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Abstract 1. Introduction

The ViIsITOR design pattern shows how to separate the A software componeris, generally speaking, a piece of
structure of an object hierarchy from the behaviour of trave  software that can bsafely reusedndflexibly adaptedoy
sals over that hierarchy. The pattern is very flexible; teisv ~ some other piece of software. Safety can be ensured, for
flexibility makes it difficult to capture the pattern as aripth example, by a type system that guarantees correct usage;
more formal than prose, pictures and prototypes. flexibility stems from making componenfmarametrizable

We show how to capture the essence of thisIYOR over different aspects affecting their behavid@omponent-
pattern as a reusable software library, by using advancedoriented programming[Mcllroy, 1969], a programming
type system features appearing in modern object-orientedstyle in which software is assembled from independent com-
languages such as Scala. We pres¢ype-safety statically ~ ponents, has for a long time been advocated as a solution to
and modularly no reflection or similar mechanisms are used the so-callegoftware crisigNaur and Randell, 1969].
and modules can be independently compiled. The library is  While Mcllroy’s vision was warmly received, the truth is
generig in two senses: not only is it parametrised by both that to date that vision has not been fully realised, largely
the return type and the shape of the object hierarchy, bot als due to limitations of current programming languages. For
it allows a number of implementation choices (internal ver- example, the majority of languages have a bias towards
sus external control, imperative versus functional behayi one kind of decomposition of software systems, which im-
orthogonal aspects such as tracing and memoisation) to beposes a corresponding bias on the kindexénsibilityavail-
specified by parameters rather than fixed in early design de-able: some languages favoabject-oriented decomposition

cisions. Finally, we propose a generaliskdatypelike no- (where adding new variants is easy), while others favour
tation, on top of our visitor library: this provides a conve- functional decompositiofwhere adding new functions is
nient functional decomposition style in object-orientad-| easy). Extensibility is important for the development afrco
guages. ponents [Szyperski, 1996], yet the bias imposed by a lan-

guage makes it hard to develop components that require the
dual kind of extensibility. A related problem is what Tarr
et al. [1999] call ‘the tyranny of the dominant decomposi-
tion’: when software can be modularized along just one pri-

Categoriesand Subject Descriptors  D.2.13 [Software En-
gineering: Reusable Software—Reusable libraries; D.3.2
[Programming Languagéd anguage Classifications—Object-

oriented languages, Applicative (functional) languaa; mary dimension at a time, concerns that do not break down

tiparadigm languages; D.3.3fogramming Languags naturally along that dimension will be scattered across the

Language Constructs and Features—Recursion, Patterns . .
dominant structure and entangled with other concerns. For
Data types and structures

another example, certain software designs seem to be hard
General Terms Languages, Design to capture more abstractly as software components. This is
the case for most of the ‘Gang of Four’ (Go#g¢sign pat-
terns[Gamma et al., 1995], the structure of which cannot
be expressed more precisely than in terms of prose, pictures
and prototypes.

Our first contribution in this paper is to show that, with the
modern expressive type systems starting to appear in ebject
Permission to make digital or hard copies of all or part o$ thiork for personal or oriented |anguages’ we can in fact capture (at least the-stru
classroom use is granted without fee provided that copesarmade or distributed .
for profit or commercial advantage and that copies bear titiseand the full citation tural aspects Of) the MITOR des'Qn pattem [Gamma etal.,
on the first page. To copy otherwise, to republish, to posteovess or to redistribute 1995] asa generic and type_safe visitor software component
to lists, requires prior specific permission and/or a fee. o . ..

Moreover, it is possible to capture a number of variations on
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the pattern within one parametrizable component — specif- these developments in a highly generic library of visitors
ically, we can support the following design decisions: written in Scala. In Section 6, we present a formal transati
between the datatype notation and visitors defined with the
visitor library. Finally, a discussion of the results anthted
work is presented in Section 7, and conclusions in Section 8.

¢ ‘who is responsible for traversing the object structure?
[Gamma et al., 1995] — the operation or the object struc-
ture itself?

* is the visitorimperative(with results of traversals stored 2. The VISITOR asaDesign Pattern
as mutable state in the visitor) famctional(with results

returned by thacceptmethod)? In this section we review the traditional presentation @& th

VISITOR pattern [Gamma et al., 1995], and discuss some

e does the visitor satisfy certasrthogonal concernsuch problems it presents. We hasten to emphasize that in this pa-
as tracing or caching of computations? per we are only really talking about tsructuralaspects of

the design pattern, and not any of the other important aspect

such as the motivating ‘story’ or example code. Having said

that, we do believe that we have captured the most important

structural variations in the implementation of the pattern

Instead of committing to a particular decision at the time we
design a visitor, as would be necessary with the informally-
expressed SITOR pattern, we can define a single visitor
that postpones all of these design decisions by allowingthe
to be specified by parametrization. 21 TheVISITOR Pattern

mn?u{aﬁoﬁoen?gyesr;? pl;&%?t:g dlri]tstr}[e icsa;?ef rttg_ram— The VISITOR design pattern is an alternative to the normal
g fanguag Y, yp ¥ object-oriented approach to hierarchical structuresaisgp

ically guaranteed by the modl_JIar type system. The SCalaing the operations from the object structure, and thus allow
features that make this possible gparametrization by

. : . ing the extension of the former without changing the latter.
type (or generics as found in recent version of Java or

Moreover, the VsITOR keeps related aspects of a single op-
C:.) antéabstract tydpeAsfa;]Ithougggyge-coIndsttr)uctor p()jo!ymor—d eration together, by defining them in a single class. Figure 1
phism|[Cremet an therr, o ] cou ' be use |r_1$tea )- shows the class structure of the pattern. The participats c
As far as we are aware, all existing solutions in the litenatu laborate as follows:
trying to capture some notion of generic visitors [Palsberg '
and Jay, 1998, Visser, 2001, Orleans and Lieberherr, 2001, ® the Visitor interface declares aisit method for each
Grothoff, 2003, Forax et al., 2005, Meyer and Arnout, 2006]  ConcreteElemertype;

make use of reflection, introspection or metaprogramming e eachConcreteVisitorclass implements a single opera-

mechanisms that do not statically guarantee type-safety. F tion, defining thevisit method for eaclkConcreteElement
thermore, most of those solutions only capture particular

variants of the pattern.
Our second contribution is a semantics for a generalised

¢ theElementbstract superclass declaresdbeeptmethod,
taking aVisitor as argument;

algebraic datatype notationsing visitors built with our li- * eachConcreteElemersubclass defines thecepmethod
brary. The notation allows us to defiparametrig mutually- to select the appropriatesit method from avisitor.
recursiveand existentialvisitors, being comparable in ex- In contrast to the standard object-oriented decomposi-
pressive power to Haskell 98 and ML-style datatypes. It tjon, epitomised by the GMPOSITE pattern [Gamma et al.,
also integrates well with object-oriented languagesyatig 1995], and like a functional decomposition, thesvtor

both datatypes and data-constructors to override or definepatiern makes it easy to add new operations — at the cost
new fields and methods. Furthermore, it generalises tradi- o making it difficult to add new variants. One can see the
tional algebraic datatypes, in the sense thatboth thersale  pattern as a way of simulating double dispatch in a single-
and the dispatching strategies are parametrizable. Wevieli dispatch language: the method implementation chosen de-

that this notation is practical and can significantly redi@  pends on the dynamic types of both tBencreteElement
burden of expressing functional decomposition in an object .4 theConcreteVisitor

oriented language.
2.2 Imperative and Functional VISITORS

11 Overview In the traditional presentation of theIiMTOR pattern, the

Section 2 introduces the I8ITOR design pattern, and the visit and acceptmethods return no result; any value com-
problems it induces. In Section 3, we present our visitor li- puted by the visitor is stored in the visitor for later retaé
brary from a programmer’s perspective, and informally in- An alternative is for thevisit and acceptmethods to re-
troduce the datatype notation. Section 4 reviews the work of turn the value directly. Borrowing some terminology from
Buchlovsky and Thielecke [2005] relating thes¥TOR pat- Buchlovsky and Thielecke [2005], we use the tamper-
tern to lambda calculus encodings of datatypes, and extendsative visitor for one that hawisit andacceptmethods that
this work to obtain generic encodings of datatypes that are return void, with all computations executed through side-
parametric in the traversal strategy. In Section 5, we ékplo effects, accumulating results via mutable state; in cehtra



