
StreamTX: Extracting Tuples from Streaming XML Data∗ †

Wook-Shin Han1
‡

Haifeng Jiang2 Howard Ho3 Quanzhong Li4
1 Department of Computer Engineering, Kyungpook National University, Republic of Korea

2 Google Inc., Mountain View, California
3,4 IBM Almaden Research Center, San Jose, California

1wshan@knu.ac.kr, 2jianghf@google.com, 3ho@almaden.ibm.com, 4quanzhli@us.ibm.com

ABSTRACT
We study the problem of extracting flattened tuple data from stream-
ing, hierarchical XML data. Tuple-extraction queries are essen-
tially XML pattern queries with multiple extraction nodes. Their
typical applications include mapping-based XML transformation
and integrated (set-based) processing of XML and relational data.
Holistic twig joins are known for the optimal matching of XML
pattern queries on parsed/indexed XML data. Naı̈ve application
of the holistic twig joins to streaming XML data incurs unneces-
sary disk I/Os. We adapt the holistic twig joins for tuple-extraction
queries on streaming XML with two novel features: first, we use
the block-and-trigger technique to consume streaming XML data
in a best-effort fashion without compromising the optimality of
holistic matching; second, to reduce peak buffer sizes and overall
running times, we apply query-path pruning and existential-match
pruning techniques to aggressively filter irrelevant incoming data.
We compare our solution with the direct competitor TurboXPath
and other alternative approaches that use full-fledged query engines
such as XQuery or XSLT engines for tuple extraction. The exper-
iments using real-world XML data and queries demonstrated that
our approach 1) outperformed its competitors by up to orders of
magnitude, and 2) exhibited almost linear scalability. Our solution
has been demonstrated extensively to IBM customers and will be
included in customer engagement applications in healthcare.

1. INTRODUCTION
Querying XML streams has become a crucial problem in mod-

ern information systems. In contrast to XML that is parsed and
stored in databases, streaming XML arrives in order (typically as a
sequence of SAX events) and can be most efficiently processed by

∗The work was carried out while the first two authors were with
IBM Almaden Research Center.†Part of the work was supported by U.S. Air Force Office for Sci-
entific Research Grant under contract FA9550-07-1-0223.‡Wook-Shin Han was supported by the Korea Research Foundation
Grant funded by the Korean Government(MOEHRD) (KRF-2007-
521-D00399).

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘08, August 24-30, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

consuming such SAX events on-the-fly without extensive buffer-
ing.

We study efficient algorithms for tuple-extraction queries against
streaming XML data. XML tuple-extraction queries are XML pat-
tern queries with multiple extraction nodes. XML tuple-extraction
queries can be expressed as XQuery queries containing both multi-
ple projection nodes in the return clause and twig pattern matching
expressions. The result of a tuple-extraction query is a stream of
flat tuples.

As an example, Figure 1(b) shows a pattern that extracts tuples
with two fields, title and author, from the DBLP data in Fig-
ure 1(a). The meaning of the triplets alongside tree nodes is ex-
plained in Section 2. The result of the tuple-extraction query is a
set of three tuples as shown in Figure 1(c).

authortitle

"T1" "A2"

inproceedings

author

"A1"

title

"T2"

inproceedings

author

"A1"

dblp

booktitle

"VLDB"

booktitle

"ICDE"

(1,20,0)

(2,11,1)

(3,4,2) (5,6,2) (7,8,2) (9,10,2) (13,14,2) (15,16,2) (17,18,2)

(12,19,1)

(a) XML data tree

/title#

/inproceedings

/author#

/dblp

(b) Extraction pattern

title author
T1 A1
T1 A2
T2 A1

1t

3t
2t

(c) Extracted tuples

Figure 1: Example of tuple extraction from XML data.
Tuple extraction from streaming XML data is an important oper-

ation in many crucial XML applications. For example, it is shown
to be a core operation for data transformation in schema-mapping
systems [13]. In such mapping-based XML transformation, we
need to extract mapped values from streaming XML data sources.
The extracted values are in the form of flat tuples, which are then
transformed to the target based on a mapping specification. We
note that tuple extraction has also been identified as a computation-
ally expensive operation in the integrated processing of XML and
relational data [15]. Specifically, a tuple stream can be extracted
from an XML data source and then sent to a relational operator for
further processing, such as joining with other relational tables.

Despite the significant amount of work on streaming XML pro-
cessing, most of the work focused on XML filtering (such as XFil-

 289

Copyright 2008 VLDB Endowment, ACM, ISBN 978-1-60558-305-1

ter [1]) or single extraction node [20] (not multiple extraction nodes).
As a result, the work on efficient algorithms for tuple extraction is
rather limited. TurboXPath [15] is the latest system specifically
designed for tuple extraction from streaming XML data and has
been incorporated in DB2 XML [2]. However it demonstrates ex-
ponential complexity when dealing with recursions. Additionally,
although most XSLT/XQuery engines can support tuple-extraction
queries, they do not provide satisfactory performance due to effi-
ciency and scalability problems.

Our solution has been designed in the context of the Clio project
[12] for mapping-based XML transformation, where XML files are
read in a streaming fashion in an ETL environment. In this sit-
uation, to handle very large XML files, we need to provide robust
and optimal worst-case performance with a fixed buffer size for any
large XML files. This motivated us to adapt TwigStack (robust and
disk-based implementation) for streaming processing.

1.1 Our Approach
Although holistic twig joins [4] provide optimal matching of

XML pattern queries against XML data stored in databases, they
are not directly applicable for processing streaming XML data. A
naı̈ve adaptation that parses the streaming data and then applies the
holistic joins is neither efficient nor feasible for continuous XML
streams.

In this paper, we adopt the paradigm of holistic matching and
present the StreamTX algorithm, which can process streaming XML
for tuple extraction progressively without extensive buffering. Specif-
ically, we introduce a block-and-trigger mechanism during holis-
tic matching so that incoming XML is consumed in a best-effort
fashion without compromising the optimality of holistic matching.
However, the blocking mechanism may cause some incoming data
to be buffered. To reduce the buffer sizes, two pruning techniques
are deployed. In particular, the query-path pruning guarantees that
each buffered element satisfies its query path; the existential-match
pruning guarantees that we only buffer elements that participate in
final results.

Our contribution can be summarized as follows:

• We first review the existing TwigStack algorithm [4] for match-
ing patterns on stored XML and then adapt it into the TwigStackTX
algorithm, which can support tuple-extraction from stream-
ing XML data.

• We next present a full-fledged algorithm, namely StreamTX,
which marries the holistic-matching paradigm with the stream-
ing XML processing and provides highly efficient tuple ex-
traction with minimal buffer sizes.

• We conduct extensive experiments with StreamTX in com-
parison with other existing approaches, using real-world XML
documents and queries. The experimental results show that
StreamTX is significantly more efficient and scalable than its
competitors. For many data and query sets, the performance
advantage reaches orders of magnitude.

1.2 Paper Organization
We formally define the problem of tuple extraction in Section 2.

We discuss the related work in Section 3. Section 4 goes over the
existing paradigm of holistic matching and proposes its adaptation
for handling streaming XML. In Section 5, we present our tuple-
extraction algorithm, StreamTX, for streaming XML. Experiments
are reported in Section 6. We conclude the paper in Section 7.

2. PROBLEM DEFINITION

2.1 XML data model and region encoding
We follow the XPath 2.0 specification [3] and model XML data

as a tree, where nodes represent elements, attributes and text data,
and parent-child pairs represent nestings between XML element
nodes. Data tree nodes are often encoded with positional informa-
tion for efficient evaluation of their positional relationships.

