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Abstract—The multicampaign assignment problem is a campaign model to overcome the multiple-recommendation problem that

occurs when conducting several personalized campaigns simultaneously. In this paper, we propose a Lagrangian method for the

problem. The original problem space is transformed to another simpler one by introducing Lagrange multipliers, which relax the

constraints of the multicampaign assignment problem. When the Lagrangian vector is supplied, we can compute the optimal solution

under this new environment in OðNK2Þ time, where N and K are the numbers of customers and campaigns, respectively. This is a

linear-time method when the number of campaigns is constant. However, it is not easy to find a Lagrangian vector in exact accord with

the given problem constraints. We thus combine the Lagrangian method with a genetic algorithm to find good near-feasible solutions.

We verify the effectiveness of our evolutionary Lagrangian approach in both theoretical and experimental viewpoints. The suggested

Lagrangian approach is practically attractive for large-scale real-world problems.

Index Terms—Personalized campaign, multicampaign assignment, constrained optimization, Lagrangian method, genetic algorithm.

Ç

1 INTRODUCTION

CUSTOMER relationship management (CRM) [12] is im-
portant in acquiring and maintaining loyal customers.

To maximize the revenue and customer satisfaction,
companies try to provide personalized services for custo-
mers. As personalized campaigns are frequently performed,
several campaigns often happen to run simultaneously or
within a short period of time. It is often the case that an
attractive customer for a specific campaign tends to be
attractive for other campaigns. If we conduct separate
campaigns without considering other campaigns, some
customers may be bombarded by a considerable number
of campaigns. We call this the multiple recommendation
problem. The larger the number of recommendations for a
customer, the lower the customer interest for campaigns [5].
In the long run, the rate of customer response for campaigns
drops. It clearly lowers marketing efficiency, as well as
customer satisfaction, hence diminishing customer loyalty.
Unfortunately, traditional methods only focused on the
effectiveness of individual campaigns and did not consider
the problem with respect to multiple recommendations. In
the situation that several campaigns are conducted within a
short time window, it is necessary to find the optimal
campaign assignment to customers considering the recom-
mendations in other campaigns.

The multicampaign assignment problem (MCAP) is a com-

plex assignment problem in which each of N customers is

assigned to one subset drawn from a set ofK campaigns. The
goal is to find a set of assignments such that the effect of
campaigns is maximized under some constraints. The main
difference with independent campaigns lies in that the
customer response for campaigns is influenced by multiple
recommendations. We defined MCAP in previous work and
proposed two types of methods for the problem [21]. We
showed that one can solve MCAP to optimality by a dynamic
programming (DP) algorithm. Although the DP algorithm
guarantees optimal solutions, it becomes intractable for
large-scale problems. We thus proposed heuristic methods
that not only have practical time complexity but also showed
good performance. However, since they are heuristics, they
do not guarantee optimal solutions. In this paper, we propose
a Lagrangian method with the advantages of both the
DP method and the heuristic method. It has linear time
complexity for a fixed number of campaigns and sacrifices
little on the optimality. Furthermore, the Lagrangian method
also provides a good upper bound and can be used to
measure the suboptimality of other heuristics. However, in
general, randomly generated Lagrange multipliers do not
satisfy the given problem constraints. It is not easy to find
Lagrange multipliers in exact accord with the constraints.
Since it is important to find good Lagrange multipliers, we
use a genetic algorithm (GA) to optimize Lagrange multi-
pliers. We verify the effectiveness of the proposed genetic
Lagrangian method with field data.

The remainder of this paper is organized as follows: In

Section 2, we describe MCAP and previous algorithms. We

propose a Lagrangian method for the problem in Section 3.

We show experimental results in Section 4 and, finally,

make conclusions in Section 5.

2 PRELIMINARIES

The assignment problem is formally defined as follows:
Given two sets, A and T , together with a weighted function
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C : A� T ! IR, find the function f : A! T such that the
cost

P
a2A Cða; fðaÞÞ is minimized or maximized.1 In typical

assignment problems such as the optimal assignment
problem [23] and the quadratic assignment problem [9],
the size of domain set ðAÞ is equal to that of codomain set
ðT Þ, thus restricting the solutions to one-to-one mappings.
However, in some other assignment problems such as the
generalized assignment problem [11] and the sailor assign-
ment problem [28], the sizes are different. In MCAP, the
sizes are not equal; there are far more customers than
campaigns, that is, N � K.

2.1 Multicampaign Assignment Problem

2.1.1 Problem Definition

Let N be the number of customers and K be the number of
campaigns. In the following, we describe the input, output,
constraints, and evaluation function for MCAP.

Input. Each campaign has a weight. For each customer,
the preference for each campaign is given. A response
suppression function R related to multiple recommenda-
tions is given. These inputs are denoted as follows:

. ww ¼ ðw1; w2; . . . ; wKÞ 2 IRK : the campaign weight
vector (wj > 0 for each campaign j).

. P ¼ ðpijÞ: the preference matrix. Each real-valued
element pij 2 ½0;1Þ is the preference value of
customer i for campaign j.

. R : IN�!½0; 1�: the response suppression function
with respect to the number of recommendations
(for convenience, we assume that Rð0Þ ¼ 0). In this
paper, we assume that response suppression is the
same for all customers.

The preferences for a campaign can be acquired from
some existing methods such as collaborative filtering (CF)
[34]. If hi is the number of multiple recommendations for
customer i, the actual preference of customer i for
campaign j becomes RðhiÞpij.

Constraints. The maximum and the minimum numbers
of recommendations for each campaign are enforced. Let �bj
be the maximum number of recommendations for campaign
j and bj be the minimum number of recommendations for
campaign j. Then, the number of recommendations in
campaign j is between bj and �bj. These constraints are
denoted as follows:

. bb� ¼ ð�b1; �b2; . . . ; �bKÞ 2 INK : the upper bound vector of
capacity constraint and

. bb� ¼ ðb1; b2; . . . ; bKÞ 2 INK : the lower bound vector of
capacity constraint.

Output. The output is an N �K binary campaign
assignment matrix M ¼ ðmijÞ, in which mij indicates
whether or not campaign j is assigned to customer i.

Evaluation. The campaign preference sum for campaign j is
defined to be the actual preference sum of recommended
customers for campaign j as follows:

PN
i¼1 RðhiÞpijmij. The

fitness F ðMÞ of a campaign assignment matrix M is the
weighted sum of campaign preference sums:

F ðMÞ ¼
XK
j¼1

wj
XN
i¼1

RðhiÞpijmij

 !
:

The objective is to find a matrix M that maximizes F .