Client Visitor

+visitConcreteElementA(e:ConcreteElementA):void
+visitConcreteElementB(e:ConcreteElementB):void

ConcreteVisitor1 ConcreteVisitor2
+visitConcreteElementA(e:ConcreteElementA):void +visitConcreteElementA(e:ConcreteElementA):void
+visitConcreteElementB(e:ConcreteElementB):void +visitConcreteElementB(e:ConcreteElementB):void

ObjectStructure Element
0.*

+accept(v:Visitor):void

T

ConcreteElementA ConcreteElementB
void accept (Visitor v) { void accept (Visitor v) {
v.visitConcreteElementA(this); |_ _ _| +accept(v:Visitor):void +accept(v:Visitor):void |— — — v.visitConcreteElementBithis);
} +operationA():void +operationB():void }

Figurel. The VisITOR design pattern

a functional visitoris immutable, all computations yielding traditional presentation of the ISI1TOR, the parameters of
their results through the return values of thgit andaccept the constructors are fed directly into thesit methods in-
methods, which are pure. stead of passing the whole constructed object. Parammgrizi
thevisit methods in this way gives a functional programming
feel when using visitors.

Operations on trees are encapsulate@€amcreteVisitor
In their presentation of the [¢ITOR pattern, Gamma et al. ~ gbjects. For example, an external visitor to compute the

[1995] raise the question of where to place the traversal depth of a binary tree — explicitly propagating itself to
code: in the object structure itself (in tlaeceptmethods), subtrees — is defined as follows:

2.3 Internal and External VISITORS

or in the concrete visitors (in thesit methods). Buchlovsky object Depthextends TreeVisitorfint] {

and Thielecke [2005] use the terimternal visitor for the def empty -0
former approach, anexternal visitorfor the latter. Internal def fork (x:int,| : Treer : Tree) =

visitors are simpler to use and have more interesting alge- 1+ max(l.accept(this), r.accept(this))

braic properties, but the fixed pattern of computation makes }
them less expressive than external visitors.

Figure 2 shows examples of the two variations, using
functional-style /SITORs in Scala. In both visitors, the trait
Treeand the classeBmptyand Fork define a ©@MPOSITE

Defining values of typdree benefits from Scala’sase
class syntax, which avoids some uses of thawv keyword.

© To use aConcreteVisitorwe need to pass it as a parameter
(Emptyrepresents a leaf, arktbrk a composition of two Sub- 4 theacceptmethod of aTreevalue. As a simple example,

trees). Using the visitor terminologlieeis the elementtype ¢ gefine a methotéstto compute the depth of a small tree.
andEmptyandFork are the concrete elements. The method | 5 atree— Fork (3, Fork (4, Empty Empty), Empty)

accept defined inTreeand implemented in the two concrete
elements, takes &reeVisitorobject with twovisit methods,

one for each concrete element. This whole system of classes
defines an instance of thelMTOR pattern. Unlike with the

def test = atreeaccept(Depth



Internal Visitors External Visitors

trait Tree{ trait Tree{
def acceptR] (v: TreeVisitorR]) : R def accepfR] (v: TreeVisitorR]) : R
} }
case class Emptyextends Tree { case class Emptyextends Tree {
def accepfR] (v: TreeVisitoR]) : R= v.empty def accepfR] (v: TreeVisitor[R]) : R= v.empty
} }
caseclassFork (x:int,|: Treer : Tree) extends Tree{ caseclassFork (x:int,|: Treer : Tree) extends Tree{
def accepfR] (v: TreeVisitorR]) :R= def accepfR] (v: TreeVisitorR]) :R=
v.fork (x,l.accept(v),r.accept(v)) v.fork (x,1,r)
} }
trait TreeVisitorR] { trait TreeVisitorR] {
def empty. R def empty R
def fork (x:int,l 'R r:R):R def fork (x:int,1: Treer: Tree) : R
} }

Figure2. Internal and External \61TORs for Binary Trees

24 The Class Explosion 3.1 A Datatype Notation for Visitors

As is the case with most design patterns, theIVYOR pat- Inspired by datatype declarations from functional program
tern presents the programmer with a number of design deci-ming languages, we introduce a succidata-like notation
sions. An obvious dimension of variation follows the shape as syntactic sugar for the actual visitor library in Scaldhw

of the object structure being traversed: Wisitor interface out compromising clarity and expressiveness. We present
for binary trees will differ from that for lists. We have just this notation informally in this section; a formal accoust i
discussed two other dimensions of choice: imperative wersu presented in Section 6.

functional behaviour, and internal versus external cdntro Consider the following Haskell [Peyton Jones, 2003]
A fourth dimension captures certain cross-cutting congern datatype definition:

such as tracing of execution and memoization of results. data Tree=
Handled naively, this flexibility introduces some prob- Empty
lems. For one thing, capturing each combination sepa- | Fork Int Tree Tree
rately leads to an explosion in the number of classes: An equivalent definition in oudata notation is:
ImpExtTreeBasicVisitofor imperative external tree visi- data Tree{
tors, FuncintTraceListVisitofor functional internal tracing constructor Empty
list visitors, and so on. Secondly, the dependency on user- constructor Fork (x:int,|: Treer : Tree)

supplied information (the shape of the object structure} pr
vents these classes from being provided in a library. Rinall
because the variations have different interfaces, thecehoi The fo”owing table presents the Correspondence between

between them has to be made early, and is difficult to change.the concepts in our visitor library and the traditionalsy
All three of these problems can be solved, by specify- tor pattern notation.

ing the variation by parametrization. The main contribatio

of this paper is the provision of a generic visitor compo- Library notation VISITOR terminology
nent, parametrizable on each of these dimensions: shape dataT Element
(of object structure), result type (hence imperative versu constructor Concrete Element
functional), strategy (internal versus external), andceon (D)Case& Visitor
(cross-cutting). V extends (D)Case | Concrete Visitor
new (D)Case Anonymous Concrete Visitor

The traits(D)Case are generated from the datatype defini-

3. Programming with the Visitor Library tions. For the tree example, this means that we would have

. . o DCaseTreaandCaseTredraits.
In this section we present a programmer’s view of the Scala

visitor library, showing how it can avoid the early design Generalized data notation We make ourdata notation
decisions imposed by the design pattern approach. more amenable to object-oriented programming by gener-



data Nat {
val intValue: Int

constructor Zero{
val intValue=0
}
constructor Succ(n: Nat) {
val intValue= 1+ n.intValue

}

overridedef toString() : String= this.accept(
new CaseNaflnternal, String] {
def Zero = "Zero"

def Succ(n: String) = "Succ("+n+")"

)

overridedef equals(x: Any) :boolean=
xmatch {
casem: Nat=- intValueequals(m.intValue)
case _ = false

}
overridedef hashCodé) = intValuehashCode)

}

Figure3. Using the generalizedta notation to definéat.

gument ofCaseTreeselects the external traversal strategy,
which allows the programmer to explicitly drive the traver-
sal through thacceptmethods. Thént type argument spec-
ifies the return type of theisit methodsEmptyand Fork.
R[TreeVisitol is a type dependent on the traversal strategy;
in the case of external visitors, it is effectively a type syn
onym for theTreecomposité. For the remainder of the pa-
per, for clarity, we will use the composite type directly in-
stead for specifying the recursive types for external @isit

Functional Notation Calling the acceptmethod repeat-
edly is awkward. In Scala, functions are objects, so we can
use a functional notation by making visitors a subclass of
functions with composites as arguments. With this notation
depth can be rewritten as follows, which nicely reflects the
recursive nature of the definition:
def depth, = new CaseTre¢Externalint] {
def Empty =0
def Fork (x:int,1: Treer: Tree) =
1-+max(depth (I),depth, (r))

Internal Visitors In the definitions ofdepth anddepth

the particular traversal strategy used is parametrizedhen t
concrete visitor instead of being fixed by the visitor compo-
nent. This is a major advantage of our visitor library over th

alizing it so that datatypes can define and override methodstraditional design pattern interpretation: we do not need t
and values, in the same way as classes or traits. In Figure 3commit in advance to a particular strategy when designing a
we define a newatdatatype that uses this generalized nota- new visitor. For example, instead of using external visitor

tion; it overrides theoString equalsandhashCodenethods
and defines aal intValuethat is implemented by each of the
constructors.

