must indicate (by some partial scores) the maximal-possible
F[u j] score such that it is tight enough to support that F[u j] < F[vk].6

As a remark, observe that the definition of scoring tasks depends on K (the
top-k answers) and F[vk] (the kth score). These values, unfortunately, will re-
main undetermined before query processing is fully completed; for this “task
view” to be useful, our challenge (as we will discuss) is thus to develop mecha-
nisms for identifying unsatisfied tasks during query processing, before K and
F[vk] are known.

Example 3 (Scoring Tasks). Consider our running example Q1 over D1 =
{u1, u2, u3} (Figure 5), For k = 1, the answer is K = {u3} with F[u3]=.7 (these
values are not known until Q1 is processed). We can specify the scoring tasks
{w1, w2, w3} for the three objects as follows.

Consider task w3: Since u3 ∈ K, w3 must gather all predicate scores, namely,
p1[u3] and p2[u3], for computing F[u3]. Note that w3 can do so in various
ways, for example, by one sorted access sa1 into p1 (which hits u3 and returns
p1[u3] = .7) and a random access ra2(u3) (returning p2[u3] = .7).

By contrast, task w2 for u2 (and similarly w1 for u1) only needs to prove, by
gathering some partial scores, that F[u2] < F[u3] = .7. To do so, w2 can use,
say, two sorted accesses sa1 into p1, which return first p1[u3] = .7 and then
p1[u1]=.65. Now, since u2 is still unseen from the sorted list of p1, it is bounded
by the last-seen score, that is, p1[u2] ≤ .65. As F[u2] = min(p1[u2], p2[u2]),
F[u2] cannot be higher than p1[u2], namely, F[u2] ≤ .65 < .7.

6To give deterministic semantics, we assume that there are no ties in F scores otherwise, a deter-
ministic tie-breaker function can be used to determine an order, for example, by unique object IDs.

Such enforcement of certain tie-breakers enables optimization to consider comparable algorithms

that return the exact same set of top-k results.

ACM Transactions on Database Systems, Vol. 32, No. 1, Article 5, Publication date: March 2007.

14 • S.-W. Hwang and K. C.-C. Chang

We stress that these scoring tasks are both necessary and atomic. First,
each wj is necessary: (1) If u j is a top-k answer, M cannot return its final
score without wj ; (2) otherwise, without wj proving F[u j] < F[vk], M cannot
safely exclude u j from the top-k. Furthermore, each wj , as a per-object task,
is atomic: For arbitrary F , wj cannot generally be decomposed into smaller
required subtasks. For case (1) of Definition 2, that is, when u j ∈ K, obvi-
ously, all predicate scores are required. For case (2), no subsets of u j ’s predicate
scores are absolutely required, as long as the upper-bound inequality can be
proved.

In summary, we now view query processing as equivalent to fulfilling a set of
(necessary and atomic) tasks {w1, . . . , wn}: Each task wj , for object u j , gathers
the required per-object information. Only when (and clearly when) all the tasks
are fulfilled can the query be answered.

5.2 Identifying Unsatisfied Tasks

At any point during processing, some scoring task (defined in Definition 2) is
unsatisfied. Formally, at any point, scoring task wj is unsatisfied, with respect
to the accesses performed so far, if the scoring task in Definition 2 is yet to be
fulfilled. For example, when object ui is one of the top-k results and only par-
tially evaluated at the point, its scoring task wi is considered to be unsatisfied
and ui still needs to be further evaluated. To focus query processing, it is crit-
ical to identify the unsatisfied tasks and complete such tasks first. However,
during query processing, it is challenging to judge whether a task is satisfied,
since K = {v1, . . . , vk}, which our task specification (Definition 2) requires, is not
determined until the very end.

In fact, for our purpose, we can address a slightly different problem: Given
a set of accesses-so-far P that has been performed, can we find any unsat-
isfied task? Instead of identifying all, for query processing to move on, it is
sufficient to find just one (note that any unsatisfied task must eventually be
fulfilled). Our insight is that by comparing the “score state” of objects, we can
always reason some tasks to be clearly unsatisfied, regardless of the eventual
result K.

Example 4 (Unsatisfied Tasks). Consider Q1 over D1, suppose that at some
point, we have performedP = {sa1, sa1, sa2, ra1(u2)}. Referring to Figure 5, these
accesses will gather the following score information:

—The two sorted accesses sa1 on p1 will hit p1[u3] = .7 and p1[u1] = .65. Due
to a side-effect (Section 4), the “unseen” objects (i.e., u2) will be bounded by
the last-seen score, namely, p1[u2] ≤ .65.

—The sorted access sa2 on p2 will return p2[u2] = .9, and set upper bounds
p2[u1] ≤ .9 and p2[u3] ≤ .9.

—The random access ra1(u2) returns p1[u2] = .6.

Putting all of this together, Figure 8 summarizes the current “score state.”
For u1, the aforementioned accesses gathered p1[u1] = .65 and p2[u1] ≤ .9, and
thus F[u1] ≤ min(.65, .9) = .65. Similarly, F[u2] = .6 and F[u3] ≤ .7

ACM Transactions on Database Systems, Vol. 32, No. 1, Article 5, Publication date: March 2007.

Optimizing Top-k Queries for Middleware Access • 15

Fig. 8. The score state of Example 4.

At this point, while we do not know what K will be (as Definition 2 requires),
we can identify at least the scoring task w3 for u3 as unsatisfied, no matter what
K is:

—if u3 ∈ K (i.e., u3 will eventually be the top-1): Here, w3 needs to gather exact
p2[u3] to compute the F score.

—if u3 �∈ K: In this case, the top-1 is u1 or u2, with F scores of (at most) .65 and
.6, respectively (Figure 8). Thus, the top-1 score (i.e., F[vk] in Definition 2) is
at most .65. Clearly, w3 has not proved that F[u3] ≤ .65, since u3 can score
as high as .7.

As Example 4 implies, task wj is unsatisfied if u j has “potential” to be in
the top-k results K. For such u j (e.g., u3), regardless of what K will be, we
must know more about its scores in order to declare it as either top-k or not.
We thus identify whether wj is unsatisfied as follows: We quantify the current
“potential” of u j (with respect to P), and determine if this potential is high
enough to make the top-k results.

To begin with, we measure the current potential of an object by its maximal-
possible score. DefineFP [u j] as the maximal score that u j may possibly achieve,
given the partial scores that accesses-so-far P has gathered. As a standard
assumption, F is monotonic, namely, F(x1, . . . , xm) ≥ F(y1, . . . , ym) when ∀i :
xi ≥ yi. We thus can compute FP [u j] by substituting unevaluated predicates
with their maximal-possible scores. Note that pi is bounded by the last-seen
score from its sorted accesses, denoted as pi (Section 4 discussed such side-
effects of sorted accesses). For instance, as Figure 8 shows, FP (p1, p2)[u1] =
min(p1[u1] = .65, p2 = .9) = .65. Thus, formally, FP (p1, . . . , pm)[u j] =

F
(

pi = pi[u j] if P has determined pi[u j]

pi = pi otherwise.
∀i

)
(4)

Further, we focus on the current top-k objects by their potentials. Let KP =
{v1, . . . , vk} be these current top objects ranked by their FP scores (to illustrate,
in Example 4, KP = {u3}). There are two situations, depending on whether the
current top objects are incomplete.

First, if KP contains any incomplete object vj with only partial scores, then as
Example 4 argued for u3 (an incomplete top-1), such vj needs further accesses
either way. This is by Definition 2: (1) If vj is indeed the final top-k, it needs
complete evaluation. (2) else, it needs further accesses to lower its maximal-
possible score so as to be safely excluded from top-k. Thus, task wj for such
incomplete vj is clearly unsatisfied.

Second, if all objects v1, . . . , vk in KP are complete, then these current top-k
with respect to P are now indeed the final top-k (i.e., KP = K) (and the query

ACM Transactions on Database Systems, Vol. 32, No. 1, Article 5, Publication date: March 2007.

16 • S.-W. Hwang and K. C.-C. Chang

can halt with these answers). To see why, we make two observations: (1) Every
vj ∈ KP is complete and thus has its exact score, that is, F[vj] = FP [vj]. (2)
Every object ui �∈ KP with the current ranking has a maximal-possible score
lower than the aforementioned exact scores, namely, ∀vj ∈ K : FP [ui] ≤ F[vj].
It follows that these vj are the fully evaluated top-k answers. With these two
observations, Definition 2 will declare that all scoring tasks are satisfied and
thus, query processing can indeed halt.

Theorem 1 states our results on identifying unsatisfied tasks.

THEOREM 1 (UNSATISFIED SCORING TASKS). Consider a top-k query Q = (F , k)
over D = {u1, . . . , un}. With respect to a set P of performed accesses, let KP =
{v1, . . . , vk} be the current top-k objects ranked by FP [·].
(1) For all vj ∈ KP such that vj has not been completely evaluated, its scoring

task wj is unsatisfied.
(2) If all vj ’s are complete, then every scoring task wj , ∀u j ∈ D, is satisfied and

KP is the top-k results.

PROOF. (1) If vj ∈ KP has not been completely evaluated, its scoring task wj

is unsatisfied; no matter what K will eventually be, there are the following two
possible situations.