2.1.2 Notations and Formal Definition

Some notations that would be used in the remainder of this
paper are listed as follows:

. mmii ¼ ðmi1;mi2; . . . ;miKÞ: the ith row vector of the
matrix M,

. hið¼
PK

j¼1 mijÞ: the number of multiple recommen-
dations for customer i,

. �ið¼
PK

j¼1 wjpijmijÞ: the weighted sum of prefer-
ences of customer i for recommended campaigns,

. 1n: the n-dimensional vector ð1; 1; . . . ; 1Þ, and

. 0n: the n-dimensional vector ð0; 0; . . . ; 0Þ.
More formally, MCAP is defined as follows:

Definition 1. MCAP is the problem of finding a campaign
assignment matrix M ¼ ðmijÞ that maximizes

hww;RRð1KMT ÞM 0i subject to bb� � 1NM � bb�;

where M 0 ¼ ðm0ijÞ is the N �K real matrix, where
m0ij ¼ pijmij,

RRðx1; x2; . . . ; xnÞ ¼ ðRðx1Þ; Rðx2Þ; . . . ; RðxnÞÞ;

h�; �i is an inner product, and each n-dimensional vector is
regarded as a row vector, that is, 1� n matrix.

MCAP is a constrained maximization problem with a
nonlinear objective function. In previous work, we could
prove that a practically generalized version2 of MCAP is
NP-complete [41]. We strongly conjecture that the original
version of MCAP is also computationally intractable.
However, it is still an open problem.

2.1.3 Response Suppression Function

In the case of multiple campaign recommendations, the
customer response rate drops as the number of recommen-
dations grows. We introduced the response suppression
function for the response-rate degradation with multiple
recommendations. Definitely, the function should be
monotonically nonincreasing. Fig. 1 shows the response
suppression function R used in [21], which was derived
from the Gaussian function. The function is nonnegative
monotonically decreasing with a maximum value of one. By
the function, the preference for a campaign drops to, for
example, 1/3 when four campaigns are performed simulta-
neously to a customer.

The function relies only on the number of recommenda-
tions, and the same function is applied to all customers.
However, in practical situations, some customers may have
more tolerance than others. That is, each customer class
may have its own response suppression function since the
degree of response suppression can be different from
customer class to customer class. In this case, it is also
crucial to find response suppression functions of customer
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1. In this paper, we deal with only the simplified assignment problems
where capacities are always 1, but flow problems with upper and lower
bounds of capacities have been studied in [3].

2. Assume that each customer has its own response suppression
function, i.e., the response suppression rate of a customer varies as his/
her inclination.



classes. An extended study dealing with the generalized
response suppression is given in [41]. Our method can be
immediately applied to even this generalized version. In
this paper, just for notational convenience, we assume that
response suppression is global explicitly; there is one for all
customers.

2.2 Prior Methods

In this section, we summarize the three methods for MCAP
suggested in [21].

2.2.1 Dynamic Programming

The DP algorithm in [21] requires OðNKþ1KÞ space and
takes OðNKþ1K2KÞ time. The DP approach tries to solve all
subproblems of the form “what is the best assignment for
ðb1; b2; . . . ; bKÞ, using just the first n customers,” for all
0 � b1 � N; . . . ; 0 � bK � N , and 0 � n � N . If K is a fixed
number, this is a polynomial-time algorithm. However,
when K is not small, it is nearly intractable. The proposed
DP algorithm is only applicable to problems with small K,
N pairs. However, the DP algorithm guarantees optimal
solutions.

2.2.2 Constructive Algorithm

Starting at the initial situation that no campaign is
recommended to any customers, the constructive assign-
ment algorithm (CAA) iteratively assigns campaigns to
customers in a greedy manner. It first prepares the most
attractive � customers for each campaign (we set � to beN=2
in our experiments). Next, it iteratively performs the
following: It chooses a pair (customer i, campaign j) with
the maximum gain, and if the gain is positive and campaign j
does not exceed the maximum number of recommendations,
it recommends campaign j to customer i. If a recommenda-
tion is done, it updates the gains of customer i for the other
campaigns. In that case, any gain cannot be positive after the
maximum gain drops below zero. When the maximum gain
is not positive, the algorithm terminates as long as every
campaign satisfies the capacity constraint on the minimum
number of recommendations. The time complexity of the
algorithm is OðNK2 logNÞ with the help of a balanced
binary search tree.

2.2.3 Iterative Improvement

After every customer is assigned to a proper number of
campaigns, we can run the iterative improvement heuristic.
It proceeds in a series of passes. During each pass, the
heuristic improves on the initial solution to create a new

solution. A pass of iterative improvement is conducted for
each campaign. Given a campaign, the heuristic chooses an
equal-sized subset pair of recommended customers and
nonrecommended customers that has the maximum gain
sum when swapped. After swapping the subset pair,
another pass is then executed starting with the new
solution. This process is repeated until no improvement
can be obtained. The time complexity of one pass is
OðNK logNÞ.

3 LAGRANGIAN OPTIMIZATION

One could solve MCAP to optimality by the DP algorithm.
Although the DP algorithm guarantees optimality, it
becomes intractable for large-scale instances. The heuristic
algorithms not only have practical time complexity but also
show reasonable performance. However, since they are just
heuristics, they do not guarantee optimality. In this section,
we propose a novel method with the advantages of both the
DP method and the heuristic one.

MCAP is a constrained optimization problem (with a
nonlinear objective function). To relax the constraints of
MCAP, we can transform it using the Lagrange multipliers
[25]. We try out a method that transforms the search space
of the problem to another space and searches the solution in
the transformed space instead of managing the original
space directly. However, we have a lot of limitations since
the domain is not continuous but discrete.

3.1 Lagrangian Preliminaries

Consider the following maximization problem with
constraints:

max
xx2�

fðxxÞ subject to ggðxxÞ � 0:

Assume that we can reach the maximum �0. If the domain
� is convex, the real vector �� 	 0 such that

�0 ¼ max
xx2�
ffðxxÞ � h��; ggðxxÞig

always exists [25]. In this case, if the objective function fðxxÞ
achieves the maximum when xx is xx0, then h��; ggðxx0Þi ¼ 0,
where xx0 is the point at which �0 is attained.