3.2 Traversal Strategies and the Functional Notation

While conventional datatypes normally usase analysis
or pattern matchingo decompose values, visitors have a

to define thadepthfunctions, we could have used instead an
internal visitor:
def depth, = new CaseTredinternal int] {
def Empty =0
def Fork (x:int, | :int,r :int) = 14+ max(l,r)
}

choice of traversal strategies: internal and externaleCas Since internal visitors use traversal strategies detexdiny
analysis and pattern matching are a form of the latter. Con- the elements, the above definition does not require explicit

sider, for example, a definition of thieepthfunction on trees
in Haskell:
depth: Tree— Int
depth t= caset of
Empty —O0
Fork x I r — 1+ max(depth ) (depth 1)

This corresponds, in our library, to:
def depth = new CaseTre¢Externalint] {
def Empty=10
def Fork (x:int,|: R[TreeVisitol,r : R[TreeVisitol) =
1+ max(l.accept(this),r.accept(this))
}

traversal of the structure, so is simpler to define. In the cas
of internal visitorsR[TreeVisitol is just a type synonym for
int, which we use to give the types fbandr.

3.3 Adviceand Modular Concerns

Having explicit control over traversal gives us the capabil
ity of decoupling non-functional concerns from base pro-
grams into localized modules and invoking them at each
step of recursion. Inspired ®spect-Oriented Programming
(AOP) [Kiczales et al., 1997], we term such localized non-
functional concernadvice. Consider the following (naive)
version of the Fibonacci function defined owsait

Lunfortunately, for external visitors, Scala does not allow to write
def (x:int,|: Treer : Tree) directly (we believe this may be a bug).

Here,depth defines a new anonymous concrete Visitor on 2, contrast to the pointcut mechanism in AOP, our advice staifed by

Treeusing theCaseTreevisitor trait. TheExternaltype ar-

parametrization. We leave a detailed comparison to Seétion



def fib; = new CaseNajExternalint] { def nfib = fib, (Basig
def Zero =0 def mfib = fib, (Memo(Basiq)
def Succ(n: Nat) = n.accept( def tmfib= fib, (Trace(Memo(Basiqg))
new CaseNafExternalint] { def mtfib= fib, (Memo(Trace(Basig))
def Zero =1
def Succ(m: Nat) = fib; (n) +fiby (m) The progrannfibis equivalent tdib,, while mfibis a ver-
3] sion with memoization. The progrartafib andmtfib com-
} bine tracing and memoization in different ways: while both

programs return the same output for any given input, the
Though straightforward, the above definition has exponen- trace written to the console is different. In our librarye tr-
tial time complexity. One way around this flsemoization dering of advice is determined by the order of composition.
[Michie, 1968], which involves caching and reusing the Intmfib Traceis triggered befor&emaq which prints out all
computed results. Memoization is an orthogonal concern to calls including those resorting to memoization. On the iothe
the base Computation' alccbss-cuts{Kiczales etal., _‘]_997] hand,mtfib onIy prints out traces that do not involve mem-
different functions, so is likely to become entangled with oization, asMemo(which can be seen as amundadvice)
those functions. takes precedence and may bypass the tracing.
Our visitor library offers a way to overthrow this ‘tyranny
of the dominant decomposition’: it allows parametrization 34 |mperative Visitors
by dispatching, which can be used to introduce advice like
memoization. In order to benefit from this additional power,
we explicitly parametrizéib by the dispatching behaviour:
def fib, (d: DispatchefNatVisitor, Externalint]) =
new DCaseNatExternalint] (d) {
def Zero =0
def Succ(n: Nat) = n.accept(
new CaseNajExternalint] {

The GoF presentation of thel$/TOR pattern discusses both
internal and external imperative visitors; the emphasis is
on the internal variant, with external visitors being recom
mended for advanced uses (where the recursion scheme does
not fit the internal variant). As it turns out, imperativeivis

tors are a special case of functional visitors, with themetu
type set tovoid (or Unit, in Scala). For example, consider
adding all the integers in some tree, using an imperative vis

def Zero =1 itor that accumulates the value of the sum in a mutable vari-
def Succ(m: Nat) = fib, (d) (n) +fib, (d) (m) able. Using arinternal visitor, we could write that program
1 in Scala as:
} classAddTreg extends CaseTre@internal Unit] {
var sumValue=0
Instead ofCaseNatwe use the more generBlCaseNat a def Empty _

visitor parametrized by ®ispatcher(a type defined in the
library, explained in detail in Section 5). Ttid, function

now takes an extra value argument that determines dispatch-
ing and passes it to the constructobDifaseNatWe include
several commonly used pieces of advice in the library, and . . . .
provide templates for user-defined new ones. We discuss ahe could also write an imperativexternalversion of the

few of them below. visitor as:
classAddTree extends CaseTreéExternal Unit] {

var sumValue=0

def Fork (x:int,1: Unit,r: Unit) =
{sumValuet=x; }

¢ Basic— the simple dispatcher, which defines the default
behaviour of a visitor; def Empty = {}
def Fork (x:int,|: Treer: Tree) =

¢ Memo— memoization of results; . .
{this(l);this (r); sumValue+= x; }

¢ Advice— a template for defining new dispatchers, which }
hasbeforeandafter methods that are triggered before and

after calls; In this case, we need to explicitly traverse the structuye, b

e Trace— tracing a computation by printing out the input applying the visitor to the composites (remember thig(l)
and output, implemented usidglviceas template. is equivalent td.accept(this)). The imperative visitors are
used as follows:
More than one piece of advice can be deployed at the deftestint= {
same time by composing them together. The spdgasiic val addTree= new AddTreg ();
dispatcher is atomic and is used as the unit of composition. val treel = Fork (3,Empty(), Empty());
Here are a few possible instantiationdib: val tree2 = Fork (4,treeltreel);



addTreg(tree?);
return addTreesumValue

}

Here, AddTreq should be replaced by eithéddTree or
AddTree. The program creates a new instarack Treeof
AddTreg, defines the valugee2 appliesaddTreeto it, then
returns the value accumulated by the visitor traversal én th
variablesumValue

3.5 A Simple Form of Multiple Dispatching

As we mentioned in Section 2.1, thadITOR pattern sim-
ulates double dispatching in a single-dispatching languag
The use of nested external visitors allows us to go further,
and simulate multiple dispatching. For example, we could
define a modularly type-safe (in the sense that no casts and
no global analysis are required) equality function by using

def isEmpty= new CaseTre¢External boolear] {
def Empty = true
def Fork (x:int,|: Treer : Tree) = false
}
def equal(t: Tree) : Tree=- boolean=
new CaseTre¢Externalboolean {
def Empty = iISEmpty(t)
def Fork (x:int,I1: Treerl:Tree) =
t.accep{Externalbooleanr (
new CaseTre¢Externalboolear {
def Empty= false
def Fork (y:int,12: Treer2: Tree) =
x=yAequal(ll) (12) A equal(rl) (r2)
1)
}

this nesting technique. Figure 4 shows an implementation; Figure 4. A type-safe equality function using External Vis-
the method takes two trees as arguments, performs a casggrs.

analysis (using an external visitor) on one of the treeg) the
in both theEmptyandFork cases, performs a case analysis
on the other tree.