—if vj ∈ K: As its scoring task wj must compute F[vj], the task is not com-
plete until we gather pi[vj] for every unevaluated predicate pi of vj . Since
vj has not been completely evaluated, such pi must exist and thus wj is still
unsatisfied (by Definition 2, case 1).

—if vj �∈ K: Supposing that its scoring task wj is satisfied that will indicate

that there are at least k objects u (e.g., those in K) satisfying FP [vj] < F[u],

which in turn satisfy FP [vj] < FP [u] , as F[u] ≤ FP [u]. Meanwhile, as vj ∈
KP , there are at most k − 1 objects u FP [vj] < FP [u], a contradiction.

(2) If all vj ’s are complete, ∀ u �∈ KP : F[vj] = FP [vj] > FP [u] ≥ F[u], ∀ u �∈ KP
holds and therefore KP = K holds. With this, we can show that scoring task wi

is satisfied for every ui ∈ D.

—∀ui ∈ KP = K: As every ui ∈ K has been completely evaluated, wi is satisfied
(by Definition 2, case 1).

—∀ui �∈KP =K: As ∀vj ∈ K : F[vj] > F[ui] holds, wi is satisfied (by Definition 2,
case 2).

In summary, Theorem 1 states that at any point, top-k objects need to be
further evaluated, that is, at least one either sorted or random access on its un-
evaluated predicates is necessary. However, note that this does not necessarily
mean such objects need to be evaluated completely.

Theorem 1 thus provides an important basis for constructing a focused space
by guaranteeing to identify unsatisfied tasks, if any: Condition 2 gives a precise
way to determine if there still exist any unsatisfied tasks, while Condition 1
will identify at least some of them (i.e., those incomplete vj). Meanwhile, note
that this makes no assumptions on particular physical accesses—we can thus

ACM Transactions on Database Systems, Vol. 32, No. 1, Article 5, Publication date: March 2007.

Optimizing Top-k Queries for Middleware Access • 17

generally use arbitrary top-k accesses, not only random accesses, as in Chang
and Hwang [2002], but also sorted accesses with progressiveness and side-
effects, as well (Section 4).

6. PUTTING TOGETHER FRAMEWORK NC

This section develops a space that is both comprehensive and focused. Built
upon our algorithm abstraction (Section 4) and task decomposition (Section 5),
Section 6.1 first develops a framework, NC, which induces such an algorithm
space. Section 6.2 then shows that the space induced is both comprehensive
and focused.

6.1 The Framework

Recall that in relational queries, this space is induced by an algebraic frame-
work: As a query is composed of relational operators, an algorithm space simply
enumerates all algebraically equivalent query plans. In other words, the alge-
braic framework of relational queries induces a space of query plans, each as
a different schedule. Optimization consists of finding a good schedule of opera-
tions conforming to the framework.

Building on this insight, we develop a framework that, by scheduling and
performing an access one-by-one at each iteration, generates a space of algo-
rithms. For instance, a framework where any supported access is scheduled at
iteration, namely, SEQ (Section 4), is essentially a space of all sequential algo-
rithms . In contrast, in this section, in order to render a more focused space, we
develop a framework that hinges on the insight that query processing can focus
only on unsatisfied tasks, without compromising optimality. In other words, our
framework will first identify some unsatisfied task wj and then focus selection
on only those accesses for fulfilling wj .

This insight is built upon task decomposition (Section 5); that top-k query
processing is equivalent to fulfilling a set of (necessary and atomic) tasks
{w1, . . . , wn}. With this task view, during processing, when a set of accesses
P has been performed, we can identify unsatisfied tasks by Theorem 1 (when
all tasks are satisfied, query processing can halt, as Theorem 1 also asserts).
For any unsatisfied wj , we can construct a set of accesses N j , specifically for
satisfying wj , by collecting all and only those accesses that can further process
wj . These accesses constitute the necessary choices for fulfilling wj . More pre-
cisely, N j will consist of any (random or sorted) accesses that can return (exact
or bounding) scores about u j ’s unevaluated predicates (as Theorem 1 states, for
such unsatisfied wj , its object u j must still be incomplete).

Example 5 (Necessary Choices). Continue our running example. Exam-
ple 4 identified that task w3 is unsatisfied for object u3, with a score state (p1 =
.7, p2 ≤ .9 → F≤ .7), as Figure 8 shows. Note that w3 is unsatisfied, since the
accesses-so-far P has not gathered sufficient information for u3 (for either case
of Definition 2). To satisfy w3, we must know more about u3, especially about
the predicate p2 with unknown score, using some of the following accesses:

—sorted accesses on p2: Performing sa2 can lower the upper bound of p2[u3]. In
other words, as P (Example 4) already has one sa2, the next sa2 will return

ACM Transactions on Database Systems, Vol. 32, No. 1, Article 5, Publication date: March 2007.

18 • S.-W. Hwang and K. C.-C. Chang

Fig. 9. Framework NC.

u1 with score .8 (Figure 5). This new last-seen score by sa2 will give u3 a
“tighter” bound for p2 (from ≤ .9 to ≤ .8).

—random access on p2: Performing ra2(u3) will return the exact score of u3

for p2, thus rendering u3 completely evaluated, with score state (p1 = .7,
p2 = .7 → F = .7). In fact, w3 is now satisfied.

Putting this all together, N3 is thus {sa2, ra2(u3)}.
THEOREM 2 (NECESSARY CHOICES). Given a set of performed accesses P, let wj

be an unsatisfied scoring task for object u j . The necessary choices for wj with
respect to P is N j = {sai, rai(u j) | pi[u j], which is undetermined by P}. Without
performing at least one of N j , wj remains unsatisfied.

PROOF. If vj ∈ K: As its scoring task wj must compute F[vj], wj remains
unsatisfied until we gather pi[vj] for every unevaluated predicate pi of vj ,
either by rai(vj) or by sai accessing vj , for all unevaluated predicates pi.

If vj �∈ K: As its scoring task wj requires to lower the upper bound of vj below
the top-k results, wj remains unsatisfied until we lower the upper bound of vj ,
either by evaluating unevaluated predicates by rai(vj) or by lowering the upper
bounds by sai for all unevaluated predicates pi.

Figure 9 illustrates our framework NC. At each iteration, it identifies nec-
essary choices, with Theorem 1 to guide this process. At any point, NC main-
tains KP , the current top-k objects with respect to accesses-so-far P ranked by
maximal-possible scores FP [·]. Some objects in KP may still be incomplete, as
represented as U in the figure. As Theorem 1 specifies, there are two situations:

(1) if U = φ: As all top-k objects are complete, Theorem 1 asserts no more un-
satisfied tasks, which is thus the termination condition of NC: NC will break
the while-loop (since U = φ), and return KP .

(2) otherwise: Since U �= φ, there are incomplete top-k objects. Any such object
vj corresponds to an unsatisfied task wj by Theorem 1. NC arbitrarily picks

ACM Transactions on Database Systems, Vol. 32, No. 1, Article 5, Publication date: March 2007.

Optimizing Top-k Queries for Middleware Access • 19

Fig. 10. Illustration of NC.

any such vj (say, the highest-ranked) without compromising optimality, and
constructs the necessary choices N j (by Theorem 2) as alternatives. As each
unsatisfied task remains unsatisfied until at least one among its necessary
choices is performed, arbitrarily picking one such unsatisfied task does not
compromise optimality.

Note that NC essentially relies on Theorem 1 to isolate a set of necessary
choices. Theorem 1 enables an effective way to search for necessary choices by
maintaining the current top-k objects KP . Thus, a search mechanism for finding
unsatisfied tasks should return top-k objects when requested, for example, us-
ing a priority queue that orders objects by maximal-possible scores as priorities.
Note that in the beginning, all objects have the same maximal-possible score,
namely, a perfect 1.0. This initial condition is simply a special case of ties: In
principle, NC will initialize (in Step 2) KP with some deterministic tie-breaking
order. While any tie-breaker can be used, for the sake of presentation, our ex-
amples will use OID to break ties, for example, when ui and u j tie and i > j ,
then we consider that ui outranks u j .

Observe that when k > 1, there may be multiple incomplete vj in KP at each
iteration. We stress that NC can simply choose any such vj to proceed, such
as that with the highest partial score, and still ensure comprehensiveness. The
reason is that each such vj designates an unsatisfied task wj , which remains un-
satisfied until some access is performed for the task. Every wj is thus “equally”
necessary, as we formally discuss in Theorem 3. Example 6 illustrates how NC
works.

Example 6 (Framework NC). Figure 10 shows the execution of the algo-
rithm M4 (Figure 6(d)) that NC can generate. Initially, at Step 1 (Figure 10),
since all the maximal-possible scores tie at 1.0, KP is set to {u3} (by the highest
OID, according to our tie-breaker). According to NC, M4 can then Select an
access from alternatives = N3, such as sa1 in this case, which returns p1[u3] =
.7 (see Figure 5) and lowers p1 to .7.

At Step 2, as all maximal-possible scores tie at .7, u3 remains as the top in
KP . However, u3 now induces a smaller N3, with accesses only for its uneval-
uated predicate p2. M4 can then Select ra2(u3), which returns p2[u3] = .7 and
completes u3 with F[u3]=.7. Since KP with u3 as the top-1 is now fully complete,
according to NC, M4 will halt, with total accesses P(M4) = {sa1, ra2(u3)}.