In particular, if f and gg are differentiable, rfðxx0Þ ¼P
i �irgiðxx0Þ holds. If we are lucky, we can easily find the

value of �� for the problem and solve the problem by

transforming the original problem with constraints into the

easier one without constraints. The method that solves the

problem by finding �� and transforming the given con-

strained problem into the unconstrained one is called the

Lagrangian method.

There have been a number of papers that studied the

Lagrangian method for discrete problems [10], [15], [18],

[26], [30], [35]. Most of them focused on the problems with a

linear objective function called integer programming problems.

Moreover, typically, they tried to find just the upper bound

to be used in a branch-and-bound algorithm by dualizing

constraints (see Appendix A) and hence could not find the

feasible solution directly. To the authors’ best knowledge,

there has been only one Lagrangian method to find lower

bounds (feasible solutions), which is proposed by Magazine
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Fig. 1. Response suppression function (RðxÞ ¼ 0 for x > 10).



and Oguz [26]. Its variant has been studied in recent work

[30], [32], [40]. However, the problem they dealt with, the

0/1 multiconstrained knapsack problem, has a typical linear

objective function, and their method used its linearity most

importantly. Therefore, it is impossible to directly apply

their methods to MCAP with a nonlinear objective function.

Recently, there was a study about the Lagrange multiplier

theory for nonlinear discrete optimization [39]. However, it

did not provide any explicit algorithm but some theory

about saddle points. In summary, a number of studies about

Lagrangian methods for discrete optimization have been

done, but they have focused on linear problems just to find

upper bounds, traditionally using the subgradient method

(see Appendix B). Therefore, the previous studies cannot be

directly applied to MCAP. However, we will compare our

Lagrangian approach with a variant of the traditional

subgradient method later.

3.2 Our Lagrangian Method

MCAP is a maximization problem with capacity con-

straints. Consider the following simplified MCAP without

the lower bound constraints:

max
M2f0;1gN�K

hww;RRð1KMT ÞM 0i subject to 1NM � bb�:

We cannot always apply the Lagrangian method to MCAP

because the domain f0; 1gN�K is not convex. However, for

some capacity constraints, their corresponding ��s exist.

Assume that the real vector �� corresponding to the capacity

constraints is given. Then, it is possible to transform the

original optimization problem into the following problem

using Lagrange multipliers:

max
M2f0;1gN�K

fhww;RRð1KMT ÞM 0i � h��;1NM � bb�ig: ð1Þ

In the original MCAP, there are lower bound constraints,

that is, bb� � 1NM. We can also relax the constraints by using

another Lagrange multiplier vector �� 	 0K . Then, the

transformed (1) becomes

maxMfhww;RRð1KMT ÞM 0i � h��;1NM � bb�i � h��; bb� � 1NMig
¼ maxMfhww;RRð1KMT ÞM 0i � h��� ��; 1NMig þ h��; bb�i
� h��; bb�i
¼ maxMfhww;RRð1KMT ÞM 0i � h��� ��; 1NMig þ h��� ��; bb�i
þ h��; bb� � bb�i
¼ maxMfhww;RRð1KMT ÞM 0i � h��� ��; 1NM � bb�ig
þ h��; bb� � bb�i:

By substituting �� for ��� ��, it becomes

max
M2f0;1gN�K

fhww;RRð1KMT ÞM 0i � h��;1NM � bb�ig þ h��; bb� � bb�i;

where �� 	 ���, and �� 	 0K . This transformed formula of the

original MCAP is quite similar to (1), corresponding to the

simplified MCAP only with the upper bound constraints.

Actually, most theoretical analyses of the two problems, the

original MCAP and the simplified MCAP, in this paper are

almost the same.3 Therefore, now, we will consider only the

simplified MCAP to make our theoretical analysis more

readable.
It is easy to find the maximum of the transformed

problem (1) using the following formula:

hww;RRð1KMT ÞM 0i � h��;1NM � bb�i

¼
XK
j¼1

wj
XN
i¼1

RðhiÞm0ij �
XK
j¼1

�j
XN
i¼1

mij þ h��; bb�i

¼
XN
i¼1

RðhiÞ
XK
j¼1

wjm
0
ij �

XK
j¼1

�jmij

 !
þ h��; bb�i

¼
XN
i¼1

XK
j¼1

RðhiÞwjpij � �j
� �

mij þ h��; bb�i

¼
XN
i¼1

RðhiÞ�i � h��;mmiiið Þ þ h��; bb�i:

To maximize the above formula for a fixed ��, we have to set
mmii 2 f0; 1gK to maximize RðhiÞ�i � h��;mmiii for each i. Since
each RðhiÞ and �i do not have an effect on the others,
getting the maximum is fairly easy. For each i, the
maximum can be obtained by choosing topmost hi values
of K values ðRðhiÞwjpij � �jÞs. Fig. 2 shows the procedure.
STEP 1-1 can be done in OðKÞ time if we use the most
efficient algorithm [6]. Also, STEP 1-2, STEP 1-3, and STEP 2
take OðKÞ time. Therefore, the procedure takes OðK2Þ time.
This process has to be performed for each i ¼ 1; 2; . . . ; N .
Hence, the total time complexity of maximizing (1) becomes
OðNK2Þ.4 It is more tractable than the original problem.
Roughly speaking, for a fixed number K,5 the problem size
is lowered from OðNKþ1Þ to OðNÞ.

If we only find out �� for the problem, we get the optimal
solution of MCAP in polynomial time. We may have the
problem that such �� never exists or it is difficult to find it
although it exists. However, this method is not entirely
useless. For an arbitrary ��, let the maximum of the above
formula be ~� and the matrix M ¼ ðmijÞ that achieves the
maximum be ~M. Since �� is chosen arbitrarily, we do not
guarantee that ~M satisfies the capacity constraints of the
original problem. Nevertheless, letting the capacity con-
straint vector be ~bb :¼

PN
i¼1 ~mmii makes ~� be the optimal value

by Theorem 1. We call this algorithm the Lagrangian method
for MCAP (LMMCAP). Fig. 3 shows the pseudocode of
LMMCAP.

Theorem 1 (Optimality). Given �� 	 0K and ~bb, the matrix ~M ¼
ð ~mijÞ obtained by LMMCAP is a maximizer of the following
problem:6

max
M2f0;1gN�K

hww;RRð1KMT ÞM 0i subject to 1NM � ~bb:
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3. The only differences are those that appear in Theorem 1 and
Corollary 1, which use the condition that a Lagrange multiplier is
nonnegative. We will also mention these facts as footnotes in Theorem 1

4. If it is implemented with a brute-force enumeration instead of the
proposed procedure given in Fig. 2, it would take OðNK2KÞ time.