In Figure 1(a), the tree nodes are assigned with region encoding
[9, 27, 24], which is a triplet (start, end, level) representing the
positional information of each element. The root is a dblp ele-
ment spanning from position 1 to 20. The first inproceedings
element spans from 2 to 11, and so on. The level value records the
distance from the element to the root element, whose level value is
zero.

The region encoding supports efficient evaluation of ancestor-
descendant or parent-child relationship between element nodes. For-
mally, element u is an ancestor of element v if and only if u.start <
v.start < u.end. For the parent-child relationship, we also test
whether u.level = v.level − 1.

2.2 XML tuple-extraction queries
XML tuple-extraction queries are XML pattern queries with mul-

tiple extraction nodes. A tuple-extraction query can be represented
as a labeled query tree with one or multiple extraction nodes. Query
tree nodes are also called QNodes. For example, Figure 2 shows
two tuple-extraction patterns.

/title#

/inproceedings

/author#

/dblp

/name# //employee

/name#

//employee

/dblp/inproceedings
[title# and author# and year#]

//employee[name#]//employee/name#

(a) (b)

/year#

Figure 2: Example tuple-extraction patterns.

A single slash “/” stands for a parent-child relationship between
the QNode and its parent, while a double slash “//” means an ancestor-
descendant relationship. The symbol # indicates that the QNode
is an atomic element node and its value is extracted. The pattern
in Figure 2(a) extracts triplets of (title, author, year). The
pattern in Figure 2(b) returns pairs of names of employees with a
management relationship.

For easy reference, we represent tuple-extraction patterns with
pseudo XPath queries with the symbol # for extraction nodes. In
Figure 2, the pseudo XPath queries are listed beneath the corre-
sponding patterns.

To define the answer to a tuple-extraction query, we first define
the concept of a full match of a tuple-extraction query:

DEFINITION 1. (Full matches of tuple-extraction queries) A
full match of a tuple-extraction pattern Q in an XML database D
(modelled as a tree) is identified by a mapping from nodes in Q
to nodes in D, such that: (1) QNode predicates (if any) are satis-
fied by the corresponding database nodes; and (2) the structural
(ancestor-descendant or parent-child) relationships between QN-
odes are satisfied by the corresponding database nodes.

A full match can be represented as an n-ary relation where each
tuple (e1, e2, · · · , en) consists of the database nodes. For the ex-

 290

DBLP inproceedings title author
t1 (1,20,0) (2,11,1) (3,4,2):T1 (7,8,2):A1
t2 (1,20,0) (2,11,1) (3,4,2):T1 (9,10,2):A2
t3 (1,20,0) (12,19,1) (13,14,2):T2 (17,18,2):A1

Table 1: Full matches of the query in Figure 1(b).

traction nodes in the pattern, the corresponding text values are as-
sociated with the matched element nodes. The answer to a tuple-
extraction query is the set of full-match tuples projected on the ex-
traction nodes.

EXAMPLE 1. Given the XML data in Figure 1(a) and the tuple-
extraction query in Figure 1(b), there are three full matches as
shown in Table 1. Each element is identified with its region code.
For the extraction nodes, their elements are also attached with text
values. To obtain the answer from the full matches, we project the
full-match tuples on the extraction-node columns. Figure 1(c) lists
the final answer. The region codes are omitted after projection.

3. RELATED WORK
Holistic XML matching algorithms are prevalent for matching

pattern queries over stored XML data. They demonstrate good per-
formance due to their ability to minimize unnecessary intermediate
results.

In particular, Bruno et al. [4] proposed the first merge-based al-
gorithm, which scans input data lists sequentially to match twig
patterns. Such merge-based algorithms can be further improved by
structure indexes that can reduce sizes of input lists [6]. Index-
based holistic joins [14] were also proposed to speedup the match-
ing of selective queries, as an improvement over merge-based algo-
rithms.

In contrast, algorithms for streaming XML assume that XML
documents are not parsed in advance and they come in the form
of SAX events. Sometimes even ad-hoc XML documents can be
regarded as streaming XML if using SAX parser is the best way to
access them. We highlight below some existing work that supports
tuple extraction from streaming/ad-hoc XML documents.

XSQ [20] is a system for querying streaming XML data using
XPath. It uses pushdown transducers and can efficiently support
features like multiple predicates, closures, and aggregation. Tur-
boXPath [15] is the recent work on streaming tuple extraction, and
has been incorporated in DB2 XML [2]. It has been shown to out-
perform XSQ for tuple extraction. We note that TurboXPath is op-
timized for handling plain XML data and can degrade significantly
for recursive queries and data.

Besides the XQuery engines compared in our experiments, we
have seen other new XQuery systems. BEA/SQRL [10] focuses on
XQuery processing and optimization. The processing of each step
in an XPath expression is based on the operator and iterative model.
There is no special handling for data recursions, and intermediate
results are materialized in worst cases. Flux [17] and a recent sys-
tem [18] can optimize XQuery queries and translate them into other
host languages such as Java. They use static analysis to optimize
complex queries and buffer sizes, which is not sufficient to capture
the whole picture of buffer minimization. Our work, on the other
hand, focuses on the techniques of minimizing memory usage at
run time for efficiently processing twig queries with multiple ex-
traction points. The work in [7] deals with streaming matching of
XPath queries with single extraction node. The proposed compact
stack encoding is based on existing work. Twig2Stack [5] can be
viewed as an in-memory version of twig join algorithms. Although

the performance is improved for many easy cases, the in-memory
algorithm essentially trades the ability to handle skewed cases for
efficiency for these easy cases.

To minimize the memory usage during XQuery execution, Schmidt
et. al. [23, 16] proposed a buffer management scheme which stat-
ically rewrites a query and inserts “signOff” statements. When a
node is cached by the buffer manager, one or more “roles” will be
assigned based on matching path expressions. The inserted signOff
statements signal the buffer manager at runtime that certain nodes
lose roles. If all roles of a node are removed, a garbage collector
will reclaim its memory. The role assignment is closely coupled
with projection trees and lazy DFAs. Similar to TurboXPath, DFA
based approaches may exhibit exponential complexity when deal-
ing with recursion. In addition, this work does not directly sup-
port full XPath expressions with multiple extraction points. For
example, a query as in Figure 1(b) needs to be expressed using the
for-clause in XQuery for processing. However, a series of nested
for-loops will be generated for the query, which limits the opportu-
nities to optimize the query as can be exploited in the holistic ap-
proach presented in this paper. Furthermore, our work can greatly
minimize memory usage for this type of query, and has optimal
worst-case I/O and CPU cost.

4. TwigStackTX: THE FIRST ATTEMPT
Holistic twig joins were first proposed by Bruno et al. [4] as an

optimal means for matching XML patterns over XML data stored
in databases. In particular, their proposed algorithm, TwigStack,
can avoid irrelevant intermediate results and achieve optimal worst-
case I/O and CPU cost—that is, linear to the total size of input and
output data.

In this section, we go over the TwigStack algorithm and then
propose an adaptation algorithm, TwigStackTX, which can execute
tuple-extraction queries for streaming XML data.

4.1 The data structures
We use the symbol q (with or without subscript) to refer to a

QNode in a query tree. For example, qa, qb and qc refer to the
three QNodes in Figure 3(b). The function isLeaf(q) examines
whether a QNode q is a leaf node or not. The function children(q)
gets all child QNodes of q. For example, children(qa) is the list
{qb, qc}.

x1 (1,16,0)

a1 (2,9,1)

b2 (6,7,3)

b1 (3,4,2)

//a

/b# //c#

a2 (10,15,1)

b3 (11,12,2) c1 (13,14,2)

(b) Query and input lists(a) Example XML data tree

x2 (5,8,2)

Cqa

Cqb Cqc

"vb1" "vc1""vb3"

"vb2"
b1:vb1, b2:vb2, b3:vb3

c1:vc1

a1, a2

Figure 3: Example XML data and query with input lists.