Note that this version of equality requires triple dispatch
ing, because the method is defined in some objegthich
is used to dynamically determine the implementation of
equal and the two tree arguments need to be dynamically
inspected. We could, of course, have defined a version of
equality that would only require double dispatching, bycpla
ing the methodkqualin Treeand taking anothefreeas an

¥
data Forest[a] {
constructor Nil
constructor Cons(t: Tree[al,f : Foresta))

}

argum_ent. ) i Trees, of typdlree[a], have one constructéork that builds
While this technique can be used to emulate a form of 4 {ree containing one element of typand a forest; forests,

multiple dispatching, the programs start suffering fromde ¢ type Forest[a], have two constructor§il and Consthat

ability issues, due to the nesting of visitors. Similar peohs construct empty and non-empty collections of trees.

occur in functional programming languages, when multi-  \ye could define a function to sum all the leaves of a tree
ple nested case analyses are used. To alleviate these, many; integers as follows:

of those languages introduce pattern matching as syntactic
sugar on top of case analysis, allowing a definition ékeal
to be written as follows:
equal: Tree— Tree— Bool
equal Empty Empty
equal(Fork xly r1) (Forky b rp) =
X=yAequalhl, Aequalnr;
equal_ _ = False
Support for pattern-matching could be built on top of exter-
nal visitors in essentially the same way that it is built op to
of case analysis in most functional programming languages;
we leave the details of such an extension for future work.

def sumTree= new CaseTre@nternal,int,int] {
def mrefForest= sumForest

def fork (x:int,xs: int) = X+ Xs

=True }
def sumForest= new CaseForesfinternal,int,int] {
def mrefTree= sumTree

def nil =0
def cons(x:int,xs: int) = X+ xs

Due to the mutually dependent nature of the two visitors,

a function that traverses one must know of a corresponding

function on the other. For this reason, mutually recursigse v

The expressiveness of our library extends to parametrizeditors contain fields referring to the visitors that they dege

and mutually recursive visitors. An example is forests and on. We name such fielasrefForestandmrefTregthe details

trees: are explained in Section 6). Additionally, for parametdze
data Tree[a] { types likeTreela], type arguments (such apare also passed

constructor Fork (x:a,f : Foresta]) as arguments t@aseTree

3.6 Parametrized and Mutually Recursive Visitors



Church Encodings

Parigot Encodings

Nat =VA. (A=A =A=A Nat =VA (Nat=A)= A=A

zero € Nat zero € Nat

zero =Asz=>z zero =Asz=z

succ € Nat=- Nat succ € Nat=- Nat

succn =sz=s(ns2 succn =Asz=sn

Tree =VA A= (Nat=A=A=A)=A Tree =VA A= (Nat=-Tree= Tree=A) = A
empty < Tree empty < Tree

empty =Aef=e empty =Aef=e

fork € Nat=- Tree=- Tree= Tree fork € Nat=- Tree=- Tree= Tree

forkxIr=Aef=fx(lef) (ref)

fork xlr=Aef=fxlIr

Figure5. Encodings of naturals and binary trees.

4. VisitorsasEncodings of Datatypes
In this section, we look at the relationship between visitor

and encodings of datatypes, and introduce the theoretica
foundations for the Scala visitor library presented in Sec-

tion 5.

4.1 Encoding Datatypesin the Lambda Calculus

that the internal and external visitors presented in Figure
correspond very closely to, respectively, the Church and

[Parigot encodings for trees (although we 0 instead of

int here).

4.2 GenericViditors: Shape Abstraction
We are not the first to realize that visitors are related to en-

The pure lambda calculus has no notion of datatypes; theycodings of datatypes; in fact, it has become folklore knowl-
have to be encoded using functions. Church [1936] showededge among some communities. Buchlovsky and Thielecke
how to encode the natural numbers via repeated function[2005], in work directed to the type-theory community,

composition: the number 0 is represented by ‘zero-fold com-

position’, the number 1 by ‘one-fold composition’, the num-
ber 2 by ‘two-fold composition’, and so on.

zero= M = Ax=x

succ= An=Af = Ax=f (nfx)

Much later, Bohm and Berarducci [1985] demonstrated

formalized the relation between visitors and encodings of
datatypes precisely and showed a sirgflape-generiform
of the encodings.

The traditional presentation of encodings of datatypes in
System F (and common variants) [Girard et al., 1989] is of
the form:

T=VX. (FR=X)=X

precise typings of such encodings in System F. The namewhere the operation on typés specifies the shape of the

Church encodings normally associated with Bohm and Be-

datatype. TypicallyF Rtakes the form of a sum of products

raducci’'s System F encoding. Church encodings allow us 3; F R, a collection of variants in which ea¢hRis a simple

to write iterative definitions. A less well-known encoding
is theParigot encodindParigot, 1992], which allows us to
write recursivedefinitions, but requires System F to be ex-
tended with recursion. Sptawski and Urzyczyn [1999] give
precise definitions of iteration versus recursion in thissge
we shall not dig into the details in this paper.

Figure 5 shows the Church and Parigot encodings of

naturals and trees in a System-F-like calculus extenddd wit
recursion. For Church encodings, the typést and Tree
are not recursive: the constructors traverse the struciace
the functions that form the basis of those two types only

product of types; so the encoding is equivalent to
T=W.(EGiFR) =X)=X
Now, the type(Z; K R) = X of functions from a sum is iso-
morphic to the typél; (F R= X) of products of functions
(in the same way tha¥/™%2 = X x x%); so another equivalent
encoding is:
T=vX. (M (FR=X)) =X
Buchlovsky and Thielecke [2005] point out that this clearly
relates the datatyp€& with the type of itsacceptmethod
vX. (Mi (F R= X)) = X: the latter can be read, for some
result typeX, as taking a visitor of typdl; (FF R= X)

need to process the results of those traversals. In contrastand yielding a result of type; the visitor itself is just a

with Parigot encodings, the constructors do not traverse th
structure; therefore, the functions that repredéattandTree
need to define the traversal themselves. This requiredthat t
types of those functions recursively refer Toee and Nat,
which can only be achieved if we allow recursive types. Note

collection of functions of the forrf; R = X, each being the
visit method for one variant of the datatype, with argument
vectorF R

Church and Parigot encodings — corresponding, respec-
tively, to internal and external visitors — follow from two



NatF R A= (A,R= A)

Nat = Internal NatF
zero € Nat

zero =ANz9) =2

succ € Nat=- Nat

succn =A(zs)=s(n(z9))

Figure 6. Church encoding of Peano numerals using prod-
ucts of functions

specific instantiations dR. For reference, define operation
VbyVRX=0N; (FR=X).

¢ Generic internal visitorare obtained by specializirR=
X; we can define
Internal V=VX.V X X=X
e Generic external visitorare obtained by specializing
R = External \; we can define
External V=VX.V (External V) X = X
In each casey is a type parameter abstracting over con-
crete visitor components. It could be said thats theshape

parameterof the encodings, since different instantiations of
V will lead to different datatypes.

4.3 GenericVisitors: Traversal Strategy Abstraction

Generic encodings based on products of functions allow one ! X
jconcrete typeS and the correspondindecs operation. For

of example, to make internal and external visitors two inganc

to abstract from differences in the shape of data and mode
different traversal strategies — internal and external —
datatype-generic visitors. Still, there is substantigbloha-

tion of code whenever we want to have both strategies. How-

ever, this duplication can be avoided: we can model visitors

zeroe Nat
zero=A(z,s) =z
succe Nat=- Nat
succn=A(z,s) =s?