6.2 Comprehensive and Focused Space

This section shows that the space framework which NC renders is not only far
more focused than that rendered by the space SEQ, but also sufficiently com-
prehensive. First, we note that NC, by focusing on only necessary choices, that
is, | alternatives| = 2 ·m, is clearly more focused than SEQ in selecting an access

ACM Transactions on Database Systems, Vol. 32, No. 1, Article 5, Publication date: March 2007.

20 • S.-W. Hwang and K. C.-C. Chang

from any supported accesses, namely, | alternatives| = m + m · n. Further, we
stress that although more focused, NC is still comprehensive enough for opti-
mization. This comprehensiveness results from the “completeness” property of
necessary choices, which NC uses as alternatives, as we formally state to follow.

THEOREM 3 (N j COMPLETENESS). A set of necessary choices N j for every j ,
identified by NC for an unsatisfied task wj , is complete with respect to accesses-
so-far P such that any algorithm having completed P must continue with at
least one of N j .

PROOF. N j , by Theorem 2, contains all accesses that can contribute to the
unsatisfied task wj . Since wj is necessary (Section 5.1), at least one access in
N j must be further executed, or wj cannot be satisfied nor the query answered.
Thus, N j is complete with respect to accesses-so-far P.

This completeness property ensures that the space of algorithms generated
by framework NC, denoted as G(NC), is comprehensive for optimization (i.e.,
cost comprehensiveness in Definition 1), as Theorem 4 next states. With this
guarantee, it is sufficient to search only within NC for an optimal algorithm.

THEOREM 4 (NC COMPREHENSIVENESS). For any algorithm M1 with an access
cost C1 with respect to the cost model C (Eq. (1)), there exists an algorithm M2

in G(NC) with cost C2 such that C2 ≤ C1.

PROOF. Consider any query processing by M1 (for some query Q over
database D). We will show the generality of NC by constructing an algorithm
M2 in framework NC for the same processing, such that M2 costs no more than
M1.

Let P1 be the total accesses that M1 has performed, namely, P(M1) = P1.
Since M2 follows the iterative framework (Figure 10), let P j

2 be the accesses

of M2 before the j th iteration; initially, P1
2 = φ. Similarly, let alternatives j be

alternatives of M2 at the j th iteration.
Our proof is based on the following two lemmas (L1 and L2) for every iteration

j , which we prove later.

— L1: alternatives j ∩ (P1 − P j
2) �= φ, ∀ j .

— L2: P j
2 ⊆ P1, ∀ j .

Note that by proving L1, we show NC can construct algorithm M2 so as to
follow the access of M1 at each iteration. More specifically, for every iteration
j , M2 selects one access from alternatives j that is performed by M1, but not
yet by M2, namely, P1 −P j

2 , which is possible if P j
2 ⊆ P1, ∀ j . We can then show,

by proving L2, that such algorithm M2 halting at iteration j (denoted as M j
2)

incurs no more access than M1 at any iteration, that is, ∀ j : P j
2 ⊆ P1. Note

that this immediately implies that C(M j
2) ≤ C(M1) as well, because our cost

function (Eq. (1)) is monotonic to the accesses performed. In other words, in our
cost model, if M1 performs more accesses than M j

2 in every access type, then

M1 is guaranteed to have an overall higher cost, namely, P(M j
2) ⊆ P(M1) =⇒

C(M j
2) ≤ C(M1). To complete the proof, we now show by induction that L1 and

ACM Transactions on Database Systems, Vol. 32, No. 1, Article 5, Publication date: March 2007.

Optimizing Top-k Queries for Middleware Access • 21

L2 hold; we will also specify the behavior of M2 for each iteration so as to show
how it can be constructed in the NC framework.

— j = 1: Consider L1. We note that by definition of the framework NC,
alternatives j is complete in that any algorithm (like M1) which has per-
formed P j

2 must have performed some access A among alternatives j . Thus,

as M1 has performed P1
2 (trivially, since P1

2 = φ), by the completeness, it

must have performed access A ∈ alternatives1 in addition to P1
2 . In other

words, A is in both alternatives1 and P1 − P1
2 , and thus L2 holds. Moreover

L2 is trivial, since initially P1
2 = φ.

— j = k: As the induction hypothesis, assume for j = k that the lemmas hold.
What should algorithm M2 do in each iteration? We now construct M2

for iteration k: If M2 exhausts P1, which provides enough information to
answer Q , M2 halts right before this iteration. Otherwise, NC requires M2

to select one access from alternativesk to continue. We will let M2 choose
an access Ak which is also in P1 − Pk

2 . Such Ak must exist by L2, that is,

Ak ∈ alternativesk ∩ (P1 − Pk
2).

— j = k + 1: First, L1 holds; by L1 (just prove on), Pk+1
2 ⊆ P1, thus M1 has

performed Pk+1
2 . By the completeness of alternativesk+1, M1 must have per-

formed, in addition to Pk+1
2 , some access A ∈ alternativesk+1. In other words,

A is in both alternativesk+1 and P1 − Pk+1
2 , and thus L2 holds.

Second, L1 holds: Note that Pk+1
2 = Pk

2 ∪ {Ak}. Since Pk
2 ⊆ P1 (by the

induction hypothesis on L1) and Ak ∈ P1 − Pk
2 (by the construction of M2), it

follows that Pk+1
2 ⊆ P1 holds.

In summary, we stress that NC, as an algorithm-generating framework, de-
fines an optimization space which is comprehensive and focused. Our goal, in
principle, is thus to “instantiate” an optimal algorithm Mopt in G(NC), which
depends on query- and data-specific factors. Section 7 will discuss optimization
techniques for finding Mopt , further refining Eq. (3), as follows:

Mopt = argminM∈G(NC)C(M). (5)

7. SEARCH: DYNAMIC OPTIMIZATION

In this section, we discuss how to actually optimize top-k queries by using
framework NC, detailed in Section 6. As briefly discussed, with optimization
space G(NC) defined, the query optimization problem is essentially that of iden-
tifying the cost-optimal algorithm Mopt in Eq. (5). For systematic optimization,
we must address the following three tasks, each corresponding to its counter-
part in Boolean query optimization:

(1) Space reduction: Although G(NC) is already much focused, it is still too
large for exhaustive search. We thus design a suite of systematic techniques
to reduce the space, for which we can argue how they retain promising
algorithms in the space.

ACM Transactions on Database Systems, Vol. 32, No. 1, Article 5, Publication date: March 2007.

22 • S.-W. Hwang and K. C.-C. Chang

(2) Cost estimation: As a ground to compare algorithms in the space, the opti-
mizer must be able to estimate their cost. Our cost estimation extends the
insight of its Boolean counterpart, as we will discuss in Section 7.2.

(3) Search: Within the space of algorithms with their estimated costs, we de-
sign effective optimization schemes to prioritize search. Similarly, Boolean
optimization enumerates plans in particular ways, for example, dynamic
programming.

7.1 Space Reduction

While already much focused, G(NC) is still too large for exhaustive search. At
each iteration, NC may Select any type of access on any unevaluated predicates
of top-k objects. We thus need to further focus within NC with some systematic
reduction techniques. These techniques contribute in two ways: First, they re-
duce the space significantly, while we can argue how they retain the promising
algorithms for consideration. Second, they give “orders” to the reduced space
so that algorithm can be systematically enumerated by a few configuration
parameters. In particular, we use the following techniques for optimization:

First, we choose to focus on SR (sorted-then-random) algorithms, which per-
form all sai on predicate pi, if such exists, before any rai(·). We argue that
focusing on such algorithms allows us to reduce our plan space with no loss
of optimality– Lemma 1 states that, for any top-k algorithm, we have its SR-
counterpart gathering the same score information, with no more cost.

LEMMA 1 (SR-COUNTERPART). For any algorithm M1 ∈ G(NC), there exists its
SR-counterpart M2 with no more cost, namely, C(M2) ≤ C(M1).

PROOF. We prove by constructing the SR-counterpart M2 of M1 with no
more cost. Let P i

1 be the total accesses that M1 has performed on pi, that is,
P(M1) = ∑

i P i
1. In other words, P i

1 should be sufficient for collecting the same
information as M1 on predicate pi. We thus construct M2 to perform the same
accesses in P i

1 for every pi, but in a sorted-then-random manner, namely, P i
2

first chooses every sorted access in P i
1 and then every random access in P i

1.
However, note that some rai(o) ∈ P i

1 will be redundant in P i
2 if pi[o] has been

already evaluated by preceding sorted access. Consequently, ∀i : P i
2 ⊆ P i

1, and
thus M2 terminates as early as M1, if not earlier, that is, C(M2) ≤ C(M1).

Second, we assume that random access on every object follows the same
“global” order H. Specially, when multiple random accesses exist in alternatives,
we follow some particular order H (given by the optimizer; see Section 7.3)
so as to choose which to perform. To illustrate, supposing necessary choices
are alternatives = {rai(u1), raj (u1)} given H = (pi, pj), we pick rai(u1) first,
since the next unevaluated predicate of u1 is pi, according to H, which we
denote as next(u1, H) = pi. According to our preliminary study [Chang and
Hwang 2002], global scheduling is as effective as local scheduling (thus hardly
compromising comprehensiveness), while significantly reducing the per-object
scheduling overhead.