There is an input element list associated with each node in the
query tree. All elements in the lists are assigned with region codes
and they are sorted according to their start attributes in each list.
Note that the elements for extraction QNodes (such as qb and qc)
are also associated with text values.

We assume that, for each QNode q, there is a cursor, denoted as
Cq . Each cursor Cq points to an element in the corresponding input
list of q. Henceforth, both “Cq” and “element Cq” mean the ele-

 291

ment that Cq points to. We access the region code of the cursor ele-
ment by Cq→start, Cq→end and Cq→level. Cq→advance()
can be invoked to forward the cursor to the next element in the list
for QNode q.

4.2 Two main modules in TwigStack
The key idea of the holistic algorithm is a multi-way merge-join

on the input element lists. An element can appear in an intermediate
path solution only if it is guaranteed to participate in final results.
For the element a1 in Figure 3, it does not have a subtree match due
to a missing c-element.

The TwigStack algorithm has a main algorithm and a core sub-
routine GetNext, as illustrated in Figure 4. The main algorithm
calls GetNext to get the next QNode q whose cursor element is
processed. It either caches or discards the cursor element Cq and
then forwards Cq to the next element. The process in the main algo-
rithm also includes assembling full matches and generating tuple-
extraction results with projection. We omit the details of the main
algorithm because it is not crucial for understanding the current
work. We refer interested readers to [4, 14].

Main algorithm of
TwigStack

GetNext
algorithm

Query node q with
a solution extension

element tag lists
from disk

Figure 4: The modules in TwigStack.

GetNext(q) returns a QNode in the subtree q such that the node
q has a solution extension, defined as follows:

DEFINITION 2. solution extension We say that a QNode q has
a solution extension if the current cursor elements for each query
edge in subtree q satisfy the ancestor-descendant relationship.

Informally, when a node q has a solution extension, the cursor
elements in the subtree make up a match of the subtree if we regard
all the query edges as ancestor-descendant edges.

In what follows, we explain the GetNext algorithm.

4.3 The GetNext algorithm
GetNext is initially called by the main algorithm (with the

query root as input) to return the highest possible QNode with a
solution extension within the whole query. The code is listed in
Algorithm 1.

Algorithm 1 GetNext(q)

1: if isLeaf(q) then
2: return q;
3: for each qi in children(q) do
4: q′ = GetNext(qi);
5: if q′ 6= qi then
6: return q′;
7: end for
8: qmin = arg minqi

{Cqi→start};
9: qmax = arg maxqi

{Cqi→start};
10: while Cq→end < Cqmax→start do
11: Cq→advance();
12: end while
13: return (Cq→start < Cqmin→start)? q : qmin;

Consider Algorithm 1. GetNext(q) returns a QNode q′ within
the subtree q such that q′ has a solution extension. To achieve that

goal, GetNext(q) first recursively calls itself for each of the child
nodes of the current input q (lines 3–7).

Given that all child nodes have their own solution extensions (af-
ter line 7), in order for node q to be returned, we make sure that
the cursor element Cq is a common ancestor of all the child cur-
sor elements (Cqi) by advancing Cq (line 11). Here, the function
arg minqi

{Cqi→start} returns the QNode among all the returned
QNodes (at line 4) that has the smallest start value. Similarly,
arg maxqi

{Cqi→start} returns the QNode with the maximum
start value. Ties are resolved arbitrarily.

If no common ancestor for all Cqi is found in q, we return the
child node with the smallest start value (i.e., qmin). We can return
qmin because no cursor element of qmin can be extended with its
parent q. Note that as long as qmin is returned in line 13, the outer
recursive calls of GetNext will return the same node qmin all the
way up through lines 5–6.

EXAMPLE 2. We use the data and query in Figure 3 to show
how GetNext works. Table 2 lists the cursor elements after each
call of GetNext(qa). After the first call, the cursor elements are
(a2, b1, c1). The cursor of qa was forwarded from a1 to a2 at
line 11. Given that a2 is not a common ancestor of b1 and c1,
we return qb (line 13). As a convention, the cursor element of the
returned QNode is enclosed by parentheses in the table. (The main
algorithm will forward Cqb to b2 after it consumes b1) Similarly,
the second call of GetNext(qa) returns qb too with the cursor el-
ement b2. It is interesting to note that both b1 and b2 elements are
actually discarded by the main algorithm because no a-element has
been returned in our example. At the third call of GetNext(qa),
we will return the root qa because the current cursors make up a
solution extension.

init 1 2 3 4 5 6
Ca a1 a2 a2 (a2) end end end
Cb b1 (b1) (b2) b3 (b3) end end
Cc c1 c1 c1 c1 c1 (c1) end

Table 2: Cursor elements in Example 2.

4.4 Adapting TwigStack for streaming XML
When XML data is streamed in (or provided as a disk file such

that we need to access it using SAX parser), the elements arrive
in strict document order. For example, when the XML data in Fig-
ure 3 is accessed in a streaming fashion, we will not see the element
c1 until we see all the a- and b-elements. As a result, TwigStack
is not directly applicable, because it must begin with valid cursor
elements—(a1, b1, c1) in this example.

Before we proceed, we need to formally define how streaming
XML data is accessed. Usually streaming XML data is encoded
as a series of SAX events, including start element (SE), attributes,
end element (EE) and text. In our work, text values are part of
the elements corresponding to extraction QNodes. Attribute events
can be simulated as element events. Without loss of generality,
we only consider SE and EE in our exposition. For example, if
the XML data tree in Figure 3 is served in a streaming format, we
would receive the following sequence of SAX events (with those
for x-elements omitted): SE(a1), SE(b1), EE(b1), SE(b2), EE(b2),
EE(a1), SE(a2), SE(b3), EE(b3), SE(c1), EE(c1) and EE(a2).

We can easily find a naı̈ve adaptation of TwigStack to handle
streaming XML: we parse the incoming XML, store the parsed data
in temporary files and then run TwigStack.

 292

However, there are two problems with the naı̈ve approach. First,
it causes unnecessary I/Os because all the incoming data needs to
be stored onto disk and then read back to run TwigStack. Second
and more importantly, it cannot handle continuous streaming XML,
which would require infinite temporary disk storage.

TwigStackTX: making cursors stream-aware
We observe that TwigStack can work with streaming XML data as
long as the cursor elements are ready when they are accessed in the
GetNext algorithm; there is no need to wait for all the stream-
ing data to be parsed, which is infeasible for continuous stream-
ing XML. The observation results in the TwigStackTX algorithm,
which is the same as TwigStack except that, when access to a cursor
element is attempted, we progressively parse the incoming XML
data until the cursor element is found from the input.

Take the example in Figure 3. In the first call of GetNext(qa),
the cursor elements Cqb , Cqc and Cqa are accessed in that order.
When Cqb is accessed, we parse elements a1 and b1. When Cqc is
accessed, we parse the data all the way to c1. Parsed elements are
buffered before they are returned to the main algorithm.

Although TwigStackTX seemingly needs to buffer all the ele-
ments as does the naı̈ve adaptation for Figure 3, it is more effective
in general. For example, even when the a2 element has many fol-
lowing sibling elements, TwigStackTX can start to work as soon
as c1 is encountered. The naı̈ve approach, however, still needs to
parse and store all the data.