5. In most cases, the number of campaigns ðKÞ is much smaller than that
of customers ðNÞ, i.e., K 
 N . Therefore, K has a relatively small effect on
the complexity.

6. Consider the original MCAP with the lower bound constraints. Since
the Lagrangian vector �� is not nonnegative, this theorem is true only for the
problem with 1NM ¼ ~bb as the constraint part. This restricted version does
not affect the other theoretical analysis at all.



Proof. Suppose that ~M ¼ ð ~mijÞ is not an optimal matrix. Let
�M ¼ ð �mijÞ be an optimal matrix with �bb ð�bb � ~bbÞ as the

capacity constraint vector. Let �Fi be Rð�hiÞ��i � h��; �mmiii for

each i in campaign assignment matrix �M. For each i, by the

optimality of Fi ðFi ¼ Rð ~hiÞ~�i � h��; ~mmiiiÞ, Fi 	 �Fi. Then,

hww;RRð1K ~MT Þ ~M 0i
¼ hww;RRð1K ~MT Þ ~M 0i � h��;1N ~M � ~bbi ð � �� 1N ~M ¼ ~bbÞ

¼
XN
i¼1

Fi þ h��;~bbi

	
XN
i¼1

�Fi þ h��;~bbi

	
XN
i¼1

�Fi þ h��;�bbi ð � �� �� 	 0K & �bb � ~bbÞ

¼ hww;RRð1K �MT Þ �M 0i � h��;1N �M � �bbi
¼ hww;RRð1K �MT Þ �M 0i ð � �� 1N �M ¼ �bbÞ:

This contradicts that ~M ¼ ð ~mijÞ is not an optimal matrix.

Therefore, ~M ¼ ð ~mijÞ is an optimal matrix. tu
Given a Lagrange multiplier vector ��, we can get the

capacity constraint vector bb�� and the optimal result with bb��
by the Lagrangian method.

Instead of finding the optimal solution of the original

MCAP directly, we consider the problem of finding the ��

corresponding to the given capacity constraints. That is, we

transform the problem of dealing with an NK-dimensional

binary matrix M ¼ ðmijÞ into that of dealing with a

K-dimensional real vector ��, as shown in Fig. 4. If there

are Lagrange multipliers corresponding to the given

capacity constraints and we find them, we easily get the

optimal solution of MCAP. If there are no such Lagrange

multipliers, we try to get a solution close to the optimum by

devoting to find Lagrange multipliers that satisfy the given

capacity constraints and are nearest to the capacities.

3.3 Some Useful Properties

If we are to find the solution of MCAP using the proposed

Lagrangian method, we have to choose the maximum of

hww;RRð1KMð��ÞT ÞM 0ð��Þi for a nonnegative real vector �� such

that bb� � bb�� � bb�. However, if we use randomly generated

Lagrange multipliers, they may not satisfy the capacity

constraints, or it is probably hard to find a capacity close to

the original one. The following theorem makes it easy to

adjust Lagrange multipliers:

Theorem 2 (Tendency). Suppose that �� and ~�� correspond to

fM; bbg and f ~M;~bbg by LMMCAP, respectively. Let �� ¼
ð�1; �2; . . . ; �KÞ and ~�� ¼ ð~�1; ~�2; . . . ; ~�KÞ, where �i ¼ ~�i for

all i 6¼ k and �k 6¼ ~�k. Then, if �k < ~�k, bk 	 ~bk, and if

�k > ~�k, bk � ~bk.

Proof. By the optimality of ��,

XN
i¼1

RðhiÞ�i � h��;mmiii 	
XN
i¼1

Rð~hiÞ~�i � h��; ~mmiii:

By the optimality of ~��,

XN
i¼1

Rð~hiÞ~�i � h~��; ~mmiii 	
XN
i¼1

RðhiÞ�i � h~��;mmiii:

By summing the above two inequalities, we have

XN
i¼1

�h��;mmii þ
XN
i¼1

�h~��; ~mmii 	
XN
i¼1

�h��; ~mmii þ
XN
i¼1

�h~��;mmii:
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Fig. 2. An efficient procedure to maximize RðhiÞ�i � h��;mmiii.

Fig. 3. Lagrangian method for MCAP. Fig. 4. An alternative way to solve MCAP.



Since �k 6¼ ~�k and �i ¼ ~�i for all i 6¼ k, by cancellation
and multiplying both sides by �1, we have

XN
i¼1

�kmik þ
XN
i¼1

~�k ~mik �
XN
i¼1

�k ~mik þ
XN
i¼1

~�kmik:

Since
PN

i¼1 mik ¼ bk and
PN

i¼1 ~mik ¼ ~bk, we have

�kbk þ ~�k~bk � �k~bk þ ~�kbk:

Now, we obtain the following inequality:

ð ~�k � �kÞðbk � ~bkÞ 	 0:

ut

From Theorem 2, bi inversely grows with �i. Let 1N ~M ¼
ð~b1; ~b2; . . . ; ~bKÞ for ~M ¼ ð ~mijÞ that is obtained by LMMCAP
with �� ¼ ð�1; �2; . . . ; �KÞ. By the above theorem, if ~bk > �bk,
choosing ��0 ¼ ð�1; . . . ; �0k; . . . ; �KÞ such that �0k > �k and
applying LMMCAP with ��0 make the value of ~bk smaller. It
makes the kth capacity constraint satisfied or the degree of
capacity violation smaller. Of course, another capacity
constraint may be affected or violated by this operation.
Also, which �k to change is an issue in the case that several
capacity constraints are not satisfied. Hence, it is necessary
to set efficient rules about which �k to change and how
much to change it. If good rules are made, we can find
better Lagrange multipliers than randomly generated ones
quickly.