S requires an argument with typ®@ V X and we cannot
create any values of that type. The solution for this problem
consists in adding some extra information ab8un the
definition ofComposite

Composite \= ¥X S Decompose S V (SV X X = X

The extra information is given bipecompose Swhich is
basically just a type-overloaded (in the type-param&er
method. In other words, the implementation of this method
can be determined solely from the tyfeand, therefore,
made implicit. Referring to the method Decompose &s
deg, we have that:

deg eV (SV X X= Composite \= SV X

The operatiordeg; solves the problem of producing a value
of type S V X and allows us to define the construcsoicc
as:

succe Nat=- Nat

succ n=A(z,s) = s(dea (zs) n)

Note that theDecompose $arameter is implicitly passed.
In order to define new strategies, we need to define some

of Composite Ywe specializesto InternalandExternal
Internal V X =X
External V X= Composite V

that are generic in both the shape and the traversal strategy

The template

Composite V= VX. V R X=X
could be used to capture different implementations of the
VISITOR pattern by using a proper instantiation frHow-
ever, this definition is not valid in System F, becaRss un-
bound; some other approach is needed. SRcepresents
the type of recursive occurrences that appear in the visit
methods, if we want to capture both internal and external
visitors,R should depend on botw andX. This dependency
can be made explicit by having = S V Xand bindingS
universally.

Composite \=VS X V (SV XY X=X
We shall refer t&S as thetraversal strategy

AlthoughComposite \is now a valid System F definition,
it is still not right. To see what the problem is, let’s firstoe

mulate the Church Peano numerals using products of func-

tions, as in Figure 6. When we try to uS®mposite NatF
instead ofinternal NatF, there are no problems in defining
the constructorerg however forsucg it is impossible to
provide a value of the right type:

Nat= Composite NatF

Here we reuse the identifiersternalandExternalto refer to
the associated traversal strategies. The specific inatenmts
of degs for internal and external visitors are:
degniemal € (V (Internal vV X) X) = Composite \=
Internal V X
deGnternalVC =CV

deGyxiernal € (V (External V X X) = Composite \=
External V X

deGxternalVC=C
In the definition ofdegntermal the reader should (again) note
that theDecompose $arameter is implicitly passed and,
therefore, the compositejust needs to take the visiteras
an argument. Witldegyxerma, We simply ignore the visitor
parameter and return the composite itself. This allows the
use of the composite directly in the definitions of thsit
methods.

5. A Scalalibrary for Visitors

In the previous section, we used the Church and Parigot en-
codings of datatypes to motivate a notion of visitors that is



generic in two dimensions: in the shape of the data structurewords, T #Y selects the typ¥ from the trait or clasg. We

being visited, and in the strategy for assigning the respon-

sibility of traversal. Armed with this insight, we will now
present an implementation in Scala of a generic visitor li-
brary.

We use the results from Section 4.3 as a functional speci-

fication for our Scala visitor library. The translation frahe
functional specification into a Scala component is relétive
straightforward, although some typings vary slightly doe t

will explain the typeY when we introduc&trategy
We also introduce a type synonywisFuncparametrized
by a visitorv, a strategys and a result type, as a shortcut
for visitors that are also functions.
type VisFundv <: Visitor, s<: Strategyx| =
Function]Compositév], x| with
v {typeS=s;type X = x}

the differences between System F-like languages and Scalain essence, we treat visitors as functions (the Faitction1

We start by recalling the definition @ompositeand anno-
tate it with extra information identifying thacceptmethod
and the visitor component.

accept method

Composite \= ¥X S Decompose S V (SV X X = X
————

Visitor

is provided by the Scala library) that takeCampositév|

as an argument and return a value of typdy observing
that the invocatiora.accept(f) wherea is a composite and

f is a visitor can be interpreted as a form of function appli-
cationf (a). Thewith keyword is used in Scala to do mixin
composition of traits.

In order to implement the different components present in Composites TheCompositerait is parametrized by a visi-

the functional specification we will make extensive use of
generics (parametrization by types) and abstract typesifOd

tor V and contains aacceptmethod that takes two parame-
ters. The first parameter is the visitor to apply; the secend i

sky, 2006], which provide a means to abstract over concretey,q ayersal strategy to use while visiting the structure.

types used inside a class or trait declaration. Abstraasyp

are used to hide information about internals of a component,

in a way similar to their use in SML [Harper and Lillibridge,

1994] and OCaml [Leroy, 1994]. They are considered by
Odersky and Zenger [2005b] to be essential for the construc-

tion of reusable components; they allow information hiding

over several objects, a key part of component-oriented pro-

gramming [Pfister and Szyperski, 1996].

Alternatively to abstract types, we could have usgie-
constructor polymorphisniCremet and Altherr, 2008] in-
stead. A Haskell solution that exploits this approach is

shown in Oliveira [2007]. Since Scala now supports type-

constructor polymorphism [Moors et al., 2007], a solution

using such an approach should also be possible. However,
as discussed by Oliveira, abstract types seem to be more
expressive than type-constructor polymorphism alone, and

allow the definition of a slightly more general visitor liloya

Visitors and the Functional Notation The Visitor compo-
nent in the library, which captures the shape of the type
the functional specification, has two abstract ty[s&gepre-
senting the traversal strategy) aXidrepresenting the return
type of the visitor). TheVisitor also contains a typR that
corresponds to the tyg@V X(the first argument 0¥, spec-
ifying the type of recursive arguments).
trait Visitor {
type X
type S<: Strategy
typeR[v <: Visitor] =
(S{type X = Visitor.this.X;typeV = v}) #Y
}

The notationT #Y used in the definition of the type synonym
R is the equivalence obbj.methodon type level. In other

trait Compositév <: Visitor] {
def accepfs<: Strategyx] (vis: VisFundv, s,x])
(implicit decomposeDecomposEs)) : x
}

We switch the order of the two arguments (when com-
pared to theCompositeequation shown earlier) because
decomposean be implicitly inferred (since it is determined
by the concrete instantiation @J, and Scala requires im-
plicit arguments to be placed last.

Traversal Strategies The shape of the parameters cap-
tured in Scala by the following trait:
trait Strategy{

typeV <: Visitor

type X

typeY

}

A Strategyhas two abstract typeg and X and a typeY
that is dependent o and X (although that dependency is
not captured directly by Scala’s type system). The type
represents the type used in place of recursive occurrences
in the visit methods. Subtypes of this trait will correspond
to different possible traversal strategies for the visitdn
particular, the strategiesiternal and Externalare defined
as:

trait Internalextends Strategy{

typeY =X
}

trait Externalextends Strategy{
typeY = CompositgV|
}



As we have seen, the traversal strategy parameter in thereturns a function that will be used by tlaply method
acceptmethod can be made implicit. This means that we can in the visitor to define the dispatching behaviour. The def-
call the acceptmethod by passing just the first parameter, inition BasicimplementsDispatcherwith the standard dis-
given that alecoperation of the appropriaRecomposéype patching behaviour by just calling trecceptmethod. The
for the second argument is in scope. The t@tomposés classAdvice inspired by the notion of advice in AOP, wraps
parametrized by the traversal strategygnd encapsulates a itself around another dispatcher and defidéspatchas a
single methoddec This method takes a visitor and a com- TEMPLATE METHOD [Gamma et al., 1995] that calls the
posite and returns the result of recurring on that composite before and after methodsaround the dispatchfunction of

using the traversal strategy. the dispatcher argument. One implementation of advice is
trait Decomposgs<: Strategy { given byTrace which provides a simple tracing concern that
def dec]v <: Visitor, x] (vis: VisFundv, s, x|, prints the arguments before performing a call and prints the
comp: Compositév]) : result after returning. Finally, thslemodispatcher imple-
(s{typeV = v;type X = x}) #Y ments a form of memoization: it intercepts function calls
} so that only calls on values that have not been seen before

are performed — results for other calls are retrieved from a

Traversal strategies for internal and externals visitoes a  cache. _ _
provided by the library (note that both strategies can bd use ~ We should emphasize that dispatchers are composable

