
Formally Verifiable Features in Embedded Vehicular Security Systems

Gyesik Lee, Hisashi Oguma, Akira Yoshioka, Rie Shigetomi, Akira Otsuka and Hideki Imai

Abstract— In an overview paper called State of the Art:
Embedding Security in Vehicles, Wolf et al. give a general state-
of-the-art overview of IT security in vehicles and describe core
security technologies and relevant security mechanisms. In this
paper we show that a formal analysis of many of the related
properties is possible. This indicates that many expected aspects
in the design of vehicular security can be verified formally. Our
presentation is based on a recent paper by the second author et
al. [13] where a new attestation-based vehicular security systems
is represented. We briefly summarize the general properties
required in the design of vehicular IT security and verify
that the new architecture given by Oguma et al. suggests new
desirable security aspects.

I. INTRODUCTION

In the past four decades, the number and sophistication of
electronic systems in vehicles have greatly increased. Today,
the cost of the electronics in commonly-used vehicles can
amount to more than 23 percent of the total manufacturing
cost. Analysts estimate that more than 80 percent of all
automotive innovations now stems from the research on
electronic devices, cf. [8].

Most vehicle services are implemented with such elec-
tronic devices, which are called electronic control units
(ECUs). All of the ECUs in a vehicle can communicate with
each other through a controller area network (CAN). So-
phisticated services, such as electronic stability control and
anti-lock braking system, are implemented with collaborating
ECUs. Consequently, the size of the software in vehicles has
increased and the dependency among the ECUs has become
complicated.

Furthermore, the danger of facing harmful effects is also
increasing which can be caused by software bugs. An exam-
ple of this kind of problem is the engine stall trouble resulted
from an issue with the software in ECUs, cf. [16]. As well as
such kind of ECUs, the software of navigation systems also
is prone to software bugs [14]. Future navigation system will
work with AT gear shift control, suspension damping force
control, or driver’s brake operation assistance [1]. If a media
from which a navigation system loads map information has
malware, it may attack the navigation system by abusing

For Gyesik Lee, this work was partially supported by the Engineering
Research Center of Excellence Program of Korea Ministry of Education,
Science and Technology(MEST) / Korea Science and Engineering Founda-
tion(KOSEF), grant number R11-2008-007-01002-0.

G. Lee is with ROSAEC Center, Seoul National University, Korea
gslee@ropas.snu.ac.kr

H. Oguma and A. Yoshioka are with Toyota InfoTechnology Center, Co.,
Ltd, Japan {oguma, yoshioka}@jp.toyota-itc.com

R. Shigetomi, A. Otsuka and H. Imai are with Research Cen-
ter for Information Security, National Institute of Advanced Industrial
Science and Technology, Japan {rie-shigetomi, a-otsuka,
h-imai}@aist.go.jp

a software bug and vehicle systems such as brake operation
may receive fake messages from tampered navigation system.
Besides technical deficiency, we have to consider the issue
of the network security protocols for in-vehicle systems.

Network security protocols are usually based on crypto-
graphic primitives, and their analysis is one of the most
challenging tasks because it involves many subfields such
as cryptosystems, signature schemes, secure hash functions,
transfer mechanisms, and secure multiparty function evalu-
ation methods. Furthermore, it is vulnerable to intruders in
the network who may have control of one or more network
principals. Therefore, network protocols are often subject to
non-intuitive attacks. A security protocol must be able to
achieve its goals in face of these hostile intruders.

It seems nowadays inevitably required to verify that a
security protocol satisfies its requirements based on a formal
method which is based on a combination of a mathematical
or logical model of a system and its requirements. Actually,
the application of formal methods to cryptographic protocol
analysis has been investigated since almost 30 years, cf.
Meadow [11]. An important area is the development of
tools for automatic verification of security protocols allowing
unbounded number of sessions.

In this paper, we choose the attestation scheme presented
in Oguma et al. [13] as an example of formal method
verification using Blanchet’s ProVerif [3]. We have assumed
that vehicles have connecting capability to other vehicles,
road, as well as the Internet to supply an extensive number
of services. At conventional remote attestation scheme, it
is necessary to communicate with a verification server for
attestation. However, satisfying such a requirement is hard
because of a possible limitation of the mobility capability,
e.g., in tunnels or underground parking spaces. The purpose
of our attestation scheme is keeping software of vehicle
system healthy. In this scheme, we let several rich-asset
ECUs be Masters. A Master ECU verifies other ECUs in
the role of a verification server.

Keeping software healthy under our attestation scheme, we
first have to verify whether our attestation scheme logically
satisfies correctness or not. In this paper, we show the
verification result of our attestation scheme based on a formal
method.

The rest of this paper is organized as follows. Section II
gives a brief explanation of the attestation based security
architecture proposed in Oguma et al. [13]. Section III
describes the KPS cryptographic basis used for the new
security architecture. In Section IV, we give a brief summary
of required features in the design of vehicular IT security,
followed by a brief introduction to automatic protocol verifi-

29-1-3-1

Copyright Ⓒ 2009 IEEE

cation in Section V. In Section VI, we give a detailed, formal
analysis of the security protocol given in [13] and show that
many security features can be verified formally.