Theorem 3 (Sensitivity). Suppose that ��0 and ��1 correspond to

fM0; bb0g and fM1; bb1g by LMMCAP, respectively. Then, the

following inequalities are satisfied:

h��0; bb0 � bb1i � F ðM0Þ � F ðM1Þ � h��1; bb0 � bb1i:

In particular, for any assignment matrix M,

F ðMÞ � F ðM0Þ � h��0;1NM � bb0i:

Proof. By the optimality of ��0,

F ðM0Þ � h��0; bb0i 	 F ðM1Þ � h��0; bb1i:

Hence, F ðM0Þ � F ðM1Þ 	 h��0; bb0 � bb1i. By the optimal-
ity of ��1, F ðM1Þ � h��1; bb1i 	 F ðM0Þ � h��1; bb0i. Hence,
F ðM0Þ � F ðM1Þ � h��1; bb0 � bb1i. tu

The following corollary shows that the proposed Lagran-
gian method also gives good upper bounds:

Corollary 1 (Upper Bound). Suppose that ��0 	 0K corre-

sponds to fM0; bb0g by LMMCAP,7 where bb0 � bb�. Then,

F ðM0Þ þ h��0; bb
� � bb0i is an upper bound of MCAP.

Proof. Since 1NM � bb�, 1NM � bb0 � bb� � bb0 and, hence,
h��0;1NM � bb0i � h��0; bb

� � bb0i. Then, by Theorem 3,

F ðMÞ � F ðM0Þ þ h��0;1NM � bb0i � F ðM0Þ þ h��0; bb
� � bb0i:

ut

In Appendix A, we will also give the Lagrange duality
and some limitations arising from the fact that the domain
is not convex.

3.4 Investigation of the Lagrangian Space

The structure of the problem space is an important factor to
indicate the problem difficulty, and the analysis of the
structure helps the efficient search in the problem space. In
this section, we conduct some experiments and get some
insights into the global structure of the MCAP space.

In the previous sections, we showed that there is a

correspondence between the capacity constraint vector

and the Lagrange multiplier vector.8 Instead of directly

finding an optimal campaign assignment matrix, we deal

with Lagrange multipliers. In this section, we empirically

investigate the relationship between the constraint space

and the Lagrangian space (that is, fbb��sg and f��sg).
We made experiments on three types of preference

data ðP ¼ ðpijÞÞ with the same number of customers
ðN ¼ 48; 559Þ, changing the number of campaigns ðKÞ
from 1 to 10. One type is from the set of real-world data
described in Section 4.1. The other types are artificially
generated using Gaussian distribution ðNðm;�2ÞÞ to have
the same average and standard deviation of preferences
as those in the real-world data. One type of artificial data
is uncorrelated between campaigns; that is, each pre-
ference value is from an identical and independent
distribution. The other type of artificial data is correlated
between campaigns; we set pi;jþ1 to be pij þNð0; 1Þ for
every customer i and campaign j. As we will show in
Section 4.1, the latter correlated artificial data are similar
to the real-world data.

We chose 200 randomly generated Lagrange multipliers
and plotted, for each pair of Lagrange multiplier vectors,
the relation between the euclidean distance in the constraint
space and that in the Lagrangian space. Fig. 5 shows sample
plotting results. Fig. 6 gives the correlation coefficients of
three types of data according to K. The smaller the number
of campaigns ðKÞ is, the larger the correlation coefficient ð�Þ
is. We can easily show that when K ¼ 1, � � 1. The
uncorrelated data show a stronger correlation than corre-
lated ones. However, for every experimental setting, it
shows a strong positive correlation (greater than 0.5). The
constraint space and the Lagrangian space are roughly
isometric. The result shows that both spaces have a similar
neighborhood structure. Therefore, this makes it easy to
find high-quality Lagrange multipliers satisfying all the
capacity constraints by considering the corresponding
constraint space.

3.5 A Genetic Algorithm for Optimizing Lagrange
Multipliers

A GA is a problem-solving technique motivated by Darwin’s
theory of natural selection in evolution. A GA starts with a
set of initial solutions, which is called a population. Each
solution in the population is called a chromosome, which is
typically represented by a linear string. This population then
evolves into different populations for a number of iterations

388 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 20, NO. 3, MARCH 2008

7. If we consider the original MCAP with the lower bound constraints,
this corollary is true only when we have the condition that ��0 	 0K .

8. Strictly speaking, there cannot be a one-to-one correspondence in the
technical sense of bijection. The capacity constraint vector has only integer
components, so there are only countably many such vectors. However, the
Lagrange multipliers are real numbers, so there are uncountably many
Lagrange multiplier vectors. Several multiplier vectors may correspond to
the same capacity constraint vector. Moreover, some multiplier vectors may
have multiple capacity constraint vectors.



(generations). At the end, the algorithm returns the best
chromosome of the population as the solution to the
problem. For each iteration, the evolution proceeds as
follows: Two solutions of the population are chosen based
on some probability distribution. These two solutions are
then combined through a crossover operator to produce an
offspring. With a low probability, this offspring is then
modified by a mutation operator to introduce an unexplored
search space into the population, enhancing the diversity of
the population. In this way, offspring are generated, and
they replace part of or the whole population. The evolution
process is repeated until a certain condition is satisfied, for
example, after a fixed number of iterations. A GA that
generates a considerable number of offspring per iteration is
called a generational GA, as opposed to a steady-state GA,
which generates only one offspring per iteration. A steady-
state GA is known to converge faster than a generational one
but is known to lose the diversity of the population faster. If
we add a local improvement typically after the mutation
step, the GA is called a hybrid GA [7], [20], [29]. Fig. 7 shows a
typical hybrid steady-state GA.

We propose a GA for optimizing Lagrange multipliers. It

conducts a search using an evaluation function with

penalties for violated capacity constraints. The search space

with N customers and K campaigns has �K
i¼1

P�bi
j¼bi

N
j

� �
elements if all possibilities are considered. However, too

large a problem size may make the search intractable. Our

GA provides an alternative search method to find a good

campaign assignment matrix by optimizing K Lagrange

multipliers instead of directly dealing with the campaign

assignment matrix.

3.5.1 Genetic Operators

The general framework of a typical hybrid steady-state GA

is used in our GA. In the following, we describe each part of

the GA:

. Encoding. Each solution in the population is repre-
sented by a chromosome. Each chromosome consists
of K genes corresponding to Lagrange multipliers. A
real encoding is used for representing the chromo-
some ��.

. Initialization. The GA first creates initial chromo-
somes at random. Each gene is set to be a real value
between 0 and 1. We set the population size to be 100.

. Selection and crossover. To select two parents, we use
a proportional selection scheme where the prob-
ability for the best solution to be chosen is four times
higher than that for the worst solution. A crossover
operator creates a new offspring by combining parts
of the parents. We use the uniform crossover [38].