5. StreamTX: A FULL-FLEDGED ALGORITHM
Although the TwigStackTX algorithm can handle streaming XML

by making cursors progressively prepare their next elements, it still
has potential buffering problems, which could be serious some-
times. For the example in Figure 3, TwigStackTX needs to buffer
both the two a-elements (a1 and a2) and the three b-elements (b1,
b2 and b3) before it reaches c1 and starts to do the matching and
consume the buffered elements. However we can know that a1 does
not participate in any result when we see the end-element event for
a1 (i.e., EE(a1)); we can remove a1 from buffer at that moment,
reducing the buffer size.

The aforementioned problem with TwigStackTX is caused by
the fact that each cursor aggressively searches for its next element
without considering other cursors. In other words, the cursors are
not coordinated.

In this section, we present StreamTX, a highly optimized algo-
rithm for tuple extraction from streaming XML. StreamTX is also
built on top of the holistic-matching paradigm as TwigStackTX.
However, a unique feature of StreamTX is that we coordinate the
cursors with blocking. At any point during the matching, we may
have some cursors do not have associated elements—that it, they
are blocked—but we may still be able to continue the matching
with non-blocked cursors and emit results. By doing so, incoming
elements are consumed as much as possible so that the buffering is
minimized, and the response of the tuple-extraction query is also
improved.

In Section 5.1, we present the basic StreamTX algorithm that
implements our idea of holistic matching with coordinated cur-
sors with blocking. We complete the algorithm in Section 5.2 by
proposing two techniques for pruning incoming elements so that
the buffering is minimized and at the same time the query perfor-
mance can be greatly improved.

5.1 Holistic matching with blocking cursors
To realize our idea of coordinated cursors with blocking, we re-

place GetNext (in TwigStackTX) with its streaming counterpart

GetNextStream, which can block itself and return a blocked
QNode if it cannot proceed without seeing more SAX events. To
implement such a processing paradigm, given each incoming SAX
event, we invoke the main algorithm, which repeatedly calls Get-
NextStream(root) to get the next element for processing until
GetNextStream(root) returns a blocked QNode.

5.1.1 Required data structures
We need some special data structures that support the processing

of streaming XML data:
• We propose to maintain dynamic element queues in place of the

static input lists for QNodes. Element queues can grow at the
tail as new elements come (in the form of SE events) and shrink
after the head element is processed.

• The cursor on an element queue either points to a valid element
in the queue or is in the blocked state. The latter occurs when the
element queue is empty.

• For those elements whose EE events have not arrived, their end
values are open. Interestingly we can still evaluate ancestor-
descendant and parent-child relationships with open-ended re-
gion codes as follows: given two elements u and v, if element u
is open-ended, then u is an ancestor element of v if u.start <
v.start; on the other hand, if u is not open-ended, we follow
the rule defined in Section 2.1 for the evaluation. When the EE
event of an open-ended element arrives, we can complete its re-
gion code.

5.1.2 The GetNextStream algorithm
Algorithm 2 lists the code lines of GetNextStream(q), which

returns a QNode either with a valid cursor element (as in GetNext(q))
or with a blocked cursor element.

Algorithm 2 GetNextStream(q)

1: if isLeaf(q) then
2: return q;
3: for each qi in children(q) do
4: q′i = GetNextStream(qi);
5: if not blocked(Cq′i) and q′i 6= qi then
6: return q′i;
7: end for
8: qmin = arg minq′i

{Cq′i→start};
9: qmax = arg maxq′i

{Cq′i→start};
10: while Cq→end < Cqmax→start do
11: Cq→advance();
12: end while
13: Decide which QNode to return based on the blocking states of

Cq , Cqmin and Cqmax . The actions are listed in Table 3.

The first half of GetNextStream (lines 1–7) is similar to GetNext
except that GetNextStream(qi) may return a blocked QNode
and we need to take care of such a case (line 5).

When GetNextStream(qi) returns a blocked QNode, it means
that the subtree rooted at qi is blocked and we are unable to further
process subtree qi before we see more SAX events. Notice that, not
only can qi cause the blocking of the subtree qi but other descen-
dant QNodes in the subtree can also cause blocking. We can use
any blocked QNode in the subtree qi as the result of GetNext-
Stream(qi) if the subtree qi is blocked.

In the second half of the algorithm (starting from line 8), we
need to return a QNode with a solution extension, as in GetNext.
The main difference from GetNext is that some child subtrees

 293

case# q qmin qmax action
c1 B B B q
c2 B B NB (impossible case)
c3 B NB B return qmin

c4 B NB NB return qmin

c5 NB B B return qmin

c6 NB B NB (impossible case)
c7 NB NB B (Cq→start < Cqmin→start)?

return qmax: return qmin

c8 NB NB NB (Cq→start < Cqmin→start)?
return q: return qmin

Table 3: The decision-table for Algorithm 2.

may be blocked and we should decide which QNode to return even
in the presence of such blocked subtrees. The underlying idea is
that we try the best to return a QNode (as the result of GetNext-
Stream(q)) with a solution extension. A blocked QNode is re-
turned only when we are unable to find such a solution extension
before we see more SAX events. In other words, we adopt a best-
effort approach. We describe how the best-effort approach is im-
plemened next.

After the recursive calls for child subtrees of q (after line 7), each
of the child subtree qi is associated with its GetNextStream(qi)
value q′i, which can be either the same as qi (i.e., the subtree has a
solution extension) or a blocked QNode (i.e., the subtree is blocked).
To perform meaningful comparison operations between blocked
and unblocked QNodes, we define the start and end values of the
cursor of a blocked QNode as follows:

DEFINITION 3. (start and end values of a blocked cursor) If
a QNode is blocked, then the start and end values of its (blocked)
cursor are defined as a constant value rmax. The value rmax is
greater than the start and end values of any unblocked cursor.

The intuition behind the above definition is that the next ele-
ment of a blocked cursor is always behind the current cursors of
the unblocked QNodes—i.e., the start and end values of the next
element are always greater than the start and end values of the
unblocked cursors.

The end value of an open-ended cursor can be defined in a sim-
ilar spirit:

DEFINITION 4. (end value of an open-ended cursor) If the
cursor of a QNode is open-ended, the end value of the cursor is
defined as the constant value rmax.

According to Definition 3, the function arg maxq′i
{Cq′i→start}

will return a blocked QNode if there exists one, because a blocked
QNode has the largest start value. The function arg minq′i

{Cq′i→start}
return a blocked QNode only if all the QNodes in question are
blocked.

We skip the elements for the QNode q if it cannot be an ances-
tor element of the Cqmax —that is, its end value is smaller than
Cqmax→start (lines 10–12). In the boolean expression at line 10,
both Cq and Cqmax can be blocked. The expression handles any
combination of the blocking conditions of these two QNodes in a
semantically correct way. For example, if Cq is blocked, the ex-
pression is always false because rmax cannot be smaller than
any start and end values. In other words, if Cq is blocked, we
are unable to advance the cursor Cq—which is obviously a correct
decision. As another example, if Cqmax is blocked, the expression
is always true until Cq is open-ended or blocked. It means that
all the closed cursors from Cq can be skipped if Cqmax is blocked.

As the last step, we decide which QNode to return based on the
blocking states of the three QNodes (q, qmin and qmax) in con-
sideration (line 13). Since each QNode can be either blocked or
unblocked. There are eight possible cases in total.

Table 3 is the action table for the eight cases. In the decision
table, ‘B’ stands for “the cursor is blocked” and “NB” stands for
“not blocked”. For example, the first line (i.e., case c1) states that
if all the three QNodes are blocked, we return a blocked QNode
q (we can also return qmin or qmax because blocked QNodes are
treated the same way when returned).