By focusing on the preceding two techniques, we propose framework NC with
SR/G (SR-subset and global) scheduling techniques, trading high efficiency over

ACM Transactions on Database Systems, Vol. 32, No. 1, Article 5, Publication date: March 2007.

Optimizing Top-k Queries for Middleware Access • 23

Fig. 11. Illustration of SR/G techniques.

Fig. 12. Select with SR/G techniques.

a slight compromise of comprehensiveness. These techniques customize the
Select routine of NC, as Figure 12 shows: Now the selection is more focused,
guided by the two parameters � and H. Here, � = {δ1, . . . , δm} represents the
suggested depth of sorted access δi for each predicate pi, while H determines
the ordering of predicate evaluation, which will be determined by the optimizer,
as Section 7.3 will discuss. In essence, Select chooses sorted access whenever
there exists sai which has not reached the suggested depth δi for predicate
pi, that is, pi > δi.

7 Otherwise, it performs random access in alternatives by
picking the next unevaluated predicate (according to H). Example 7 illustrates
how these techniques actually work with our running example (for the sake of
presentation, NC from here on refers to the framework with SR/G techniques).

Example 7 (SR/G Techniques). Consider our running example Q1 on
Dataset 1. Figure 11 illustrates how SR/G techniques guide the access selection
of NC when � = (0.8, 0.8) and H = (p1, p2).

At Step 1, among necessary choices alternatives = N3, Select focuses on sa1

and sa2, since the suggested sorted access depths have not yet been reached,
that is, p1 > δ1 = 0.8 and p2 > δ2 = 0.8 (we arbitrarily pick one, e.g., sa1.) Simi-
larly, at Steps 2 and 3, Select chooses sa2, until it lowers p2 below the suggested
depth δ2 after Step 3. Then, at Step 4, we perform ra2(u3), which completes the
evaluation on u3. Hence, NC can return u3 as the top-1 answer with four ac-
cesses P = {sa1, sa2, sa2, ra2(u3)}, as F[u3] is higher than the maximal-possible
scores of the rest.

In addition to reducing the search space, SR/G techniques enable enumer-
ating algorithms by parameters � and H. In other words, every SR algorithm
can be identified by a (�,H) pair. Consequently, our optimization problem can
now be restated as identifying the minimal-cost algorithm (�opt, Hopt) such that
(�opt, Hopt) = argmin

�,HC((�, H)).

7While rare in practice, there can be an extreme case where the suggested depth is too shallow, so

that all objects seen from the sorted access are fully evaluated before identifying the top-k results.

In such a case, NC can incrementally increase the depth proportionally to the suggested depth for

each predicate.

ACM Transactions on Database Systems, Vol. 32, No. 1, Article 5, Publication date: March 2007.

24 • S.-W. Hwang and K. C.-C. Chang

7.2 Cost Estimation

As a prerequisite to identifying the cost-optimal algorithm (�opt, Hopt), we need
to develop a means to estimate the cost of an SR/G top-k algorithm (�, H).
To motivate, recall the cost estimation for Boolean query plans. The cost of
Boolean query essentially sums up the cost of processing each predicate pi for
the cardinality Ni of the objects that evaluate pi. For Boolean queries, such
cardinality can be estimated by Boolean selectivity, that is, the ratio of the
number of data objects which evaluate the given predicate to be true, obtained
from some statistical samples, such as histograms. For instance, in a simple
conjunctive query, Ni is simply the product of the predicate selectivities of those
evaluated prior to pi, multiplied by the database size N , assuming predicate
independence.

Similarly, for top-k algorithms, we can estimate the cost based on our se-
lectivity estimation from statistical samples. However, unlike Boolean queries
composed of relational operators, the aggregate effect cannot be computed an-
alytically, as predicates are aggregated by arbitrary function F . To estimate
this arbitrary aggregation, we generalize Boolean selectivity into the notion of
aggregate selectivity of a set of evaluated predicates P, which is the ratio of the
number of objects whose aggregate scores that still make to the top-k answers.
More formally, let θ be the lowest score of the top-k results (which we will not
know a priori until the query is fully evaluated). Observe that FP [u] will even-
tually be on the top-k if FP [u] ≥ θ (since only the final answers will surface to

and remain on the top). We thus define the aggregate selectivity Sθ
F (P, �) for

a set of accesses P as the ratio of the number of database objects u that “pass”
FP [u] ≥ θ after sorted access up to depth � (this selectivity notion, unlike its
Boolean-predicate counterpart, depends on the aggregate filtering effect of all
the predicates evaluated).

With this notion, we can estimate the cost of random accesses after the pre-
ceding sorted access phase (we will later discuss how to estimate the cost of
sorted accesses up to �). In other words, given H = (p1, . . . , pm), the aggre-

gated selectivity Sθ
F (P(�, Hi−1), �) of the first i − 1 predicates in H, denoted as

subschedule Hi−1 = (p1, . . . , pi−1), is N ·Sθ
F (P(�, Hi−1), �) and so is the number

of random accesses on pi. The cost of the random access phase is thus

m∑
i=1

n · Sθ
F (P(�, Hi−1), �) · cri = n ·

m∑
i=1

Sθ
F (P(�, Hi−1), �) · cri.

We can now formulate the overall cost, adding the cost of sorted access phase.
More specifically, denoting the number of objects with pi score of no less than
δi as n(pi, δi), the overall cost C((�, H)) can be formulated as follows:

C((�, H)) =
m∑

i=1

n(pi, δi) · csi + n ·
m∑

i=1

Sθ
F (P(�, Hi−1), �) · cri.

Such cost can be estimated by “simulating” the aggregate effect on the sta-
tistical samples, or mimicking the actual execution with the retrieval size k′

proportional to the sample size s, namely, k′ = �k · s
n�. We first mimic the sorted

ACM Transactions on Database Systems, Vol. 32, No. 1, Article 5, Publication date: March 2007.

Optimizing Top-k Queries for Middleware Access • 25

access phase by performing sorted accesses on these samples (we discuss how
to get such samples later) up to the depth � so as to get the estimated cost of
sorted accesses.8 We then use the samples to estimate the aggregate selectivity
and thus random access costs. In principle, such samples can be obtained from
online sampling (i.e, randomly sample the database at runtime), or statistics-
based synthesis. In the worst case, when online sampling is unavailable or
too costly, or when a priori statistics are not available, we can still generate
“dummy” synthesis based on some assumed distribution (e.g., uniform) as a
crude approximation. Though such samples cannot well represent actual score
distributions, they help optimize for other important aspects, as we empirically
show in Section 9. While our optimizer will certainly benefit from more accu-
rate samples and statistics, Section 9 will implement our optimization frame-
work using dummy synthesis so as to validate our framework in the worst-case
scenario.

7.3 Search

Toward our goal of identifying the optimal algorithm (�opt, Hopt), we decompose
the problem into the two subtasks of identifying �opt first and Hopt. However, as
�-optimization and H-optimization are mutually dependent, the process is it-
erative. Specfically, we can identify the optimal � with respect to some random
access schedulingH0 to start with. Denoting this identified optimal depth as �0,
we then find the optimal random access schedulingH1 with respect to �0, which
may not be identical toH0. In other words, due to the mutual recursiveness in �-
and H-optimization, finding an optimal pair of (�opt, Hopt) is essentially contin-
uing the aforementioned iterations until reaching the minimal-cost pair, that
is, hill climbing (note that this search can lead to a local minimum when there
are multiple local minima). However, for simplicity, our two-phase approach
was designed to perform a one-iteration approximation of the aforementioned
iterative processes. In other words, we find �opt with respect to some initial
random access scheduling H0 and find Hopt with respect to �opt identified in
the first phase. We believe this approximation gives an already good solution,
considering both the cost of optimization and benefit gained, as we empirically
validate in Section 9.

—�-optimization: We first identify the optimal depth �opt with respect to some
initial schedule H0, namely, �opt = argmin�C((�, H0)).

—H-optimization: We then identify the optimal scheduling Hopt with respect to
�opt identified.

For H-optimization, we adopt the global predicate scheduling proposed in
our preliminary study [Chang and Hwang 2002] that uses online sampling
to identify a predicate scheduling with the highest aggregated filtering effect
(discussed in Section 7.2). For �-optimization, we first study how it is specific
to runtime factors, for example, score functions, predicate score distributions,
and cost scenarios, as Example 8 will illustrate.

8Here, � corresponds to a set of threshold scores to reach these scores will stay the same for samples

of any size, as long as they preserve the statistical properties of the dataset.

ACM Transactions on Database Systems, Vol. 32, No. 1, Article 5, Publication date: March 2007.

26 • S.-W. Hwang and K. C.-C. Chang

Example 8 (�-Optimization Possibilities). To illustrate, we continue Ex-
ample 7 with a different depth configuration �2 = (0.8, 1). In fact, �2 generates
the algorithm illustrated in Figure 10: It starts with sa1 as p1 > δ1, but chooses
ra2(u3) next as p2 ≤ δ2.