. Mutation. After the crossover, a mutation operator is
applied to the offspring. We use a variant of
Gaussian mutation. We devised it considering the
relation between �i and ~bi given in Theorem 2. For
each selected gene �i, we choose a Gaussian random
real number t normally distributed with parameters
� ¼ 0 and �2 ¼ 1 (that is, t � Nð0; 1Þ). If the
corresponding capacity constraint ~bi is greater than
�bi, we set �i to �i þ ð1� �iÞjtj=�. Otherwise, we set �i
to �i � �ijtj=�. For jtj=� to be less than 1 with a high
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Fig. 5. The relationship between the constraint space and the Lagrangian space: sample plotting results when K ¼ 10. (a) Real-world data.

(b) Artificial data: uncorrelated. (c) Artificial data: correlated.

Fig. 6. The relationship between the constraint space and the

Lagrangian space: correlation coefficient for each type of data and

each K. Fig. 7. A typical hybrid steady-state GA.



probability of 0.99, we set the constant � to 2.58. In
spite of the above setting of �, if �i becomes less than
0, we reset �i to 0. The mutation rate is 0.05.

. Local improvement. We use a simple local improve-
ment based on Theorem 2. We randomly choose a
gene �i. If the corresponding capacity constraint ~bi is
greater than �bi, we increase �i by �. Otherwise, we
decrease �i by �. However, if this operation does not
yield an improvement, we do not change the value
of �i. We set � to 0.001.

. Replacement and stopping condition. After generating
an offspring, our GA replaces the worse of the two
parents with the offspring. It is called preselection
replacement [8]. Our GA stops when one of the
following two conditions is satisfied: 1) the number
of generations reaches 15,000, or 2) the fitness of the
worst chromosome is equal to that of the best one,
that is, the fitness values of all chromosomes are
equal.

3.5.2 Evaluation Function

Our evaluation function is to find a Lagrange multiplier
vector �� that has a high fitness value satisfying the capacity
constraints as much as possible. In our GA, the following
evaluation function is used:

F ðMÞ �
XK
j¼1

cj � ðexcessðjÞ � deficiencyðjÞÞ;

where cj is the campaign penalty, and excessðjÞ and
deficiencyðjÞ are the numbers of exceeded recommenda-
tions and deficient ones for campaign j, respectively (that is,

excessðjÞ ¼ max
XN
i¼1

mij � �bj; 0

( )

and deficiencyðjÞ ¼ maxfbj �
PN

i¼1 mij; 0g). For the cam-
paign penalty cj, we used K times the weighted average
preference of campaign j (that is, cj ¼ Kwj 1

N

PN
i¼1 pij).

4 EXPERIMENTAL RESULTS

4.1 Testbed and Parameters

E-mail marketing is considered to be one of the most
promising tools for Internet marketing. Its response rate is
known to be much higher than direct mailing or banner ads
[1]. These days e-mail marketing companies acquire the
permission of customers, and this type of e-mail marketing
has become well established as a legal and promising
business model. We used a set of field data from an e-mail
marketing company. The entire data set used in this study
was provided by Optus Inc.

We used the preference values estimated by a CF9

variant from a set of field data with 48,559 customers and
10 campaigns. Personal information10 generates a number
of independent variables; the only dependent variable is

whether or not the customer has responded to the e-mail.
Each preference value for the dependent variable was
predicted as follows: For preference prediction, we used
additional 8,650 training customers ðCtÞ with an actual
response value for each campaign. Each customer has
personal information with 168 binary variables (the
subinformation was used in [24]). Given a campaign,
the predicted preference value for each customer i isP

k2Ct �ikfðkÞ, where �ik is the correlation value between
customer i and training customer k, and fðkÞ is the actual
response of customer k (fðkÞ ¼ 0 or 1). The correlation �ik
is defined to be �ik=	ik, where

�ik ¼
X168

j¼1

ðjth information of customer iÞ

^ ðjth information of customer kÞ

and

	ik ¼
X168

j¼1

ðjth information of customer iÞ

_ ðjth information of customer kÞ:

As the response suppression function, we used the
function R shown in Section 2.1.3, which was derived from
a Gaussian function. The weight for each campaign was
given equally a value of 0.1. Unless otherwise noted, the
maximum number of recommendations for each campaign
was set to 7,284, which is equal to 15 percent of the total
number of customers, and the minimum number of
recommendations was set to 0.

The average preference of customers for a campaign was
4.74, and the average standard deviation of preferences was
5.20. We examined the correlation coefficient of preferences
for each pair of campaigns. Fig. 8 shows the histogram.
Thirty-three pairs (about 73 percent) out of a total of 45 pairs
showed a higher correlation coefficient than 0.5. This
property of the field data provides a good reason for the
need for MCAP modeling.

4.2 Analysis of Results

There are two initialization methods in multicampaign
heuristics: random initialization and the CAA in Sec-
tion 2.2.2. After initialization, we improve the solution by
applying the iterative improvement heuristic in Section 2.2.3.
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Fig. 8. Histogram for the Pearson correlation coefficient of each

campaign pair.

9. Collaborative filtering (CF) [34] is used to predict customer
preferences for campaigns [4]. In particular, CF is fast and simple.
Therefore, it is widely used for personalization in e-commerce [19], [22].
There have been a number of customer-preference estimation methods
based on CF [2], [17], [37].

10. The information consists of a personal profile and past responses for
other campaigns.



We denote the methods “random initialization þ iterative
improvement” and “CAA þ iterative improvement” by
Random-I and CAA-I, respectively. The iterative improve-
ment heuristic randomly chooses the order of campaigns to
be applied. Therefore, it may produce different results for
the same input. On the other hand, CAA is a deterministic
algorithm that always outputs the same result.

First, we compare various algorithms with the DP
algorithm, which guarantees optimality. LM-GA is the GA
proposed in Section 3.5. When postprocessed by “construc-
tive assignment”11 for the unfilled capacity constraints and
then by “iterative improvement,” this version is called LM-
GA-P. Due to the runtime of DP, we restricted the instances
with up to 1,000 customers and three campaigns. Table 1
shows their performance. We chose three campaigns among
the 10 campaigns, and the sets of customers were sampled
at random to prepare the sets with sizes from 200 to 1,000.
The maximum number of recommended customers was set
to half of the total number of customers. The minimum
number of recommendations was set to 0. CAA-I performed
better than other heuristic methods, Random-I and CAA.
CAA-I was much faster than the DP algorithm, and its
results reached fairly close to the optimal solutions. This
implies that CAA-I is an attractive practical heuristic.
However, LM-GA was performed with practical runtime
and was comparable to CAA-I. Moreover, there was a case
that LM-GA found the optimal solution. It is surprising that
LM-GA-P always found the optimal solutions.