II. RELATED WORK: ATTESTATION SCHEME FOR
IN-VEHICLE SYSTEM

In a near future, the software architecture for vehicles
will be standardized like PC/AT compatible machines[2].
On the other hand, technological innovations will enable
vehicles to achieve both inter-vehicle and road-to-vehicle
communications. Moreover, vehicles will be able to connect
to the Internet to supply an extensive number of services.
Given this situation, it is no exaggeration to claim that future
vehicle systems will suffer from a wide variety of threats. If
an ECU is in trouble because of a malicious software running
on it, it might not work well and cause traffic disaster.

One plausible way to keep software healthy with which we
can easily come up is adopting remote attestation scheme for
vehicular security systems. Because, however, vehicles will
then be equipped with mobility capability, we will be faced
with a correspondingly hard task to keep stable connection
with verification server and also to apply that scheme without
any modification.

In [13], the second author et al. have proposed an
attestation-based security scheme for in-vehicle communi-
cation as an alternative way of dealing with this issue. They
assume that a novel vehicle will have many ECUs with
poor asset and some with rich asset. They let rich-asset
ECUs be Masters. A Master ECU verifies other ECUs in
the role of a verification server. Furthermore, they adopt
secret-key cryptography based on Key Predistribution System
(KPS), a.k.a. Matsumoto-Imai scheme [10], and they let
each pair of ECUs have a separate key. By adopting this
scheme for communications between a server ECU and
client ECUs, they have achieved both safety and low-latency
communication between arbitrary ECUs under the scheme.

III. KPS AND AN ATTESTATION-BASED SECURITY

In practice, establishing a cryptographic system is usually
done by a mixture of symmetric and asymmetric cryptogra-
phy: a public-key scheme for key establishment and then a
symmetric-key scheme for encrypted communications.

A symmetric-key encryption scheme provides a high se-
curity while storing secret keys for reuse is one of the main
issues to be solved. Furthermore, key-management could be
a difficult task when there are different keys for each pair of
users. On the other hand, a public-key encryption scheme
is useful for key establishment because of the simplicity
in storing secret keys. The main disadvantage of using
a public-key encryption scheme for vehicular embedded
systems is its poor throughput performance because intensive
arithmetic operations are necessary. Hence, it would not be so
effective to use public-key encryption schemes for vehicular
IT security where, besides safety and low-latency, low cost
plays an important role because of a large amount of device.

A nice suggestion to solve this kind of dilemma was made
by Matsumoto and Imai. In their seminal paper [10], the so-
called Key Predistribution systems (KPS) are introduced. A

KPS consists of a KPS center and users who want to share
a common key with the center. The KPS center possesses
an algorithm which generates an individual secret algorithm
for each user. These individual algorithms are predistributed
by the center to the users and allow each user to calculate
a common key from the ID of any other counterpart of a
communication. That is, in KPS, no interaction between two
participants is required in advance to share communication
keys. Below is a formal definition.

A KPS consists of a center and multiple players Pi (i =
0, 1, 2, ...). Given a prime number q and a security parameter
T , the management center (i.e., vehicle manufacturer) ran-
domly generates an (T +1)×(T +1) symmetric matrix A =
(aij), i.e., aij = aji, and defines a bi-variate polynomial,

F (x, y) =
T∑

i,j=0

aij xi yj (mod q).

The center delivers a key generation algorithm, Fi(x) =
F (x, i) to each player Pi. A shared key between any two
players Pi and Pj is then Fi(j) (resp. Fj(i)) generated by
Pi (resp. Pj). It provides a symmetric-key encryption scheme
because Fi(j) = Fj(i) holds.

In a KPS, only privileged users can compute the decryp-
tion key for the encrypted data, and no other users can obtain
any information about the key. This will be proved formally
in Section VI. We refer to [12], [7], and [15] for an extensive
reference list about KPS.

The fact that KPS can be a good alternative for the
design of a vehicular security is well demonstrated in Oguma
et al. [13] where a KPS for communication between a
Master ECU and many other ECUs is established instead
of using a public-key encryption scheme. For a tamper-free
communication between ECUs, an attestation-based security
architecture is proposed instead of adopting TPM.

A vehicle manufacturer (resp. a Master ECU) plays the
center role while each ECU (resp. each poor-asset ECU) in
a vehicle plays a user role. For each pair of ECUs a separate
key is used. A Master ECU executes attestation process to
verify the authenticity of other ECUs. That is, in addition to
key-possession check, there is also a test for authorization
process by checking whether there is a software hash-code
in a list of valid hash-codes. Some basic experiments in [13]
showed that KPS is much faster than public-key encryption
schemes such as RSA or even elliptic carve cryptography.
In this way, one could solve the problems which could
arise with an implementation with TPM, i.e. cost-sensitivity
rendered by many embedded ECUs with low capacity, low
latency, and communication in exceptional cases.