Observe from this example that different configurations imply different ac-
cess costs: While a parallel configuration of �1 = (0.8, 0.8) requires four accesses
to answer Q1 (Figure 11), a focused configuration �2 = (0.8, 1) requires only
two accesses (Figure 10). However, note that this finding is only specific to Q1.
For instance, when scoring function F is avg (the average function) for the same
query Q1, �1 requires less accesses (four) than �2 (six).

Consequently, we need search schemes that systematically adapt to the
given query for exploring the �-space, namely, the m-dimensional space of
δ1 × . . . × δm = [0 : 1]m. In particular, we propose three search schemes. First,
we implement an approximate exhaustive search Naive over this �-space by
discretizing each δi into a set of x finite values in the range [0:1] and estimating
the cost for all possible xm combinations. Second, we then develop two informed
search schemes, Strategies and HClimb, which guide the search by query-driven
or generic hill-climbing strategies, respectively. Among these three schemes, we
focus on HClimb in particular, which is general to any query, yet evaluated to be
the most efficient and effective from our unreported evaluation. From a random
starting point, HClimb simply searches toward neighbors with less estimated
cost (see Section 7.2 for cost estimation), until it reaches the cost-minimal con-
figuration. The scheme is typically enhanced with multiple random starting
points so as to avoid local minimum.

8. UNIFICATION AND CONTRAST

Framework NC,9 in addition to being a general and adaptive optimization
framework, enables the conceptual unification of existing algorithms. It com-
plements existing algorithms by: (1) generating similar behaviors when their
behaviors are desirable, while (2) optimizing beyond their “static” behaviors
when not desirable. In particular, we first discuss how this unifies and contrasts
with TA [Fagin et al. 2001] (Section 8.1). We then discuss how it is based on and
extends our preliminary work MPro [Chang and Hwang 2002] (Section 8.2).

Since most existing algorithms (as originated in a middleware context) as-
sume no wild guesses [Fagin et al. 2001], in order to be more comparable, we
transform NC to handle this restriction (while NC can generally work with or
without such an assumption). In such settings, an algorithm cannot refer to
an object u (for random access) before “knowing” it from some sorted access.
Thus NC must distinguish between seen and unseen objects. In other words,
each object u is marked as unseen until hit by some sorted access and becom-
ing seen. In particular, we implement this distinction by introducing a virtual
object unseen to represent all unseen objects, as all unseen share the same
maximal-possible score F [unseen] = F(p1, . . . , pm). This virtual object needs

9For notational simplicity, we use NC interchangeably as both an abstract framework and the

optimal algorithm generated.

ACM Transactions on Database Systems, Vol. 32, No. 1, Article 5, Publication date: March 2007.

Optimizing Top-k Queries for Middleware Access • 27

Fig. 13. NC with no wild guess.

Fig. 14. Illustrations of TA and NC.

special handling, as Figure 13 shows with query Q1: Initially, all objects are
unseen, hence NC initializes KP with only the unseen. Then, when this unseen
is at the top (e.g., Step 1), its induced choices Nunseen will contain only sorted
accesses, since random access is not allowed for an unseen object, by the no
wild guesses assumption. Finally, objects hit by some sorted access will become
seen (e.g., u3 seen by sa1 at Step 1), and once seen, are treated the same as in
NC (without the no wild guesses assumption) and may surface to KP (e.g., u3

at Step 2).

8.1 Algorithm TA

We now observe how NC unifies and contrasts with TA, which is an early and
probably the most representative existing top-k algorithm of all. As Figure 2
lists, TA is designed for access scenarios where both sorted and random access
have uniform unit costs, namely, cri

csi
≈ 1. Let’s call it the uniform scenario. As

illustrated in Example 2, the behaviors of TA can be characterized as follows:
(1) Equal-depth-sorted access— At each iteration, it performs sorted access to
all predicates; (2) exhaustive-random access— it then does exhaustive random
access on every seen object; and (3) early-stop— it terminates as soon as k eval-
uated objects score no less than the upper bound score of unseen objects. We
now ask: When such behaviors are desirable, would NC generate similar behav-
iors (unification)? When not, would NC optimize beyond such static behaviors
(contrast)?

Unification. In “symmetric” cases, where each predicate contributes rather
equally to both overall score and cost, such as, F = avg with equal predicate
access costs, NC will indeed generate a TA which is built for such a scenario
in mind. We illustrate this through a scenario S1 with scoring function F =
avg (p1, p2), in which the scores of p1 and p2 are uniformly distributed over

ACM Transactions on Database Systems, Vol. 32, No. 1, Article 5, Publication date: March 2007.

28 • S.-W. Hwang and K. C.-C. Chang

Fig. 15. Comparison of TA and NC when sa = ∑
i Si · csi and ra = ∑

i Ri · cri , namely, cost = sa + ra.

[0 : 1] and ∀i : csi = cri = 1. To observe how NC adapts to S1, Figure 14(a)
shows a contour plot of C(�, H0) with respect to � = (δ1, δ2). NC identifies the
minimal-cost �opt, or the darkest cell marked by a rectangle, at around (.85,
.85). For comparison, the figure also marks the depth TA reaches by an oval, at
around (.87, .87).

Observe that the two algorithms are indeed almost identical: (1) Both per-
form equal-depth-sorted access up to similar depths; (2) by accessing the same
depths, they will both see the same set of objects. However, since NC does not
use exhaustive random access, it will perform less random accesses than TA. We
thus expect NC to be slightly better overall; and (3) the output K of NC shares
the same early-stop condition as TA: It terminates when k evaluated objects
score no less than the upper-bound score of unseen objects.

Contrast. However, NC contrasts with TA by being able to adapt. Even among
uniform scenarios, in the asymmetric cases, TA’s characteristic behaviors cannot
adapt well. To illustrate such cases, Figure 14(b) shows scenario S2, which
replaces the scoring function of S1 to F = min (and otherwise, the same as S1).
In contrast to avg, where every predicate score symmetrically contributes to
the overall score, min is asymmetric in the sense that only one predicate with
the minimum score determines the overall score of each object. Observe how
NC adapts beyond TA and thus generates a rather different algorithm with less
cost (thus a darker cell) in this scenario: NC focuses sorted access on p1 with
�opt = (.81, 1), while TA performs equal-sorted access up to (.83, .83).

For a closer observation, Figure 15 compares the relative access costs of
TA and NC (normalized to the total cost of TA as 100%) in various scenarios:
As symmetric cases, Figure 15(a) first considers scenario S1, which is rather
favorable to TA (as explained earlier). In such a case, both algorithms behave
similarly (except that NC slightly outperforms TA by going deeper in sorted
accesses to trade future random accesses). By contrast, Figure 15(b) considers
scenarios that introduce asymmetry, one-at-a-time, upon S1, as follows:

—Asymmetric function: Unlike for a symmetric function like F = avg in S1,

ACM Transactions on Database Systems, Vol. 32, No. 1, Article 5, Publication date: March 2007.

Optimizing Top-k Queries for Middleware Access • 29

where each predicate equally contributes F , the optimal configuration for an
asymmetric function tends not to be equal-depth; when F = min, NC adapts
to focus sorted access on one predicate.

—Asymmetric scores: Unlike in scenario S1, predicate score distributions may
differ significantly. When the distribution of p2 is replaced by normal dis-
tribution with mean .2 and variance .1, NC adapts to perform more sorted
accesses on p2 (which is more selective to distinguish objects by scores).

—Asymmetric costs: When certain predicates are more expensive (e.g., web-
accessible predicate), NC adapts to replace such expensive accesses by more
economic alternatives: When p1 is three times more expensive (for both sorted
and random access) than p2, NC outperforms TA by favoring accesses on p2.

8.2 Algorithm MPro

We next discuss how NC is based on and extends our preliminary work
MPro [Chang and Hwang 2002] for a simpler random-only scenario (similar to
Upper [Bruno et al. 2002] and TAZ [Fagin et al. 2001], as we will discuss later).
Consider F(p1, . . . , pm, pm+1, . . . , pn). MPro distinguishes two types of predi-
cates: While pm+1, . . . , pn are simply ordinary (or indexed) predicates, the other
group p1, . . . , pm are expensive predicates, and either probe-only or random-
only.

—∀pi ∈ {p1, . . . , pm}: pi supports only random access with unit cost cri; thus
csi = ∞.

—∀pi ∈ {pm+1, . . . , pn}: pi supports both random access and sorted access, with
unit cost cri and csi, respectively.

MPro
aims at minimizing random accesses, or per-object probes on expensive pred-

icates. In brief, this works as follows:

(1) Merge the ordinary predicates pm+1, . . . , pn into one single list x (or a con-
ceptual predicate), using TA. By this merging, we view the scoring function
as F(p1, . . . , pm, x).

(2) Sort all objects u by their maximal-possible score F [u] (with respect to its
evaluated predicates). Let KP be the current top-k objects.

(3) At each iteration, pick an incomplete object vj from KP . Let Pj = {rai(vj)|
pi[vj] be unevaluated so far}. Pick a probe rai(j) from Pj , according to some
predicate schedule H, and execute this. Terminate and return KP when all
top-k objects are complete.