The rules in the action table guarantee that we return a blocked
QNode only when we are not able to return a QNode with a solution
extension before we see more SAX events. With such a best-effort
approach, the buffering due to blocking is minimized. For example,
under case c3 where both Cq and Cqmax are blocked, we can still
return the unblocked qmin to the main algorithm for processing.
The reason is that we know the current solution extension of qmin

cannot be extended with any (new) element for q. In contrast, we
need to continue to buffer Cqmin in TwigStackTX.

5.1.3 A running example
We proceed to show a running example of GetNextStream,

using the data and query in Figure 3.
The running statistics are shown in Table 4. The column headers

show the SAX events in their arriving order. Here, we use “x” to
stand for SE(x), “/x” for EE(x), and “init” for the initial state. The
rows starting with Cqa , Cqb and Cqc show the content of the corre-
sponding element queue after the incoming SAX event is added to
the corresponding element queue. An open-ended element is iden-
tified with a hat, such as â1. The head of an element queue is the
cursor element. If the queue is empty, the cursor is in a blocked
state.

init a1 b1 /b1 b2 /b2

Cqa - â1 â1 â1 â1 â1

Cqb - - b̂1 b1 b1, b̂2 b1, b2

Cqc - - - - - -
action - c5 c7 c7 c7 c7

/a1 a2 b3 /b3 c1 /c1 /a2

Cqa a1 â2 â2 â2 â2 - -
Cqb b1, b2 - b̂3 b3 b3 - -
Cqc - - - - ĉ1 - -

action (*) c5 c7 c7 (*) c1 c1

Table 4: The running statistics after each SAX event (explained
in Section 5.1.3).

After each SAX event, the GetNextStream(qa) is called by
the main algorithm of StreamTX. The action row shows which
case of the decision table is used to return a QNode in GetNext-
Stream(qa). For the example in Table 4, GetNextStream(qa)
always returns a blocked QNode except for the two columns with
whose actions are filled with “(*)”. We explain these two columns
next.

Given EE(a1), we first update the end value of the region code
of a1. When GetNextStream(qa) is called, since the Cqc is still
blocked, we will skip a1 (line 11 of Algorithm 2) and Cqa becomes
blocked; we return QNode qb with the element b1 (case 3 of the
decision table). Similarly, element b2 will be consumed too. As a
result, before the event SE(a2), all the element queues are empty.

When the event SE(c1) arrives, all the three cursors are now hold-
ing valid elements. The main algorithm calls GetNextStream(qa)

 294

three times to consume a2, b3 and c1 (the corresponding QNodes
of these cursor elements are returned by cases 8, 4 and 3, respec-
tively).

This example shows that StreamTX can consume incoming SAX
events greedily based on the decision table, so that the buffer to
hold parsed elements is kept as small as possible. In particular,
the maximum length for the element queue of QNode qa is one
although there are totally two a-elements. In contrast, both of the
two adaptations of TwigStackTX need to cache both a-elements.

5.2 Minimizing element queues with pruning
The GetNextStream algorithm in Section 5.1 exploits the re-

lationship between QNodes that are not blocked and QNodes that
are blocked, and consumes elements with best-effort without com-
promising the optimality of holistic twig joins. It however does not
guarantee the minimality of element queues, because the holistic
matching only looks at the head of each element list when search-
ing for a solution extension. Such a conservative approach may
cause long element queues unnecessarily.

We present two techniques to minimize the sizes of buffered el-
ement queues based on the following two observations:

O1: When a start-element event arrives, all its ancestor elements
have arrived.

O2: When an end-element event arrives, all its descendant elements
have arrived.
Based on O1, when a start-element event comes, we can check

whether the element has corresponding ancestor elements to satisfy
the query path. A query path is defined as the path from the root
QNode to the QNode corresponding to the element in question. For
example, for the QNode qb in Figure 3(b), its query path is //a/b#.
If the element does not satisfy the query path, it can be discarded
immediately. We call the technique query-path pruning.

Based on O2, when an end-element event arrives, if the element
does not have descendant elements to make up a match for the
subtree, we can not only prune the element itself but also prune
its descendant elements in the element queues. Since the pruning
is based on the criterion whether there exists at least one subtree
match for the closing element, We call the technique existential-
match pruning. There is no need to instantiate all the matching
instances for the closing element to implement the pruning.

5.2.1 Query-path pruning
We explain the idea behind query-path pruning with the example

in Table 4. In this example, both b-elements are buffered. If we
look closely, we can actually know (at the moment when SE(b2)
arrives) that element b2 does not have a parent a-element. The
reason is that when SE(b2) arrives, all the start-element events of its
ancestors must have arrived; from these arrived ancestor elements
(if any), we can make the judgement. In this particular example,
the only ancestor element is a1, which is not a parent element of
b2. As a result, we can discard b2 without adding it to the element
queue Cqb .

Although the query-path pruning only checks the ancestor-descendant
or parent-child relationship between an incoming element and its
parent element queue, we are virtually checking whether the ele-
ment has a match for the query path from the root QNode to the
QNode where the element belongs.

We can implement the query-path pruning in such a way that the
cost of the match-test for each element is always constant. The
reason is as follows. Given a new incoming open-ended element e
to QNode q, all its ancestors in the element queue of parent(q)
must be open-ended elements at that moment (and in fact, these

ancestor elements are nested within each other). As a result, we can
maintain a pruning stack of open-ended elements for each element
queue. An open-ended element is removed from the stack upon
the arrival of its corresponding EE event. To check whether an
element has a parent or ancestor element in the element queue of
parent(q), we check with the top element of the stack maintained
for the element queue of parent(q)—a constant cost.

THEOREM 1. The query-path pruning guarantees that each el-
ement e (either open or closed) buffered in element queues satisfy
its corresponding query path. That is, there exist ancestor elements
a1, a2, · · · , an such that the element path a1→a2→· · ·→an→e
satisfies the corresponding query path.

PROOF. Assume that each element currently in any element queue
satisfies the property stated in the theorem–that is, for each element
e, there exist ancestor elements for the element e to satisfy its query
path. Note that all the open-ended elements maintained in the prun-
ing stacks also belong to the element queues and thus satisfy the
same property by assumption. When a new element e arrives, we
will add it to the corresponding element queue if and only if there
exists an ancestor element a in the pruning parent stack such that
e and a satisfy the corresponding structural relationship between
them. By our assumption, there exist ancestor elements a1, a2,
· · · , an for element a to satisfy its query path, and thus, it is proved
that there exist ancestor elements a1, a2, · · · , an, a for the element
e to satisfy its query path.

5.2.2 Existential-match pruning
To implement the existential-match pruning, we need to keep

a matching flag for each non-leaf open-ended element in element
queues. The flag is a boolean value indicating whether the element
has matching descendant elements according to the query pattern.

To maintain the flag, whenever the SE of a leaf QNode arrives,
we update the flags of all the open-ended elements along the query
path. When the EE event of element e arrives, we are able to decide
whether element e has a solution extension based on the value of the
flag, because future elements cannot be descendant elements of e.
If the flag indicates that the element does not a solution extension,
we will simply discard it. As a result, the existential-match pruning
guarantees that for each closed element e buffered in any element
queue, there exists a solution extension rooted at e.

Without providing the implementation details, we show how the
existential-match pruning can help reduce element buffer sizes with
a very simple example.

EXAMPLE 3. Suppose the incoming XML is a path with three
elements: a1→a2→b1, where a1 is the root element and b1 is the
leaf element. The query is //a[b#]//c# (see, the pattern in Fig-
ure 3(b)). Table 5 shows the running statistics of StreamTX without
the existential-match pruning (see, Section 5.1.3 for basic explana-
tion of the table content). When the end-element event of a2 (i.e.,
/a2) arrives, a2 and b1 are still kept in the element queues. How-
ever, it is clear that element a2 does not have a subtree match due to
the missing c-element descendant element. If we have enabled the
existential-match pruning, then the flag for element a2 is false
Therefore, we can remove a2 and also the element b1 because a2

is the only ancestor element of b1. Under the extreme case where
a2 has many following sibling a-elements that only have b descen-
dants, we can use the existential-match pruning to prune these a-
elements, which otherwise would stay in the buffer until EE(a1)
arrives.