implicitly): (that is, we can construct more complex dispatchers using
implicit def internal: Decomposfinternal] = simpler ones) havingasicas the unit of composition. Fur-
new Decomposgnternal] { thermore, new ones can be easily added.
def dec]v <: Visitor, x] (vis: VisFundyv, Internal, x],
comp Compositév]) = vis.apply(comp TheCaseVisitor Having built the basic building blocks for
} the visitor library, we now introduce th@aseclass, which
implicit def externat DecomposExternal = will be use_d_to provide the functional notation and to define
new DecomposfExternal { concrete visitors _
def declv <: Visitor, x] (vis: VisFundyv, External x|, abstract class Caselv <: Visitor, s<: Strategyx|
comp Compositév]) = comp (d: D|spatche[[v, s,X]) (|mpI!C|t dec: Decomposfs))
} extends Function]]Compositév],x] {
self: Casdyv, s, x] with v {typeS= s;type X = x} =
The two implementations of the methddccorrespond, re- typeX = x
spectively, to the definitiondegnternal andd e xtermal in the typeS=s
functional specification. The important thing here — effec- def dispatcher=d
tively the piece of code that we want to abstract from — def decompose- dec

is the definition ofdec which is vis.apply (comp for in-
ternal visitors and justompfor external visitors. Note that
theapplymethod is defined in thEunctionltrait and corre- }
sponds to function application. In essence, the travenisdt s
egy of the internal visitors recurs on the compositenp
(since it calls theacceptmethod viaapply); and the traver-
sal strategy for external visitors returns the composite un
touched, which allows concrete visitors to control recunsi
themselves.

def apply(c: Compositév]) : x =
dispatcherdispatch(this,decomposeapply(c)

The classCaseis type-parametrized by a visitor (the
shape argument), a strategy(the traversal strategy argu-
ment) and the return type Furthermore, it is also value-
parametrized by @ (the dispatcher argument) and an im-
plicit valuedec(related to the traversal strategy). Subclasses
of Casewill implement the visitor typev passed as an ar-
gument. This is expressed by Scalséf-type annotation
self : Casdv, s,x] with v {type S= s;type X = x}. The class
Caseextendg-unctionland theapplymethod is defined by
calling thedispatchmethod from the provided dispatchar

Dispatchers In Scala, functions are not primitive: they are
defined as a traiFunctionlwith an apply method. This
means that we can provide our own implementation of the
apply methods, which allows us to add extra behaviour
on function calls. Our visitor library has the notion of a
dispatcher, allowing us to parametrize the dispatching be-
haviour of our visitors, adding an extra form of parametriza .
tion that is not considered by the functional specification. 6. Trandation of Datatypes

Figure 7 shows the trait that defines the interface of a In this section we define a translation scheme between
Dispatcherand a few implementations of that trait. The datatype-like declarations and visitors defined using our
methoddispatchtakes a visitor and a traversal strategy and Scala library. We introduce a mini-language for datatypes



trait Dispatchelv <: Visitor,s<: Strategyx] {
def dispatch(vis: VisFundy, s,x],dec: Decomposgs]) : Functionl]Compositev], x]
}
implicit def Basicjv <: Visitor, s<: Strategyx] = new Dispatchefv,s, x| {
def dispatch(vis: VisFundyv, s, x|, dec: Decomposgs]) : Function]]Compositév],x] =
c = c.accepts,x] (vis) (deg
}

abstract class Adviced <: Visitor, s<: Strategyx] (dis: Dispatcherd, s, x]) extends Dispatchefd, s,x] {
def before(comp: Compositéd]) : Unit= {}
def after (comp: Compositéd],res: x) : Unit= {}
def dispatch(vis: VisFundd, s,x],dec: Decomposgs]) : Functionl]Compositgd], x] =
c= {before(c);val res= dis.dispatch(vis, de¢ (c);after (c,res);res}
}
def Trace]v <: Visitor, s<: Strategyx| (dis: Dispatchefv, s,x]) = new Advicdyv,s, x| (dis) {
overridedef before(comp Compositgv]) : Unit = {
Systenoutprintln ("Calling function with argument: \t"+comp;
}
overridedef after (comp Compositgv], res: x) : Unit = {
Systeroutprintin (res+ "\t was returned from the call with argument: \t"+comp;
}
}
def Memdyv <: Visitor, s<: Strategyx] (dis: Dispatchefv, s,x]) = new Dispatchefyv, s, x] {
val cache HashMagCompositév], x] = new HashMagCompositgv], x] ()
def dispatch(vis: VisFundy, s, x],dec: Decomposgs]) : Function]]Compositgv],x] = c = {
cacheget(c) match {
case Somex) = X
case None=- {val res= dis.dispatch(vis,deg (c);cacheput (c,res);res}

}
}
}
Figure7. Visitor Library Dispatchers

as follows. The reason for this separation is to enforce a few syn-
— tactic restrictions on the language. In particular, nested

Datas 1 = data7 [a]={cs . ’ .
Constructors c construg)r { [[gv_'f (3 datatypes [Bird and Meertens, 1998] and constructors with
Tvpes i o t | 7o (@] X ' functional parameters having recursive occurrences [Mei-
N):)pn—recursiveT ot T c:|‘ro |t ot jer and Hutton, 1995] are excluded, since traversals are

ypesh T 1P L hard to define for those types. Despite these restrictibies, t

Scala s = Scaladeclarations

data constructor presented here is comparable in expressive
A datatyper[, possib]y parametrized by type VariabEs power to ML-Ster and Haskell 98-style datatypes, allow-
introduces a set of data constructors and some optiona Scal ing us to expresgtype-)parametrized datatypesiutually
codes. Each constructorx , can take an optional list of type ~ recursive datatypeandexistential datatypes
argumentg (which act as existentially quantified types) and ~ Declarations in the datatype language can be translated
a list of labelled type argumenris . Scala definitionscan ~ to Visitors by the meta-functioGen in Figure 8. Before
be inserted to define or override fields and methods. We 90ing into the details of the translation, we first introduce
single out non-recursive type argumertts,which do not a few notational conventions. We writ# for a sequence
make self-reference to the datatype that introduced them.of entities numbered from 1 to ando; as thei™ of them.
Recursive occurrences of type constructors are dermjed ~ We use a pattern matching synta@7 [y| to denote that
to Separate them from the non-recursive OW@_$( the bound variabléis of type‘T [VJ for someT andy. New



GEN(dataT [0] ={CS§}) =
LET
GENREF(7Ty) = def mrefry, : VisFundTyisitor[a], S, X]
GENTYPE(constructor « [B] Vit {§)=

def K [B] (Vi : CASE STATUSOF(ti @7 '[y]) OF RECURSIVE — R[T Visitor[a]]
MUTUAL REC — R[7 Visitor[a]]

NONREC

GENDATA (constructor % [B] VIT" {§) =
caseclass x [B,a] (vi:t;) '€*"extends 7 [a] {

N ti)iel..n X

def accep{s<: Strategyx] (vis: VisFund7 Visitor[a],s,x]) (implicit decomposeDecomposgs]) : x =
vis. K [B] (CASE STATUOF(ti@7'[y]) OF RECURSIVE — decomposéec|7 Visitor[a],x] (Vis,V;)
MUTUAL REC — decomposéec|T Visitor[a],x] (vis.mref7 ', v;)

NONREC
S
}
IN
trait 7 Visitor[a] extends Visitor {
GENREF(7p)
GENTYPE(C)

}

trait 7 (o] extends Composité7 Visitor[a]]{'§

_)Vi)iel..n

abstract classCaser [s<: Strategya, x| (implicit dec: Decomposgs]) extendsDCaser s, a,X] (Basic) (deg
abstract classDCaser [s<: Strategya, x| (disp: Dispatchef7 Visitor[a],s,x]) (implicit dec: Decomposs|)
extends Casg7 Visitor [a], s, x| (disp) (deg with 7 Visitor [a]

GENDATA(C)

Figure8. Translation Scheme

names for visitors and references are created by prefixing

or postfixing with the type constructor name, for example
T Visitor. We assume a dependency analysis and varite
to denote the set of mutually recursive types thamakes
references to (excluding itself).