In essence, MPro has the following characteristic behaviors: (1) x-separation:
It separates the sorted access-capable predicates, namely, pm+1, . . . , pn, from
the rest, namely, p1, . . . , pm, by isolating the former and merging them into x by
TA. (2) x-stop: It will retrieve from the merged x-list in the sorted order and stop
as soon as ∀v ∈ KP : F[v] ≥ F(1,. . . , 1, pm+1, . . . , pn), where KP is the final top-k
answers, and the depths pm+1, . . ., pn are determined by the merging algorithm
TA. (3) p-minimization: For these retrieved objects, MPro will minimize probe
cost by finding an optimal H.

ACM Transactions on Database Systems, Vol. 32, No. 1, Article 5, Publication date: March 2007.

30 • S.-W. Hwang and K. C.-C. Chang

Unification. As MPro aims at minimizing random accesses, we can see that
NC can generate MPro if “projected” only to expensive predicates (with this
projection, we ignore x-separation at this point, which we will revisit later.)

First, NC will satisfy the same x-stop condition: Note that the unseen object
from the x-list has F [unseen] = F(1, . . ., 1, pm+1, . . ., pn), and thus the same
stop-condition holds.

Second, NC will naturally perform the same p-minimization: As outlined
before, for probe-only predicates, MPro essentially operates on the same ma-
chinery as NC, that is, sorting by maximal-possible scores, further probing on
some incomplete vj in KP , and stopping when KP completes. For such incom-
plete vj , MPro constructs a set of Pj of random-only accesses for further probing,
corresponding to alternatives of NC. Meanwhile, NC as a general mechanism,
constructs N j for incomplete object vj , including both sorted and random ac-
cesses (Line 5, Figure 9). However, as these probe-only predicates do not support
sorted accesses, namely, csi = ∞, the optimizer (Section 7) will then algorithmi-
cally “ignore” the sorted accesses, and focus only random accesses as MPro does,
by configuring the sorted access depths as �: (δ1 = 1, . . ., δm = 1), that is, no
sorted access at all. In summary, NC adapts to achieve the same p-minimization,
while using a general-purpose mechanism.

Contrast. Although NC can generate MPro, the two algorithms differ funda-
mentally for ordinary predicates supporting both sorted and random accesses.
While NC integrates such predicates in their optimization, MPro isolates (and
thus ignores) such predicates by x-separation. By using TA as a black box for
merging pm+1, . . . , pn, MPro will suffer the restrictions of TA over NC, just as
discussed in Section 8.1.

Remark. To summarize, NC generalizes beyond MPro significantly by gener-
ally handling both sorted and random accesses. Such a generalization is non-
trivial. Essentially, as Section 4 identified, sorted access is fundamentally dif-
ferent with its progressiveness and side-effects. By focusing only on random
accesses, MPro does not deal with defining a complete framework. To illustrate,
consider a random-only setting, when some vj ∈ KP is incomplete with possible
future accesses identified as Pj = {ra1(vj), ra2(vj)}. By contrast, in its sorted-
also counterpart (by adding sorted accesses) the possible future accesses are
N j = {sa1, ra1(vj), sa2, ra2(vj)}.

To contrast the two, we identify the following challenges in defining a com-
plete framework:

(1) Sorted access side-effects. In random-only, such vj can be univocally iden-
tified as required for further processing. If not picked, vj will remain nec-
essary forever. However, in sorted-also, vj may become unnecessary (by
retiring from the current top-k), simply by the side-effects from accessing
others.

(2) Sorted access progressiveness. In random-only, for vj just picked, with re-
spect to a given schedule (e.g., H = (ra2(vj), ra1(vj))), the next probe (e.g.,
ra2(vj) in Pj) can be univocally determined to be required. However, in
sorted-also, it is not clear exactly what to schedule. To illustrate, as every

ACM Transactions on Database Systems, Vol. 32, No. 1, Article 5, Publication date: March 2007.

Optimizing Top-k Queries for Middleware Access • 31

sorted access can repeat for progressive accesses, there are generally an in-
finite number of possible schedules; for example, for N j : (sa1, sa2, ra2(vj),
ra1(vj)), (sa1, sa1, sa2, ra2(vj), ra1(vj)), etc.

In summary, NC generalizes MPro, which focuses only on random-only and
thus reduces the optimization to a “bare-bone” of finding the optimal predi-
cate scheduling H. In these limited scenarios, the aforementioned Properties 1
and 2 together univocally determine a required probe on a particular vj for a
particular pi, namely, the necessary-probe principle [Chang and Hwang 2002].
Targeting the same scenarios, Upper applies the same principle of evaluat-
ing that object with the highest maximal score. However, runtime adaptation
heuristics further restrict its applicability to weighted average scoring func-
tions, in addition to its limitation to random access optimization. TAZ simi-
larly evaluates the object with the highest maximal score, but lacks predicate
scheduling and thus always evaluates objects completely, which explains con-
sistently worse performances compared to Upper (as reported in Bruno et al.
[2002]).

In contrast to MPro, Upper, and TAZ , the notion of necessary choices of our
NC framework enables handling both random and sorted accessby identifying
the necessary tasks that must be satisfied (Theorem 1) and scheduling only
such tasks (Theorem 4).

9. EXPERIMENTS

This section reports our experiments. Our goal is two-fold: First, to validate the
adaptivity scalability, generality, and of NC, Section 9.1 studies its performance
over a wide range of middleware settings by simulating extensive synthetic
scenarios. Second, to validate practicality, Section 9.2 quantifies the absolute
performance of NC over real web sources. Our experiments were conducted with
a Pentium III 933MHz machine with 256M RAM, using our implementation
of NC in Python. Note that for runtime search, we use “dummy” synthesis,
assuming uniform distributions for all predicates (as discussed in Section 7.2).
While our optimizer will certainly benefit from more accurate sampling, we
implement using dummy synthesis (unless noted otherwise) to validate our
framework in the worst-case scenario, where sampling is expensive or even
infeasible.

9.1 Synthetic Middleware Scenarios

In this section, we perform extensive experiments to study the adaptivity, scal-
ability, and generality of NC over various performance factors. To isolate and
control these factors, our experiments in this section used synthetic datasets.
In particular, we synthesize our scenarios varying the following performance
factors: (1) unit costs csi and cri, (2) the scoring function F , and (3) score distri-
bution Di, of each predicate pi.

Over varying performance factors, our goal is to compare NC with the existing
algorithms listed in the matrix of Figure 2. In particular, we compare to TA, CA,
and NRA, as the rest of algorithms in the matrix are either not applicable
to the scenarios or subsumed by the algorithms considered: First, although

ACM Transactions on Database Systems, Vol. 32, No. 1, Article 5, Publication date: March 2007.

32 • S.-W. Hwang and K. C.-C. Chang

Fig. 16. Default setting.

Fig. 17. Unit cost scenarios.

Algorithm Quick-Combine, SR-Combine, and Stream-Combine are designed for
the same scenarios, their limited runtime optimization heuristics (i.e., using
the partial derivative of F) restrict their applicability over our synthesized
scenarios, including nondifferentiable functions as well, for example, F = min
in Q1. Second, the rest of algorithms can be considered as special cases of
NC: As we explained earlier in Section 8.2, NC unifies MPro, Upper, and TAZ ,
designed specifically for simpler probe-only scenarios. As NC generalizes MPro
and therefore performs identically, we do not compare MPro with NC.

Adaptivity of NC. To validate the adaptivity of NC over existing algorithms,
we first compare the performance of the four algorithms, varying one parameter
at a time, as follows over the default setting described in Figure 16:

—Unit costs. To understand the impact of varying unit costs, we categorize
cost scenarios into csi > cri, csi = cri, and csi < cri for each predicate pi. In
particular, for m = 2, Figure 17 shows how we synthesize such scenarios by
varying hi = cri

csi
to 1

r , 1, and r.

—Scoring function. To understand the adaptivity over various scoring func-
tions, we evaluate over F : min, wavg (weighted average), and gavg (geomet-
ric average). For weighted average wavgc = w1 · p1 + w2 · p2, we vary c = w2

w1

to 1 and 10 when
∑

i wi = 1. Similarly, we vary c to 1 and 10 for geometric
average gavgc = pw1

1 · pw2

2 , when
∑

i wi = 1.

—Score distribution. To understand the impact over different distributions, we
change D2 to normal distribution and vary its mean to .2, .5, and .8, with the
variance as .16.

Figure 18 reports our evaluation results over various cost scenarios (as enu-
merated in Figure 17) when cs1 = 10 and cs2 = x · 10, while cr1 and cr2 are
determined by each scenario as h1 · cs1 and h2 · cs2, respectively. First, Figure
18(a) compares the average total access cost (relative to the cost of NC) when
x = 1 (i.e., cs1 = cs2) and r = 10. Observe that NC is robust across all scenarios
and significantly outperforms existing algorithms in most scenarios by gener-
ally adapting to various cost situations. For instance, when (h1, h2) = (1, 1

10
),

NC saves 67%, 73%, and 84% from the cost of TA, CA, and NRA, respectively. In

ACM Transactions on Database Systems, Vol. 32, No. 1, Article 5, Publication date: March 2007.