There are two points worth noting about the existential-match
pruning. First, we can apply the cascaded pruning of descendant

 295

init a1 a2 b1 /b1 /a2 /a1

Cqa - â1 â1,â2 â1,â2 â1,â2 â1,a2 a1,a2

Cqb - - - b̂1 b1 b1 b1

Cqc - - - - - - -
action - c5 c5 c7 c7 c7 (*)

Table 5: The running statistics without existential matching (ex-
plained in Example 3).

elements only if they do not match with other valid ancestor/parent
elements. Second, if the cascaded pruning is applicable (i.e., the
aforementioned condition is satisfied), it can be carried out effi-
ciently because all the pruned descendant elements are clustered at
the tails of the corresponding element queues.

We can maintain the flag to indicate the existence of a solution
extension with little CPU cost. The main reason is that this flag
only tests the existence of solution extensions; it does not enumer-
ate all possible solution extensions or output any solution exten-
sion.

6. PERFORMANCE EVALUATION
We study the performance of StreamTX for tuple extraction, in

comparison with other alternatives, and report some experiment re-
sults. Specifically, we study the impact of the pruning techniques
in Section 6.2. A comparison between StreamTX and its direct
competitors TurboXPath and TwigStackTX is conducted in Sec-
tion 6.3. In Section 6.4, we compare StreamTX with some XQuery
engines for tuple extraction. Finally, in Section 6.5, we show the
effectiveness of our memory minimization technique by comparing
with GCX, an in-memory XQuery engine that uses state of the art
buffer minimization techniques.

6.1 Experimental setup
All the experiments were conducted on a Pentium IV 1.80GHz

Thinkpad with 1GB RAM and an 80G hard drive, running Win-
dows XP. All the algorithms StreamTX, TwigStackTX and Tur-
boXPath are implemented with Microsoft Visual C++. In partic-
ular, the algorithms are built on top of a buffer manager and a disk
manager so that all disk accesses are done through the buffer man-
ager. For each element queue, we used a modified heap-file im-
plementation that supports removing elements from its head and
adding elements to its tail. We set the buffer manager to use 5MB
main memory for all the experiments. This size is large enough to
hold overhead memory required by our system while it is still too
small to hold the whole input data used in the experiments.

We used the Xerces-C++ (version 2.6.0) [26] for parsing input
XML documents into SAX events. Particularly, we used the pull-
based mode to parse XML documents—that is, our algorithms call
the parseNext function of the SAX parser to get the next SAX
event.

6.1.1 XML data
We used two real-world XML data sets: DBLP [8] and Treebank

[25]. As mentioned earlier, DBLP contains bibliographical data
and has relatively flat structure. The Treebank data comes from the
Penn Treebank Project, which annotates naturally-occurring text
for linguistic structure. Tags in the Treebank data are recursive and
highly nested.

The DBLP data is about 180MB in size, containing all the inpro-
ceedings entries. The Treebank data is of 160MB in size.

6.1.2 Queries tested
Table 6 lists the eight tuple-extraction queries used in our exper-

iments. The first three are DBLP queries and the remaining five are
for Treebank data.

Name Query
QD1 /dblp/inproceedings[title#]/author#
QD2 /dblp/inproceedings[title# and booktitle#]/author#
QD3 /dblp/inproceedings[title# and booktitle# and year#]/author#
QT1 //S[.//VP[.//JJ][.//VBD]]//NP[.//WP]//DT#
QT2 //S//NP[.//IN][.//VBN]//JJ#
QT3 //S[.//VBP][.//SBAR]//S//NP[.//IN]//DT#
QT4 //S[.//NP[.//DT][.//NN]]//PP[.//TO]//NN#
QT5 //S[.//S][.//VP[.//VBD]]//NP[.//IN]//DT#

Table 6: The positive queries used in our experiments: three
DBLP queries and five Treebank queries.

The queries in Table 6 are positive queries in that they all re-
turn non-empty results. To test the performance of different ap-
proaches under selective queries, we created a negative query (an
extremely selective query) from each positive query by changing
the first tag to a dummy tag. For example, for QD1, we change
the inproceedings tag to dummy to create the corresponding
QDN1. Such extremely selective queries can be frequently used for
heterogeneous XML data where users do not know XML schemas
in advance.

6.2 Impact of the pruning techniques
We are interested in learning the impact of the pruning tech-

niques (see, Section 5.2) to the basic StreamTX algorithm, with
respect to query complexity and selectivity.

The baseline of our study is the StreamTX algorithm with no
pruning. The results are presented using the running-time ratio be-
tween the baseline algorithm and the StreamTX algorithm with the
specified pruning technique(s). The common time used by the SAX
parser is excluded to mimic a streaming environment. For exam-
ple, the baseline algorithm used 168 seconds for the query QD1 and
76 seconds was spent by SAX parsing. So the baseline time is 92
seconds.

Table 7 shows the comparative results for the 180MB DBLP
data, and Table 8 is for the 160MB Treebank data. The num-
bers show the speedup from the pruning techniques (QPP, EMP
or both) over the baseline algorithm (without pruning). QPP stands
for query-path pruning, EMP stands for existential-match pruning,
NONE stands for the baseline StreamTX and BOTH means both
pruning techniques are applied.

QD1 QD2 QD3 QDN1 QDN2 QDN3
QPP/NONE 0.97 0.96 0.96 10.13 13.16 22.05
EMP/NONE 0.95 0.95 0.94 0.66 0.60 0.62

BOTH/NONE 0.94 0.95 0.94 5.77 13.16 20.79

Table 7: Speedups of DBLP queries: pruning / no pruning.

There are two findings about the query-path pruning (QPP):
• QPP is very effective for negative queries. For example, the

speedup is 22 times for QDN3. The reason is that, since the top-
most tag (i.e., dummy) in the negative queries does not match
any incoming element, elements designated to all the element
queues are pruned. The running time with QPP is less than one
second for 180MB DBLP data.

• The overhead of the QPP pruning is small. We can see it from
the results for positive queries, for which the QPP prunes much

 296

QT1 QT2 QT3 QT4 QT5
QPP/NONE 0.86 1.03 1.13 1.02 0.99
EMP/NONE 0.65 0.78 0.82 0.74 0.76

BOTH/NONE 0.67 0.76 0.85 0.82 0.80
(a) Positive queries

QTN1 QTN2 QTN3 QTN4 QTN5
QPP/NONE 11.20 7.25 16.26 7.13 8.13
EMP/NONE 0.72 0.69 0.65 0.68 0.74

BOTH/NONE 9.45 4.17 12.17 6.08 6.73
(b) Negative queries

Table 8: Speedups of Treebank queries: pruning / no pruning.

fewer elements. For most queries, using QPP does not slow
down the algorithm. The only case is QT1, for which the ra-
tio is 0.86, meaning that the baseline algorithm is a little faster
than using the QPP.
The results show that the existential-match pruning (EMP) does

not contribute any speedup to the queries tested. Conversely, the
EMP pruning slows down the running time. The negative effect
of EMP is more noticeable for negative queries than for positive
queries (0.60 for QDN2). Given that the absolute running times for
negative queries are much smaller than those for positive queries
(the baseline algorithm needs 92 seconds for QD1 but only 9 sec-
onds for QDN1), the overhead of EMP becomes more noticeable.