For each datatype, we generate a corresponding vis-
itor type (a trait that extend¥isitor) and a composite (a
trait that extend€€omposité7 Visitor [a]]). We also gener-
ate two auxiliary visitord&Caser andCaser . The former
extendsCasd7 Visitor[a], s, x], providing a convenient way
to parametrize visitors by traversal and dispatching estrat
gies as well as allowing visitors to be interpreted as func-
tions. The latter provides a shorthand for Besicdispatch-
ing strategy. The functioGENDATA creates a case class for
each constructox. extending7 [a] and generates the cor-
respondingacceptmethod by checking the recursive status
of s arguments, which determines the traversal code.

Each of the visitorsr Visitor [0] may have mutually re-
cursive references to other visitors that it depends onghvhi
are generated by the functiGiENREF. The types of theisit
methodsx (hamed after the corresponding constructor) also
depend on the recursive status of the constructor’s argtamen
and are generated by tkkENT YPE function.

In Figure 9 we apply the translation to the trees and
forests example in Section 3.6. For the datafye[a], we
generate the visitor and composite tyJeseVisitorja] and
Tree[a], the two auxiliary visitorCaseTreendDCaseTree
and the constructoFork. The mutual dependency with
Forest[a] is captured by the definition ofrefForestin
TreeVisitor[a]. A similar process happens fdforest[a],
resulting in the generation dforestVisitor[a], Forest[a],
CaseForestDCaseForestNil andCons A mutual reference
mrefTreels also placed irfrorestVisitora].

7. Discussion and Related Work
7.1 Traversal Strategiesand Recursion Patterns

Traversal strategies are closely related to the recursadn p
terns studied by the Algebra of Programming movement
[Bird and Moor, 1997]. This line of work supports Hoare’s
observation that data structure determines program stejct
the shape of the data induces for free a number of patterns
of computation, together with reasoning principles forstho
patterns.

The most familiar of these families of recursion patterns
is the fold’ (or ‘catamorphism’) operation, which perfosm



trait TreeVisitorfa] extends Visitor {
def mrefForest VisFundForestVisitorfa], S, X]
def Fork (x:a,xs: R[ForestVisitorja]]) : X

}

trait Tree[a] extends Composité¢TreeVisitofa |
abstract class CaseTre¢s<: Strategya, X] (implicit dec: Decomposgs|) extendsDCaseTreés, a, x] (Basig (deg

abstract classDCaseTreés <: Strategya, x| (disp: DispatchefTreeVisitora], s,x]) (implicit dec: Decomposfs])
extends CasdTreeVisitora], s, x| (disp) (deg with TreeVisitofa]

caseclassFork[a] (x:a,xs: Forest/a]) extends Tree[a] {

def accepfs<: Strategyx] (vis: VisFundTreeVisitor{a], s,x]) (implicit decomposeDecomposgs]) : x =
vis.Fork (x,decomposeéec(vis.mrefForestxs))

}

trait ForestVisitorfa] extends Visitor {

def mrefTree VisFundTreeVisitofa], S X]

def Nil : X

def Cons(x: R[TreeVisitora]], xs: R[ForestVisitora]]) : X
}

trait Foresta] extends Composité¢ForestVisitora]]
abstract class CaseForesis<: Strategya, x| (implicit dec: Decomposgs|) extends DCaseForesis, a, x| (Basig (de¢

abstract class DCaseForesis <: Strategya, x| (disp: DispatchefForestVisitorfa], s,x]) (implicit dec: Decomposgs])
extends Cas€gForestVisitora],s, x] (disp) (dec) with ForestVisitora]

case classNil [a] extends Forest[a] {
def accepfs<: Strategyx] (vis: VisFundForestVisitorfa], s,x]) (implicit decomposeDecomposgs]) : x =
vis.Nil
}
caseclassConda] (x: Tree[a],xs: Foresta]) extends Forest{a] {
def accepfs<: Strategyx| (vis: VisFundForestVisitoral, s, x]) (implicit decomposeDecomposgs]) : x =
vis.Cons(decomposéec(vis.mrefTreex), decomposeec(vis, xs))

Figure9. Translation of théfreeandForestdatatypes into visitors.

structurally inductive computations reducing a term to a sion pattern can be expressed as a strategy using our visitor

value. Better still, those similar definitions are relatedap library:

metrically, and can all be subsumed in one sirda¢atype- trait Paraextends Strategy{
genericdefinition, parametrised by the shape. The internal typeY = Pair [X,Composit¢V]]
visitors expressible with our library are basically folds. }

The Algebra of Programming patterns can provide inspi-
ration for new types of visitor, beyond what is well-known in
the literature. For example, Meertens [1992] introduces th
notion of aparamorphismwhich in a precise technical sense
is to primitive recursion what catamorphism is to iteration
Informally, the body of a paramorphism has direct access to
the original subterms of a term, in addition to the results of }
traversing those subterms as a catamorphism does. The ob-
vious definition of factorial, in whicin+ 1)! depends on
n as well asn!, is a representative application. This recur-

implicit def para: DecomposfPara] =
new DecomposgPara) {
def dec]v <: Visitor, x] (vis: VisFundv, Para x|,
comp: Compositév]) =
Pair [x, Compositév]] (vis.apply(comp,comp

7.2 Dispatching Strategiesand Modular Concerns

Kiczales et al. [1997]'s aspect-oriented programming (AOP
aims at modularizing concerns that cut across the compo-



nents of a software system. These ideas inspired some ofbecause, although new variants can be added, functions de-
the applications of our library in Section 3. In AOP, pro- fined by matching cannot be extended, and exhaustiveness
grammers are able to modularize these crosscutting camcernchecks become unavailable, essentially introducing tise po
within locally defined aspectgointcutsdesignate when and  sibility of “ Message not understobdin-time errors.
where to crosscut other modules, atlicespecifies what There are three main differences between the notion of
will happen when a pointcut is reached. Although AOP suc- datatypes introduced in this paper and case classesyFirstl
cessfully separates concerns that are scattered and danglealgebraic datatypes and case classes correspond, elbgentia
throughout the program, it can also introduce a form of tight to visitors with traversal and dispatching strategies eet t
coupling between base programs and their aspects, whichExternaland Basig therefore losing much of the reusabil-
complicates modular program understanding and reasoningity benefits offered by those parametrizations. Secondly, a
Several authors [Aldrich, 2005, Kiczales and Mezini, though the datatype notation requires a language extension
2005, Gudmundson and Kiczales, 2001] have proposedthe approach we have taken is mostly library-based. This has
ways to harness the power of aspects by giving more controlthe important advantage that we can extend the functionally
to programmers over which parts of their code are open to provided by the visitor library, without extending the com-
advice. Notable among these are Aldricbisen modules piler itself. For example, as we have seen in Section 7.4, it i
which encapsulate function definitions into modules and ex- very simple to add a new kind of traversal strategy. We be-
port public interfaces for both calling and advising from lieve that an approach could be taken similar to the one with
other modules. Internal function calls that are private to a ITERATORS [Gamma et al., 1995] in C# and new versions of
module can only be advised if the module explicitly chooses Java, with a library component and some built-in language
to allow this. In this sense, our use of advice through visito  support (theforeach keyword). We envision a language ex-
is akin to the internal advising of open modules. Functions tension supporting the datatype notation, perhaps aldo wit
or modules that are subject to advice are parametrized bya parametrizablease construct and pattern matching nota-
dispatchers and instantiated to a particular generic adic  tion, built on top of the visitor library. Finally, the sentians
significant difference between our approach and open mod-of case classes is essentially given by type inspection and
ules lies in the means of triggering advice: parametrimatio downcasting. Our semantics does not rely on the availgbilit
versus pointcuts. It is no surprise that our library does not of casts or run-time type information, so it could be used in
have fully fledged support for AOP; however, a significant object-oriented languages without these mechanisms.
class of applications of AOP can be coded up conveniently