Optimizing Top-k Queries for Middleware Access • 33

Fig. 18. Adaptivity of NC over unit costs.

addition to the robust performances of NC, it is also interesting to observe how
NC unifies existing algorithms. For instance, in uniform cost scenarios, for ex-
ample, (h1, h2) = (1, 1), NC will similarly perform equal-depth sorted accesses
(Section 8) and perform comparably to TA, which was specifically designed for
such a scenario. For scenarios where random access is expensive, which are
ideal for CA, for example, (h1, h2) = (10, 10), NC unifies the ideal existing al-
gorithms CA and NRA and performs comparably by similarly trading some
expensive random accesses with more economical sorted accesses.

However, in other scenarios, NC significantly outperforms existing algo-
rithms by orders of magnitude. To illustrate, Figures 18(b) and (c) repeat the
same sets of experiments, changing to r = 100 and x = 10, respectively.
Figure 18(b) reports results when the asymmetry across the access costs of
sorted and random accesses are more significant, namely, when r = 100. Ob-
serve that the cost savings of NC is even more significant in these scenarios:
When (h1, h2) = (1, 1

100
), NC saves 96%, 97%, and 98% from the cost of TA, CA,

and NRA, respectively, as these existing algorithms cannot adapt to such asym-
metry in costs. Similarly, compared to Figure 18(a), the cost savings of NC is
more significant in Figure 18(c), where the asymmetry of access costs across
predicates is more significant, that is, x = cs2

cs1
= 10. Note that when (h1, h2) =

(1, 1
10

), NC saves 75%, 85%, and 91% from the cost of TA, CA, and NRA, respec-
tively, by adapting to cost asymmetry, as similarly observed in previous evalu-
ations. In summary, NC performs robustly across wide ranges of scenarios and

ACM Transactions on Database Systems, Vol. 32, No. 1, Article 5, Publication date: March 2007.

34 • S.-W. Hwang and K. C.-C. Chang

Fig. 19. Adaptivity of NC over scoring functions.

significantly outperforms existing algorithms in asymmetric scenarios, as con-
sistently observed in Section 8.

We now study how NC adapts to other cost factors, namely, scoring functions
and score distributions. In particular, we vary such factors in four representa-
tive cost scenarios that best depict the unification and contrasting behaviors
of NC to existing algorithms. First, to show unification behaviors, we pick the
intended scenarios for TA and CA, that is, (h1, h2) = (1, 1) and (r, r), respectively,
which we denote as scenarios TA-intended and CA-intended. Second, to show
our contrasting behaviors, we pick asymmetric scenarios (h1, h2) = (r, 1

r) when
cs1 = cs2 (denoted as scenario A1) and cs1 = 10 · cs2 (denoted scenario A2).
For the sake of presentation, we drop the comparison with NRA, which has
shown mostly worse performance to CA in the previous evaluations reported in
Figure 18.

Figure 19 evaluates the adaptivity of NC over varying scoring functions in
the default setting with x = 1 and r = 10 (as in Figure 18(a)). As Section
8 discussed and also observed here, when the function is symmetric, such as
when, F = avg, NC unifies the behavior of TA, which is specifically designed for
such scenarios. However, in all other functions with asymmetry, for example,
F = wavg or F = gavg, NC outperforms existing algorithms. Observe that
cost differences grow significantly as such the asymmetry of the weighted and
geometric average increases. For instance, the weight ratio c = w2

w1
increases

ACM Transactions on Database Systems, Vol. 32, No. 1, Article 5, Publication date: March 2007.

Optimizing Top-k Queries for Middleware Access • 35

Fig. 20. Adaptivity of NC over score distributions.

from 1 to 10 for both wavgc = w1 · p1 + w2 · p2 and gavgc = pw1

1 · pw2

2 increases
when

∑
i wi = 1. The same observation holds across different cost scenarios, and

the cost savings are more significant when there exists additional asymmetry
in costs, either across different access types (e.g., CA-intended) or different
predicates (e.g., A1 and A2).

Figure 20 studies the adaptivity of NC over varying score distributions in
the default setting with x = 1 and r = 10 (as in Figure 18(a)). Recall that
in all our evaluations, we employed NC using dummy synthesis (Section 7.2).
Meanwhile, in this experiment, to observe the impact of sampling accuracy,
we also implement two versions of NC with more representative samples,
namely: (1) NC-Sample, which uses actual samples of 0.1%, in data size, and
(2) NC-Distribution, which uses synthetic “approximate” samples generated us-
ing a priori knowledge of the actual distribution (e.g., normal distribution with
mean as 0.8 and variance as 0.16). Figure 20(a) studies the performance of
NC when F = avg. Observe that more accurate samples are indeed helpful to
adapt more closely on the score distributions. For instance, when the mean is
0.8, in all cost scenarios, NC-Sample and NC-Distribution can adapt better than
NC-Dummy by performing more sorted accesses on p1, which is more selective
in distinguishing objects by scores. Meanwhile, note that dummy synthesis is
equally effective in optimizing for other important cost factors. Observe that in
scenarios A1 and A2, while NC-Dummy does not know the actual distribution,

ACM Transactions on Database Systems, Vol. 32, No. 1, Article 5, Publication date: March 2007.

36 • S.-W. Hwang and K. C.-C. Chang

Fig. 21. Scalability of NC over N .

it significantly outperforms existing algorithms by optimizing to other runtime
factors and performs very closely to NC with more accurate statistics.

Scalability of NC: Figure 21 studies the scalability of NC varying N and
k from the default setting in Figure 16. In particular, we choose to focus on
scenario TA-intended, the most difficult scenario, as the cost savings of NC
was minimal in the previous experiments. Figure 21(a) reports the cost ratio of
NC with respect to TA, varying N = 1k, 10k, 100k, and 1, 000k in the default
setting with x = 1 and r = 10. It is interesting to observe that, the cost ratios are
approximately the same when the relative retrieval size is the same, regardless
of database size. For instance, for k = N · 1% (i.e., k = 10, 100, 1, 000, and
10, 000 for N = 1k, 10k, 100k, and 1, 000k), the cost ratios are all around 95%.
This observation shows that NC has good data scalability, that is, the cost ratio
for finding k answers from a database of size sN will be less than s times
that for finding the same number of answers from a database of size N . Such
data scalability is promising, considering that the retrieval size k tends to stay
small regardless of N , for example, users retrieving only the first page or two
of search results, regardless of the number of hits. The same evaluation also
suggests that when k = 10, as N increases from N = 1k to N = 10k, 100k,
and 1, 000k, namely, 10−, 100−, and 1, 000-fold, the cost increases sublinearly
by 6−, 37−, and 215-fold, respectively, as Figure 21(b) presents.

Similarly, Figure 22 presents the cost ratio of NC with respect to the cost of
TA when varying m = 2, 3, and 4 in the default setting with x = 1 and r = 10.
Note that the cost ratio significantly decreases as m increases, which suggests
the scalability of NC over m. In other words, there is more room to improve
existing works when m is large, as the performance of NC illustrates.

Generality of NC: To validate the generality of NC over existing algorithms,
we study the performance NC over 1,000 synthetic scenario configurations.
In particular, each configuration consists of randomly generated parameters
representing unit costs, scoring functions, and scoring distributions. First, for
costs, we randomly generated cri and csi in the range of [1:100] units (to better
accommodate CA, we generate cost configurations according to its target sce-
narios of expensive random access by enforcing cri > csi). Second, for scoring
functions, we randomly generate the weight wi in [1:100] of F = wavg for each

ACM Transactions on Database Systems, Vol. 32, No. 1, Article 5, Publication date: March 2007.

Optimizing Top-k Queries for Middleware Access • 37

Fig. 22. Scalability of NC over m.

Fig. 23. Generality of NC.

configuration. Lastly, for score distributions, we randomly generate the mean
and variance of a normal distribution.

Figure 23(a) compares the average total access cost of the three algorithms
over such 1,000 random configurations. Observe that overall, NC as a uni-
fied algorithm saves over TA and CA by 25% and 55%, on average, by suc-
cesfully adapting to a combination of cost factors. We then, for closer obser-
vation, divide the 1,000 settings into two groups: those in which CA works
best (about 25% of the configurations, which we denote as “CA-best”), and the
rest. From such groupings, we can observe how NC unifies and contrasts with
existing algorithms. First, regarding unification, observe that NC behaves sim-
ilarly to CA in CA-best scenarios (the middle-bar group of Figure 23(a)), with
a smaller cost difference to CA than has TA. Second, regarding contrast, ob-
serve that NC outperforms existing algorithms in the majority of the “rest”
scenarios (i.e., 75% of the configurations represented by the rightmost group in
Figure 23(a)).

Lastly, we study whether the overhead of runtime optimization justifies its
cost savings in access costs. Clearly, such optimization is only justified if cost
savings outweigh the computation overhead of optimization. To analyze this
tradeoff, we also compare savings with the overhead. In particular, as the sav-
ings of access cost will have different impacts, depending on the actual response

ACM Transactions on Database Systems, Vol. 32, No. 1, Article 5, Publication date: March 2007.

38 • S.-W. Hwang and K. C.-C. Chang

time t of a single unit cost, Figure 23(b) compares these saving and overhead
with respect to t (note that we compare only with CA, as it outperformed TA in
Figure 23(a)). Observe that the optimization overhead of NC can be justified in
a large range of realistic scenarios, such as, when the unit time t is larger than
0.05ms. We believe this range (≥ 0.05ms) covers most middleware scenarios, as
they are characterized by nontrivial access costs.