It is interesting to note that combined impact of these two prun-
ing techniques is not a simple summation of the individual impacts.
For example, for the negative queries, since the QPP dominates, the
negative impact of EMP is almost negligible.

Although the EMP did not bring speedup to StreamTX for the
tested queries, it is still an important part of the StreamTX al-
gorithm because it guarantees the “goodness” of elements in the
queues and helps avoid worst-case scenarios in buffer sizes. It is up
to the applications to decide whether to turn on the EMP based on
query/data statistics and memory availability. For example, we may
know that the existential-match pruning can be turned off without
penalty for the DBLP and Treebank data after running a few exam-
ple queries.

In the following experiments, we use the results of StreamTX
that uses the query-path pruning only.

6.3 Comparison with direct competitors
We also ran all the positive and negative queries using TurboX-

Path and TwigStackTX. The comparative results are displayed in
Figure 5.

The comparative performance between StreamTX and TurboX-
Path can be summarized as follows:
• Positive queries Not surprisingly, the speedup of StreamTX for

the nested Treebank data is greater than that for the plain DBLP
data. In particular, StreamTX is about 1.5 times faster than Tur-
boXPath while it can be up to 11 times faster for Treebank. The
underlying reason for the difference is that TurboXPath is opti-
mized for plain data and does not handle recursions effectively.
Specifically, whenever an incoming element matches with a QN-
ode q, TurboXPath creates so-called work-array (WA) entries for
the child QNodes of q. If multiple incoming elements match
with the same QNode, WA entries are repeatedly created for each
match. For QT1 which only has 7 QNodes, TurboXPath created
up to 197 WA entries during the match. The large number of
duplicate WA entries for same QNodes brings significant over-
head to the processing. In contrast, StreamTX handles recursions

1

3

5

7

9

11

QD1 QD2 QD3 QT1 QT2 QT3 QT4 QT5

R
at

io
 o

f r
un

ni
ng

 ti
m

es

TurboXPath/StreamTX
TwigStackTX/StreamTX

(a) Positive queries.

0

50

100

150

200

QDN1 QDN2 QDN3 QTN1 QTN2 QTN3 QTN4 QTN5

R
at

io
 o

f r
un

ni
ng

 ti
m

es

TurboXPath/StreamTX
TwigStackTX/StreamTX

(b) Negative queries.

Figure 5: Speedups of our StreamTX over TurboXPath and
our TwigStackTX.

gracefully with open-ended region codes and inter-linked stacks
of elements (in the main algorithm). With inter-linked stacks,
we can encode potentially exponential number of results with a
linear data structure.

• Negative queries The biggest speedup numbers of StreamTX
come from negative queries (e.g., 110 times for QTN3). Al-
though TurboXPath spends less time for negative queries (about
half of that for the corresponding positive queries), StreamTX
is more effective in reducing running time for negative queries,
primarily due to the query-path pruning.

6.3.1 Summary of StreamTX vs. TurboXPath
StreamTX has demonstrated superior performance advantage over

TurboXPath, both for positive queries and negative queries. The
advantage is particularly significant for negative queries.

Next, we analyze the relative performance between StreamTX
and TwigStackTX:
• Positive queries For DBLP queries, StreamTX is about 1.4 times

faster than TwigStackTX. The main reason is that, after the first
(and the only) dblp element is consumed, the cursor corre-
sponding to the QNode /dblp in TwigStackTX greedily searches
for the next nonexistent dblp element. During the process, all
the encountered elements are buffered, causing buffer overflow
and disk I/Os. The same problem does not exist for the Treebank
data in which elements corresponding to QNodes are almost uni-
formly interleaved and the match can start after a moderate num-
ber of elements are buffered; no disk I/O is involved. As a result,
TwigStackTX and StreamTX are almost the same for positive
Treebank queries.

• Negative queries StreamTX is significantly better than TwigStackTX
for negative queries. In particular the speedup reaches up to

 297

170 times for QDN3 (StreamTX takes 790 milliseconds while
TwigStackTX takes up to 113 seconds). The cause of the results
is also clear: since the dummy tag in the negative queries does
not have corresponding elements, when TwigStackTX searches
for the first dummy tag, actually all the incoming data is buffered.
Such behavior is unacceptable if the XML stream is continuous.

6.3.2 Summary of StreamTX vs. TwigStackTX
StreamTX is much more efficient and robust than TwigStackTX.

The TwigStackTX algorithm becomes problematic when the arrival
rates of elements for element queues are very different—that is,
there are many elements to some element queues while there are
very few elements to some other element queues. In such cases,
the high-rate elements are extensively buffered regardless of query
selectivity. In contrast, StreamTX may be able to consume these
high-rate elements even in the absence of some low-rate elements.
The negative queries in our experiments are one such example where
the element arrival rate for the dummy QNode is zero.

6.4 Comparison with streaming XQuery en-
gines

We also compare StreamTX with some XQuery engines that are
publicly available. Specifically, we use Galax (version 0.5.0) [11],
Quip (version 2.2.1.1) [21], MonetDB/XQuery (version 0.10.2) [19]
and Saxon for .NET (version 8.7) [22].

We note that TurboXPath was compared to many other approaches
and showed performance advantage over them [15]. In particular,
it is experimentally shown that TurboXPath performs much better
than the XSQ streaming engine [20].

We ran all these engines with different input data sizes. We get
the data sets of smaller sizes by extracting an appropriate portion of
data from the full data set. We show the results for QD3 and QT1;
the results for other queries are analogous.

Figure 6(a) shows the timings for the DBLP data sets. We ob-
serve that StreamTX scales almost linearly with the input data sizes.
Other engines, except for Saxon, failed at some input data sizes due
to different reasons: (Galax, 20MB, finished without any output),
(MonetDB/XQuery, 60MB, exit with “operation failed”), (Quip,
20MB, out of memory).

Saxon performed quite well for smaller DBLP data sets. How-
ever for 180MB input data, its performance degraded significantly.
Saxon builds an in-memory DOM tree for the whole data, and
therefore cannot process large data sets or streaming data.

We show the timings for QT1 in Figure 6(b). Again, StreamTX
can gracefully handle large input data without any problem, while
all the tested engines failed at some point for the reasons listed be-
low: (Galax, 80MB, finished without output), (MonetDB/XQuery,
80MB, system crash), (Quip, 4MB, out of memory), (Saxon, 320MB,
out of memory).

In fact, we have tested StreamTX for large data sets of GB-range
without any problem.

6.5 Comparison with state of art buffer mini-
mization technique

To show the effectiveness of our memory minimization tech-
nique, we compare with GCX 1.0 1 [23, 16], a state of the art
in-memory XQuery engine. For a fair comparison, we modified
GCX to use the same parser (i.e., Xerces-C++) used by StreamTX.
The hardware used for these tests consists of an Intel Core 2 Quad
2.4GHz PC with 2GB RAM, running Windows Vista. We note that

1The source code can be downloaded from http://dbis.infor-
matik.uni-freiburg.de/index.php?project=GCX.

0

100

200

300

400

500

600

0 50 100 150 200

DBLP data size (MB)

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

Galax

MonetDB/XQuery

StreamTX

Quip

Saxon

(a) DBLP with the query QD3.

0

50

100

150

200

250

300

0 100 200 300

Treebank data size (MB)

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

Galax

MonetDB/XQuery

StreamTX

Quip

Saxon

(b) Treebank with the query QT1.

Figure 6: Comparison of our StreamTX with XQuery engines.

we used a different physical environment to show the stability of
our system in different hardware environments.

We measure memory footprint sizes as well as overall running
times of both systems for different input data sizes. We show the
results for QD3 and QT1; the results for other queries are analo-
gous.