7.4 Design Patter ns as Software Components
and modularly.

Norvig [1996] studied the consequences of using a dy-
7.3 CaseClassesand Algebraic Datatypes namic language such as Lisp or Dylan for the GoF pat-
terns [Gamma et al., 1995]; he claimed that 16 of these

The datatype notation that we have introduced in this Paper, 3 patterns have qualitatively simpler implementations in

is inspired byalgebraic datatypefrom functional program- such languages — some simply disappear, and others may

ming. Scala [Odersky, 2006] has its own notion of algebraic be formalized as software components. Arnout [2004] did a
datatypes via (sealed) case classes. With case classes, we '

could rewrite thareeanddepthexamples as: similar study of design patterns in the En‘f_el programming
language [Meyer, 1997]; she argued that Eiffel featureh suc
sealed case class Tree

lass Emotvextends T asgenericity tuplesand agentsplayed an essential role in
ClaSSFOmE ye.>$ enl §I' ree T dsTi the componentization of patterns. Hannemann and Kiczales
caseclassFork (x:int,| : Tregr : Tree) extends Tree [2002] studied design patterns in the context of Aspecté. Th

def depth(t: Tree) :int = t match { results showed that 74% of the GoF patterns could be imple-
caseEmpty() =0 mented in a more modular way and 52% were more reusable.
case Fork (x,1,r) = 14+ max(depth(l),depth(r)) Gibbons [2003] argues that datatype-generic programming
} can be used to capture the abstractions behind many de-

sign patterns formally; subsequent papers [Gibbons, 2006,
The sealed keyword guarantees that the class hierarchy will Gibbons and Oliveira, 2008] interpret four of the GoF pat-
not be extended in other modules. Sealing allows the Scalaterns as higher-order datatype-generic programs. Odersky
compiler to perform an exhaustiveness check, guaranteeingand Zenger [2005b] point out that the Scala programming
that an operation is defined for all cases. This gives us es-language is designed with component development in mind;
sentially the same advantages (and disadvantages) as algehey identify abstract type memberself type annotations
braic datatypes. However, simple case classes are more gerandmodular mixin compositioas abstractions that do not
eral than algebraic datatypes, because they do not need t@xist in mainstream OO languages but prove to be important
be sealed: we could have defingédke without the sealed for component development, and use the first two features
keyword, gaining the ability to add new variants in the fu- to provide an elegant software component that captures the
ture. Nevertheless, this extra generality can create pnabl  OBSERVERdesign pattern.



7.5 Generic Visitors wick and Lieberherr [2008] propose a reflection-based Java

There have been several proposalsgeneric visitorgvisi- library DemeterF that comes with a type system making it
tor libraries that can be reused for developing softwanegusi  POSSible to type-check visitor code, verifying traversais-
something like the \BITOR pattern) in the past. Palsberg ically.
and Jay [1998] presented a solution relying on the Java re- : :
flection mechanism, where a single Java cleédkabout 7.6 Multiple Dispatch
could support all visitors as subclasses. Refinementssgo thi Mainstream object-oriented languages, like C++, C# and
idea, mostly to improve performance, have been proposedJava, all use aingle dispatchingnechanism, where a single
since by Grothoff [2003] and Forax et al. [2005]. Meyer and argument (theself object) isdynamicallydispatched and all
Arnout [2006] also present a generic visitor along the same other dispatching is static. A problem arises, howeverwhe
lines, but having less dependence on introspection mecha-a method requires dynamic dispatching on two or more ar-
nisms (although those are still needed). One advantage ofguments. Multiple dispatching makes it difficult to provide
these approaches is that they are not invasive — that is,modular (compile-time) type-checking to catch ambiguous
the visitable class hierarchies do not need to haseept ~ and invalid combinations of dynamically dispatched argu-
methods and it is possible to write generic traversal code ments, and there are fears that it goes against objectteden
(i.e. code that works for different visitors). In this papse principles like encapsulation. There is a rich literaturatim
can avoid most of the direct uses of theceptmethods by ~ Vvating and proposing solutions for this problem: Chambers
using the datatype and functional notations, but the meth-and Leavens [1995], Clifton et al. [2000], Ernst et al. [1P98
ods will still be needed. Although we do not address the are justafew examples. Still, none of those solutions aehie
issue here, very flexible and type-safe generic traverstd co modular static type-checking without restrictions.
can be written using datatype-generic programmirexten- Visitors can be used to emulate a (limited) form of mul-
sion to our visitor library [Oliveira, 2007]. A disadvaneg tiple dispatching in object-oriented languages, as we men-
of introspection-based approaches is that they cannat stat tioned in Section 3.5. Ambiguous and invalid combinations
cally ensure type-safety, and so strictly speaking shoatd n  of dynamically dispatched arguments do not pose a problem
be classified as components. Furthermore, those approachef®r our visitors, but the price to pay for this is that we lose
lack flexibility in the choice of the dispatching policy [Cein  the ability to easily add new variants, which is possiblenwit
and Vitek, 2005]. many of the multiple-dispatching solutions. The problem of
Visser [2001] observes that thei&(TOR pattern suffers extensibility of visitors (that is, the ability to add newrisa
from two main limitations: lack of traversal control; and ants) is explored by Oliveira [2007, Chapter 5], and a solu-
resistance to combination, which are closely related to our tion inspired by Odersky and Zenger [2005a] is proposed as
notions of traversal and dispatching parametrization. His & way to add extensibility to the visitor library. Encapsula
solution for those problems consists of a number of generic tion is more problematic, and visitor-based solutions dre o
visitor combinators for traversal control. These comtongt  ten criticized as not being very object oriented. We agrae th
can express interesting traversal strategies like botipm-  the idea of encapsulation is important and, whenever possi-
top-down or sequential composition of visitors and can be ble, it should be preserved. Nevertheless, in some situstio
used to define visitor-independent (or generic) functispal & functional decomposition style is more appropriate, and
Like all other implementations of forms of generic visitors ~ trying to preserve (full) encapsulation is hard. What seems
Visser’s solution requires run-time introspection. It webbie clearly worse to us than the loss of encapsulation is the fact
interesting to explore some of Visser’s ideas in the context that most object-oriented languages do not have an easy-to-
of our visitor library. use mechanism for a form of multiple dispatching (even if
ThePeripatonlanguage [VanDrunen and Palsberg, 2004] limited) except via the (statically) type-unsafestanceOf
supports the so-calledisitor-oriented programming style introspection mechanism. We believe that our datatype nota
In Peripaton, everything is a visitor: the visitor objechdze tion and the relatefxternaltraversal strategy could provide
considered the top of the object hierarchy, playing the samean easy-to-use and lightweight (if simple-minded) sohutio
role asObjectin Java. By interpreting theisit method as  for the multiple dispatching problem.
function application, we get a notion that lies in between
functions and objects, similarly to the functional notatio 8, Conclusions
in our visitor library. DJ [Orleans and Lieberherr, 2001] is
a reflection-basedyJava [Iibrary for traversals that has ]beenwe have argued that (the structural aspects of) the-V

: . . . TOR design pattern can be captured as a reusable, generic,
used in the context oadaptive programmingChadwick modular and statically type-safe component by using some
et al. [2006] proposes a (functional) visitor-oriented pro yyp P y 9

gramming language that is modular and compositional, aim- advanced type system features that are starting to appear

ing at more reusable designs. They have implemented thell modern object-oriented languages. Inspired by funetion

idea as a modified version of DJ. In subsequent work Chad_programming, we have shown that we can significantly im-
' ' prove the use of visitors via datatype-like and functioral n



tations, while at the same time providing a simple functiona ~ NU-CCIS-08-March19, Northeastern University, Boston,
decomposition mechanism that, we think, is well-suited for ~ March 2008.
object-oriented languages.
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