Table 2 shows the performance of the independent
campaign and various multicampaign algorithms in the
multicampaign formulation. We use all the 48,559 custo-
mers and 7 � 10 campaigns here. The results of

“Independent” campaign come from K independent cam-
paigns without considering their relationships with others.
That is, the assignment matrix of “Independent” campaign
is obtained by choosing the optimal assignment for each
campaign, without considering the multiple-recommenda-
tion problem. Although the independent campaign was
better than the “Random” assignment in the multicampaign
formulation, it was not comparable to the other multi-
campaign algorithms. The results of the “Random” assign-
ment are the average of more than 1,000 runs. The solution
fitness values of the heuristics suggested in [21] were
overall more than two times higher than those of the
independent campaign.

Next, we compare the algorithms in [21] with the
Lagrangian method. Table 2 shows their performance.
LM-SUB means the modified subgradient algorithm given
in Appendix B. LM-Local is a local optimization method
with 15,000 iterations starting at a random initial multiplier
vector. At each iteration, it performs local improvement,
given in Section 3.5.1. LM-Random means the best result
among randomly generated 15,000 Lagrange multiplier
vectors. Even in the best result, there were capacity
constraints violations for some campaigns, which implies
that finding a valid Lagrange multiplier vector is hard. (The
figures in LM-Random just mean the fitness values in
Section 3.5.2.) However, when Lagrange multipliers are
optimized by a GA (LM-GA), we always found the best
quality feasible solutions satisfying all the capacity con-
straints. Moreover, LM-GA performed better than CAA-I
and LM-SUB. Fig. 9 shows an example of 10 optimized
Lagrange multipliers. For a typical randomly generated
Lagrange multiplier vector, we can observe excessive
violations of capacity constraints for some campaigns
(Fig. 9a). However, with the Lagrange multipliers opti-
mized by GA, we can see that all the capacity constraints
were satisfied (Fig. 9b). Although LM-GA performed well,
it seems that there is still room for further improvement
since there are some unfilled capacity constraints (for
example, the second, third, fourth, and eighth capacity
constraints in Fig. 9b). When LM-GA is postprocessed by
“constructive assignment” for the unfilled capacity con-
straints and then by “iterative improvement,” it showed a
further considerable improvement.

As a final solution of the LM-GA with K ¼ 10 and a
fitness value of 66,980.76, we got the following capacity
constraint vector:

bb ¼ð7; 254; 7; 269; 6; 238; 6; 982; 2; 422; 7; 284; 7; 237; 7; 282;

4; 675; 7; 260Þ � ð7; 284; 7; 284; . . . ; 7; 284Þ

(see Fig. 9b). By Theorem 1, LMMCAP guarantees optim-
ality over the capacity constraint vector bb (the optimum
value is 66,980.76). Table 3 shows the result of each
algorithm when the vector bb is used as the upper bound
capacity constraint vector bb� of MCAP.12 LM-GA-P out-
performed the others except LM-SUB, and the results are
very close to the optimal solutions. To the authors’ best
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TABLE 1
Comparison for Small Data Sets ðK ¼ 3Þ

Maximum 50 percent and minimum 0 percent recommendation for each
campaign.
Equally weighted campaigns, that is, wj ¼ 0:33 for each campaign j.
y Each value means 100� ðoptimum� fitnessÞ=optimum.
z The optimum value.
Upper bound got from the subgradient method or Corollary 1 using the
results of LM-GA.
� CPU seconds on a Pentium III 1-GHz processor.

11. This is a variant of CAA. With the result M ¼ ðmijÞ of LM-GA as an
initial solution, CAA is performed for the remaining capacity constraints
bb� � 1NM 	 0K .

12. This gives another usage of the proposed Lagrangian method. The
suboptimality of heuristic algorithms can be measured by using the
optimality of the Lagrangian method.



knowledge, LM-SUB is one of the best algorithms to find an
upper bound using Lagrange multipliers. Since in this
instance the upper bound by LM-SUB is exactly equal to the
optimum, it is not surprising that LM-SUB found the
optimal solution.

Our Lagrangian method was much slower than previous

heuristics because a considerable number of iterations of

LMMCAP were required inside the GA. However, even

when given the comparable runtime, the heuristics in [21]

could never reach the result of the Lagrangian method (see

the “Best” column in Table 3).

Finally, to see how sensitive the performance of various

algorithms is to the capacity bound, we made additional

experiments. Table 4 shows the performance of algorithms

when the maximum number of recommendations are set to

10, 20, 30, and 40 percent of the total number of customers.

Here, we used all the 48,559 customers and 10 campaigns.

We got consistent results with previous experiments;

LM-GA-P outperformed the others. For a large upper

bound constraint (40 percent), the genetic Lagrangian

methods performed similarly to the heuristic ones.

We showed the superiority of the proposed Lagrangian

method. However, it is not omnipotent; it has some

weaknesses. As hinted in Table 4, the bound constraints

affect the performance of our method. For the upper bound

constraints larger than some threshold, the genetic Lagran-

gian method may perform similar to the heuristic ones,

CAA and CAA-I. Then, there is no merit to use the

Lagrangian method, which spends more time. There is also

another drawback. In fact, the final solution of the proposed

Lagrangian method is not guaranteed to fall in the feasible

region. In the case that bb� � bb�, there is a too small feasible

region. Therefore, even finding feasible solutions may be

too difficult.

In the experiments, we considered only the upper bound

constraints. However, the lower bound constraints can be

managed in a similar way to the upper bound constraints.

Various experiments including the lower bound constraints

will also be interesting. We leave this in future work.

5 CONCLUSIONS

In this paper, we dealt with an optimization issue occurring

when conducting multiple personalized campaigns. We

proposed LMMCAP. We also provided some theorems

supporting our Lagrangian method. We showed their

effectiveness with experiments for a real-world data set.
When we perform a small set of campaigns for a small

number of customers, DP may be the choice. In most
situations with a practical size, however, the DP becomes
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Fig. 9. An example of optimized Lagrange multipliers. (a) Randomly assigned Lagrange multipliers. (b) Lagrange multipliers optimized by GA.