Figure 7(a) shows memory footprint sizes for DBLP data sets.
Both systems required constant memory size. This means that the
buffer minimization technique of GCX works as good as StreamTX
for very flat XML data such as DBLP. However, as in Figure 7(b)
showing memory footprint sizes for Treebank data sets, GCX re-
quired about the same memory size as the input XML file size
whereas StreamTX used only 5 Mbytes memory for its buffer man-
ager and 1∼4 Mbytes for its execution code and stack. This in-
dicates that GCX is not scalable for large (recursive and highly
nested) XML files.

Figure 8(a) shows running times for DBLP data sets. StreamTX
performed marginally worse than GCX in terms of elapsed time.
However, considering that StreamTX is a disk-based engine using
a buffer manager as opposed to GCX which is an in-memory en-
gine, StreamTX showed fast performance results for flat XML files.
Figure 8(b) shows running times for Treebank data sets. StreamTX
performed at least two times faster than GCX. If the size of an in-
put XML file is larger than the physical memory size of the system,
GCX would perform much slower than StreamTX. As mentioned
in Section 3, in GCX, full XPath expressions with multiple extrac-
tion points need to be expressed using the for-clause in XQuery for
processing. However, a series of nested for-loops limits the oppor-
tunities to optimize the query as can be exploited in the holistic
approach of StreamTX.

7. CONCLUSION AND FUTURE WORK
We have studied the problem of extracting flat tuple data by

means of pattern matching from streaming XML data. Our contri-

 298

������������
�� �	
 �� �

��
��� �����������

����� �� �� ��� ��� ���� � �	!"� #$%&'()(*+,- ./$0
(a) DBLP with the query QD3.

���������������
��� ��	
� �	 �

� ��� �����������

������ �� �� ��� ����
��� !� "#$$%&'()&*& +,-$./01
(b) Treebank with the query QT1.

Figure 7: Memory footprint sizes for StreamTX and GCX.

bution is StreamTX, an efficient and scalable algorithm for imple-
menting such tuple extraction. We approached the tuple-extraction
problem from an angle different from that most exiting work has
taken: we started from the scalable holistic-matching paradigm
originally designed for parsed XML data and adapted it for han-
dling streaming XML with novel block-and-trigger mechanism and
pruning techniques. The outcome is an algorithm that guarantees
optimality in terms of input/output sizes and needs only minimal
buffer sizes for incoming data. Our experiments demonstrate very
encouraging performance benefits of StreamTX compared to the
existing state-of-the-art, and we expect the adoption of StreamTX
by high-performance systems.

Real-world applications motivate us to consider more flexible
tuple-extraction problems such as optimizing the matching of mul-
tiple tuple-extraction queries, handling optional extraction nodes,
extracting XML subtrees as values (in contrast to direct element
texts), and combining texts of repeatable sibling elements into one
extraction field. Our future work should address these practical
problems.

8. REFERENCES
[1] M. Altinel and M. J. Franklin. Efficient filtering of XML

documents for selective dissemination of information. In
VLDB, 2000.

[2] A. Balmin, T. Eliaz, J. Hornibrook, L. Lim, G. M. Lohman,
D. Simmen, M. Wang, and C. Zhang. Cost-based
optimization in db2 xml. IBM Syst. J., 45(2):299–319, 2006.

[3] A. Berglund, S. Boag, D. Chamberlin, M. F. Fernández,
M. Kay, J. Robie, and J. Siméon. XML path language
(XPath) 2.0. Technical report, W3C Working Draft, 2003.

[4] N. Bruno, N. Koudas, and D. Srivastava. Holistic twig joins:
Optimal XML pattern matching. In SIGMOD, 2002.

[5] S. Chen, H.-G. Li, J. Tatemura, W.-P. Hsiung, D. Agrawal,
and K. S. Candan. Twig2stack: Bottom-up processing of

����������
�� ��	
���
�

� �����������

����� �� �� ��� ��� �����

�
 � !"#$%&'& ()*+ ,-".
(a) DBLP with the query QD3.

������
������

��� 	
� �

��
� �� �����������

����� �� �� ��� �������� �� � !!"#$% &#'# ()*! +,-.
(b) Treebank with the query QT1.

Figure 8: Comparison of our StreamTX with GCX.

generalized-tree-pattern queries over XML documents. In
Proc. of the 32nd Int’l Conference on Very Large Data
Bases, pages 283–294, Seoul, Korea, September 2006.

[6] T. Chen, J. Lu, and T. W. Ling. On boosting holism in XML
twig pattern matching using structural indexing techniques.
In SIGMOD, 2005.

[7] Y. Chen, S. B. Davidson, and Y. Zheng. An efficient XPath
query processor for XML streams. In Proc. of the 22nd Int’l
Conference on Data Engineering, pages 79–79, Atlanta, GA,
April 2006.

[8] DBLP. http://dblp.uni-trier.de/xml/.
[9] P. F. Dietz. Maintaining order in a linked list. In Proc. of the

18th Annual ACM Symposium on Theory of Computing,
1982.

[10] D. Florescu, C. Hillery, D. Kossmann, P. Lucas, F. Riccardi,
T. Westmann, M. J. Carey, A. Sundararajan, and G. Agrawal.
The BEA/XQRL streaming XQuery processor. In VLDB,
2003.

[11] Galax (version 0.5.0). http://www.galaxquery.org/.
[12] L. M. Haas, M. A. Hernández, H. Ho, L. Popa, and M. Roth.

Clio grows up: From research prototype to industrial tool. In
SIGMOD, 2005.

[13] H. Jiang, H. Ho, L. Popa, and W.-S. Han. Mapping-driven
xml transformation. In C. L. Williamson, M. E. Zurko, P. F.
Patel-Schneider, and P. J. Shenoy, editors, WWW, pages
1063–1072. ACM, 2007.

[14] H. Jiang, W. Wang, H. Lu, and J. X. Yu. Holistic twig joins
on indexed XML documents. In VLDB, 2003.

[15] V. Josifovski, M. Fontoura, and A. Barta. Querying XML
streams. VLDB Journal, 2005.

[16] C. Koch, S. Scherzinger, and M. Schmidt. The gcx system:
Dynamic buffer minimization in streaming xquery
evaluation. In VLDB, pages 1378–1381, 2007.

 299

[17] C. Koch, S. Scherzinger, N. Schweikardt, and B. Stegmaier.
Schema-based scheduling of event processors and buffer
minimization for queries on structured data streams. In
VLDB, 2004.

[18] X. Li and G. Agrawal. Efficient evaluation of XQuery over
streaming data. In VLDB, 2005.

[19] MonetDB/XQuery (version 0.10.2).
http://monetdb.cwi.nl/XQuery.

[20] F. Peng and S. S. Chawathe. XSQ: A streaming XPath
engine. TODS, 30(2), 2005.

[21] Quip (version 2.2.1.1). http://www.softwareag.com.
[22] Saxon for .NET. http://saxon.sourceforge.net.
[23] M. Schmidt, S. Scherzinger, and C. Koch. Combined static

and dynamic analysis for effective buffer minimization in
streaming xquery evaluation. In ICDE, 2007.

[24] D. Srivastava, S. Al-Khalifa, H. V. Jagadish, N. Koudas,
J. M. Patel, and Y. Wu. Structural joins: A primitive for
efficient XML query pattern matching. In ICDE, 2002.

[25] Treebank. http://www.cis.upenn.edu/ treebank/.
[26] Xerces-C++ (version 2.6.0). http://xml.apache.org/xerces-c/.
[27] C. Zhang, J. F. Naughton, D. J. DeWitt, Q. Luo, and G. M.

Lohman. On supporting containment queries in relational
database management systems. In SIGMOD, 2001.

 300