9.2 Real Web Scenarios

To validate the practicality of NC, we study its absolute performance over real-
life web sources. As web sources typically handle concurrent accesses, we first
discuss how parallelization can be built on the access minimization framework
NC. We then report the results of our experiments.

9.2.1 Parallelizing NC for Concurrent Accesses. We now discuss our devel-
opment of a simple extension of NC to enable concurrent accesses. To reflect
the limitation in resources (e.g., network bandwidth or server load), our par-
allelization assumes a bounded concurrency C, that is, at most, C outstanding
accesses can be performed concurrently.

Our parallelization is in fact straightforward by performing accesses asyn-
chronously: Without waiting for preceding accesses to complete, NC will con-
tinue to issue the next access, as long as the number of outstanding accesses
does not exceed the concurrency limit C. The queue KP is updated asyn-
chronously as well, whenever an access completes.

While such extension enables overlaping up to C accesses, it also slightly
complicates the access selection: Recall that Select (Figure 12) picks a sorted
access sai as the next access, when the last-seen score pi from the preceding sai

has not reached the suggested depth δi, namely, pi > δi. Note that the exact pi

is not known until all outstanding sorted accesses complete.
However, since synchronizing to get the exact pi defeats the whole purpose

of asynchronous accesses, we continue with an estimated, pi, instead, by com-
puting its expected decrement Di. Assuming di is the expected decrement of
pi after a single sai, and that ni is the number of outstanding sai, we esti-
mate Di as di · ni. Initially, we set di as 1

n , assuming that all n objects are
uniformly distributed over the score range of [0:1]. Then, di can be adapted
to a more realistic value based on actual scores retrieved from actual sorted
accesses.

Note that in contrast to NC, most other top-k algorithms have inherent par-
allelism. For instance, consider TA and CA [Fagin et al. 2001], both of which per-
form sorted accesses to all m predicates in parallel. TA then performs random
accesses to completely evaluate the objects seen (up to m − 1 random accesses
per each m object seen), while CA may withhold such random accesses after
h = cri

csi
iterations of parallel sorted accesses (to trade expensive random accesses

with more economical sorted accesses). Observe that TA, by issuing such sorted
and random accesses asynchronously, can overlap up to m + m(m − 1) = m2 ac-
cesses. Similarly, CA can parallelize the sorted accesses over multiple iterations.
Thus, to better accommodate TA and CA, our experiments set the concurrency
bound C as m2, as well.

ACM Transactions on Database Systems, Vol. 32, No. 1, Article 5, Publication date: March 2007.

Optimizing Top-k Queries for Middleware Access • 39

9.2.2 Results. This section evaluates NC over actual web sources. In par-
ticular, we experiment with the travel agent scenarios Q1 and Q2 (Example 1)
as our benchmark queries. For extensive evaluation, we evaluate each of the
queries Q1 and Q2 with both min and avg as scoring functions. We use the
real web sources suggested in Figure 1 to access the restaurants and hotels in
Chicago (by issuing an additional Boolean selection “city = Chicago”). As these
sources allow sorted access only in small batches (e.g., per page of 25 objects),
we regard a batch access as a single sorted access. For simplicity, predicates are
evaluated by linearly normalizing the corresponding attribute value into the
range of [0 : 1], for example, a rating of a two-star hotel in the five-star rating
will be evaluated as 2

5
= 0.4.

As metrics, we use both the total access cost and actual elapsed time to cap-
ture two different performance aspects: the resource usage (e.g., of network
and web servers) and processing time, respectively. The total access cost is
measured by adding up the latency of all accesses (as in Eq. (1)), while the
elapsed time simply measures the processing time (including local compu-
tation and optimization time). Note that with concurrency, the elapsed time
is typically shorter due to by overlapping some high-latency accesses. Using
these metrics, we compare NC to TA and CA. However, note that CA is not
applicable for Q2, where the ratio h of random versus sorted access costs
is 0.

Figures 24(a) and (b) compare the total access cost of TA, CA, and NC for query
Q1 when F = min and F = avg, respectively. Observe that NC significantly
outperforms TA as the retrieval size k (x-axis) increases: For instance, when
k = 500 in Figure 24(a), the access cost (y-axis) of NC is 42 seconds, which
saves 80% and 60% over TA and CA, respectively. In fact, NC outperforms TA
by adapting to this scenario with expensive random accesses at runtime: In
particular, NC performs deeper sorted accesses than does TA, so as to trade
random accesses with less expensive sorted ones.

Similarly, Figures 24(c) and (d) compare the total access cost for query Q2.
Again, the runtime optimization enables NC to outperform TA significantly,
such as, when k = 10 in Figure 24(c), NC saves up to 66% over the access
cost of TA. However, in contrast to Q1, as random accesses are cheaper than
sorted in this scenario, NC generates a totally different algorithm. In particular,
to fully exploit free random accesses, NC focuses sorted accesses on a single
predicate and evaluates the rest with random accesses (e.g., as in the focused
configuration in Example 8), while TA still performs sorted accesses on every
predicate with no adaptation. Note that these results are also consistent with
our observations in Section 8.

Finally, Figure 25 compares the elapsed time of Q1 and Q2 when F = min.
Comparing the access cost to the elapsed time of Q1 (i.e., Figures 24(a) and
25(a)), we observe similar relative behaviors, although in different cost ranges
due to the parallel speedup. This consistency suggests that NC can benefit from
concurrency to the same extent as do TA and CA, which have inherent paral-
lelism. The same observation holds for Q2 as well, except when the suggested
depth of NC is too shallow. For instance, when k = 10, NC can answer the query
with a single sorted access (to a page of 25 hotels), and thus cannot benefit

ACM Transactions on Database Systems, Vol. 32, No. 1, Article 5, Publication date: March 2007.

40 • S.-W. Hwang and K. C.-C. Chang

Fig. 24. Comparison of total access costs.

Fig. 25. Comparison of elapsed time.

from concurrency, while TA, with more accesses, overlaps them and performs
comparably.

10. CONCLUSION

This article has developed a cost-based optimization framework for top-k query-
ing in middlewares. We develop framework NC as a comprehensive and focused
algorithm space, within which we design runtime search schemes for finding

ACM Transactions on Database Systems, Vol. 32, No. 1, Article 5, Publication date: March 2007.

Optimizing Top-k Queries for Middleware Access • 41

optimal algorithms. Our experimental results are very encouraging: Frame-
work NC significantly outperforms existing algorithms. Further, as a unified
top-k framework, NC generally works for a wide range of middleware settings.

REFERENCES

BALKE, W., GUENTZER, U., AND KIESSLING, W. 2002. On real-time top-k querying for mobile services.

In Proceedings of the International Conference on Cooperative Information System (CoopIS).
BRUNO, N., GRAVANO, L., AND MARIAN, A. 2002. Evaluating top-k queries over web-accessible

databases. In Proceedings of the International Conference on Cooperative Information System
(ICDE).

CAREY, M. J. AND KOSSMANN, D. 1997. On saying “enough already!” in SQL. In Proceedings of the
ACM International Conference on Management of Data (SIGMOD).

CAREY, M. J. AND KOSSMANN, D. 1998. Reducing the braking distance of an SQL query engine. In

Proceedings of the International Conference on Very Large Data Bases (VLDB).
CHANG, K. C.-C. AND HWANG, S. 2002. Minimal probing: Supporting expensive predicates for top-k

queries. In Proceedings of the ACM International Conference on Management of Data (SIGMOD).
CHAUDHURI, S. AND GRAVANO, L. 1999. Evaluating top-k selection queries. In Proceedings of the

International Conference on Very Large Data Bases (VLDB).
DONJERKOVIC, D. AND RAMAKRISHNAN, R. 1999. Probabilistic optimization of top n queries. In Pro-

ceedings of the International Conference on Very Large Data Bases (VLDB).
FAGIN, R. 1996. Combining fuzzy information from multiple systems. In Proceedings of the ACM-

SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (PODS).
FAGIN, R., LOTE, A., AND NAOR, M. 2001. Optimal aggregation algorithms for middleware. In Pro-

ceedings of the ACM-SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems
(PODS).

GUENTZER, U., BALKE, W., AND KIESSLING, W. 2000. Optimizing multi-feature queries in image

databases. In Proceedings of the International Conference on Very Large Data Bases (VLDB).
GUENTZER, U., BALKE, W., AND KIESSLING, W. 2001. Towards efficient multi-feature queries in het-

erogeneous environments. In Proceedings of the International Conference on Information Tech-
nology: Coding and Computing (ITCC).

HELLERSTEIN, J. M. AND STONEBRAKER, M. 1993. Predicate migration: Optimizing queries with

expensive predicates. In Proceedings of the ACM International Conference on Management of
Data (SIGMOD).

SELINGER, P., ASTRAHAN, M., CHAMBERLIN, D., LORIE, R., AND PRICE, T. 1979. Access path selection

in a relational database. In Proceedings of the ACM International Conference on Management of
Data (SIGMOD).

Received October 2005; revised May 2006; accepted October 2006

ACM Transactions on Database Systems, Vol. 32, No. 1, Article 5, Publication date: March 2007.