TABLE 2
Comparison of Algorithms over the Number of Campaigns

y Average of 50 runs.
z Each value means 100� ðupper bound� fitnessÞ=upper bound.
� Upper bound got from the subgradient method or Corollary 1 using the results of LM-GA.
“Independent,” CAA, and LM-SUB are deterministic algorithms.
All the values except for LM-Random and Upper bound came from feasible solutions.



intractable, and the Lagrangian method would be a

tractable and an attractive choice. The suggested Lagran-

gian method takes practical runtime and outputs optimal

solutions on some other constraint environment. However,

it is not easy to find Lagrange multipliers satisfying all the

capacity constraints. When our Lagrangian method is

combined with a GA, we could find high-quality Lagrange

multipliers and then reach good feasible solutions. Of

course, the Lagrangian method can be combined with other

metaheuristics as well, such as evolution strategy, simu-

lated annealing, tabu search, and large-step Markov chains.

APPENDIX A

DUALITY

A.1 Notations

We denote several notations for convenience of describing

the next theorem:

� ¼ f0; 1gN�K;
!ðzz�; zz�Þ ¼ max

M2�;zz��1NM�zz�
hww;RRð1KMT ÞM 0i;

’bb�;bb
� ð��; ��Þ ¼ max

M2�
fhww;RRð1KMT ÞM 0i � h��;1NM � bb�i

� h��; bb� � 1NMig;
M��;�� ¼ arg max

M2�
fhww;RRð1KMT ÞM 0i � h��;1NM � bb�i

� h��; bb� � 1NMig;
bb��;�� ¼ 1NM��;��:

f��; ��g corresponds to fM��;��; bb��;��g by the LMMCAP.

A.2 Lagrange Duality

If � is convex, it is known that the maximum of the

objective function subject to the constraints is the same as

the minimum of ’bb�;bb
� ð��; ��Þ for �� and �� [25]. This property is

called duality. Since the domain of MCAP is not convex, this

property does not hold in general. Nevertheless, we can

compare the values of the optimum and ’bb�;bb
� ð��; ��Þ in the

KIM ET AL.: A LAGRANGIAN APPROACH FOR MULTIPLE PERSONALIZED CAMPAIGNS 393

TABLE 3
Suboptimality of Algorithms

1. From 3,000 runs.
2. From 50 runs.
3. CPU seconds on a Pentium III 1-GHz processor.
4. The summation of the CPU seconds of all the experiments.
y Each value means 100� ðoptimum� fitnessÞ=optimum.
� The optimum computed by LMMCAP under the constraints.
bb� ¼ f7; 254; 7; 269; 6; 238; 6; 982; 2; 422; 7; 284; 7; 237; 7; 282; 4; 675; 7; 260g.
CAA and LM-SUB are deterministic algorithms.

TABLE 4
Comparison of Algorithms over Various Capacity Constraints

y Average of 50 runs.
z Each value means 100� ðupper bound� fitnessÞ=upper bound.
� Upper bound got from the subgradient method or Corollary 1 using the results of LM-GA.
“Independent,” CAA, and LM-SUB are deterministic algorithms.
All the values except for LM-Random and Upper bound came from feasible solutions.



following theorem. This is an example of weak duality in

general integer programming [31], [33].

Theorem 4 (Weak duality).

max
bb��zz�;zz��bb�

!ðzz�; zz�Þ � min
��	0K;��	0K

’bb�;bb
� ð��; ��Þ:

Proof. For any �� 	 0K and �� 	 0K ,

’bb�;bb
� ð��; ��Þ ¼ max

M2�
fhww;RRð1KMT ÞM 0i � h��;1NM � bb�i

� h��; bb� � 1NMig

	 max
M2�;bb��1NM�bb�

fhww;RRð1KMT ÞM 0i

� h��;1NM � bb�i � h��; bb� � 1NMig

	 max
M2�;bb��1NM�bb�

hww;RRð1KMT ÞM 0i

¼ !ðbb�; bb�Þ

¼ max
bb��zz�;zz��bb�

!ðzz�; zz�Þ:

ð � �� ! is increasing on bb� and decreasing on bb�:Þ
�
� � max

bb��zz�;zz��bb�
!ðzz�; zz�Þ � min

��	0K;��	0K
’bb�;bb

� ð��; ��Þ:

ut

Corollary 2 (Strong duality). If there exist ��0 	 0K and ��0 	
0K such that h��0; bb��0;��0 � bb�i ¼ h��0; bb� � bb��0;��0 i ¼ 0 and

bb� � bb��0;��0 � bb�, then

max
bb��zz�;zz��bb�

!ðzz�; zz�Þ ¼ min
��	0K;��	0K

’bb�;bb
� ð��; ��Þ:

Proof. By assumption,

min
��	0K;��	0K

’bb�;bb
� ð��; ��Þ � ’bb�;bb� ð��0; ��0Þ ¼ hww;RRð1KMT

��0;��0 ÞM
0
��0;��0 i

¼ !ðbb��0;��0 ; bb��0;��0 Þ
� !ðbb�; bb�Þ ¼ max

bb��zz�;zz��bb�
!ðzz�; zz�Þ:

Hence, by Theorem 4,

max
bb��zz�;zz��bb�

!ðzz�; zz�Þ ¼ min
��	0K;��	0K

’bb�;bb
� ð��; ��Þ:

ut

APPENDIX B

SUBGRADIENT METHOD

Coping with the nondifferentiability of the Lagrangian

leads to the last technical development: subgradient algo-

rithm. The subgradient algorithm is a fundamentally simple

procedure. Typically, the subgradient algorithm has been

used as a technique for generating good upper bounds for

branch-and-bound methods, where it is known as Lagran-

gian relaxation [16], [27]. The reader is referred to [14] and

[36] for the deep survey of Lagrangian relaxation. However,

it can also be used as a heuristic for finding lower bounds

(feasible solutions): At each iteration, simply check if M is

feasible and, if so, report � as a lower bound (keeping it if it

is the best value reported so far) [26]. Fig. 10 shows a variant

of the subgradient algorithm for finding a lower bound, as

well as an upper bound. In the preliminary test, the

traditional subgradient algorithm [13] hardly finds feasible

solutions. Therefore, we use a modified algorithm by

introducing a factor �i (when �i is always 0, it is exactly

the traditional subgradient algorithm).
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Fig. 10. A variant of the subgradient algorithm. � A deterministic algorithm. � In the experiments, we set T to 15,000.
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