IV. EMBEDDED VEHICULAR SECURITY

Combining cost-sensitivity with diverse computational ca-
pabilities of ECUs is a main hurdle to be overcome in the de-
sign of embedded devices. High security, in general, requires
large memory and high performance of calculation. But
adding complex security solutions could be too expensive
because of high quantity of ECUs. Hence the computational

29-1-3-2

Copyright Ⓒ 2009 IEEE

ability, and the memory-capacity of processors and their
production cost are the main factors to be considered in an
efficient way. This explains why the vehicular IT basically
belongs to the field of embedded security.

Guaranteeing security and privacy of in-vehicle commu-
nications is a difficult task because it must embed security
features in stringent real-time protocols for time-constrained
vehicle systems. In particular, one expects more efficiency in
time and procedure as well as in production cost. It is also
different from conventional policies for computers. Storing
all the codes and processing units in a tamper-free device is
too costly, and such a device is not adequate for updating
software which is a critical factor for security implementa-
tion. Both for flexible maintenance and safe code execution
it is more feasible to apply remote attestation like Trusted
Platform Module (TPM) of the Trusted Computing Group
(TCG), cf. [17]. A verification server, located away from the
target platform, collects and checks the measurement results.
However, TPM is not so feasible for vehicular IT security
although it provides high level security. This is because most
ECUs are equipped with few resources and vehicle systems
generally require low latency,1 and there are situations where
vehicles can not communicate with the verification server for
attestation schemes.

There are three kinds of communication where vehic-
ular IT security should be applied: in-vehicle communi-
cation, vehicle-to-vehicle communication, and vehicle-to-
infrastructure communication. In Wolf et al. [18] a list of
some points required in common for secure communication
is mentioned:

(P1) Only valid controllers can communicate.
(P2) All unauthorized messages are to be processed

separately or immediately discarded.
(P3) Every communication is based on encryption and

authentication in order to provide confidentiality
and authenticity of exchanged data.

(P4) A single successful attack should not endanger the
whole system.

(P5) It is desirable that a software security module can
be verified formally.

It is one of the main goals of this paper to show that a
formal verification of the four features (P1) ∼ (P4) is not
just desirable, but can be realized using an existing tool
for fully automatic verification of security protocols. Here
we use ProVerif [3], but any other tool with corresponding
capability will do the same thing.

V. AUTOMATIC VERIFICATION OF SECURITY PROTOCOLS

Automatic or semi-automatic protocol verification for
bounded or unbounded number of sessions has become the
main object of formal analysis of security protocols. In
case of unbounded number of sessions, it is typically based
on language-based techniques such as typing or abstract
interpretation. There are many (semi-) automatic tools for

1Low latency allows human-unnoticeable delays between an input being
processed and the corresponding output providing real time characteristics.

protocol verification. We chose for ProVerif to give a for-
mal verification of the basic security features mentioned in
Section IV.

ProVerif [3] is a leading automatic cryptographic protocol
verifier in the so-called Dolev-Yao model [5]. Protocols are
written by Horn clauses, and ProVerif checks full automati-
cally whether some Horn clauses are derivable from the Horn
clauses representing the protocol. It is sound in the sense
that the security properties that it proves are really true. But
there could be false attacks because of some approximations.
Approximations occur during the translation of protocols
written in the applied pi-calculus into Horn clauses. The
idea is based on a simple correspondence between traces
of communications and exchanges of information: received
messages as the antecedents and sent message as the con-
clusion of a Horn clause.

ProVerif can handle many cryptographic primitives like
shared- and public-key cryptography (encryption and signa-
tures), hash functions, and Diffie-Hellman key agreements.
Thanks to some approximations, it can handle an unbounded
number of sessions of the protocol and an unbounded
message space and can prove secrecy, authentication, strong
secrecy, equivalences between processes that differ only by
terms.

We refer to Blanchet [3] for a good comprehensive
introduction into ProVerif. We also refer to Fournet and
Abadi [6] which gives the analysis of a protocol for private
authentication in the applied pi-calculus. A brief overview
of other verifiers can be found e.g. in Cremers [4].

VI. A FORMAL VERIFICATION OF SECURITY FEATURES

A. Attestation protocol

Each ECU should be able to check the other ECU’s
identities and the genuineness of the received messages, i.e.
whether the communication process is carried out by genuine
ECUs. This is indeed one of the most basic and crucial
points in designing a security architecture as mentioned in
Oguma et al. [13]: (a) Each ECU communicates only with
ECUs whose software configurations have been certified by
the manufacturer. (b) In all communications between any
two ECUs, the authenticity of each participating ECU and
the integrity of each (possibly encrypted) message should be
checkable. (c) All of this should work with replaced ECUs
and remotely updated software.

In this section, we give a formal analysis of the security
architecture in [13] and show thereby that all of the afore-
mentioned requirements can be verified formally by ProVerif.

The proposed architecture consists of a center C, a Master
ECU E0(:= Em), and N -many ECUs Ex, x ∈ {1, ..., N}. In
the rest of this paper x ranges over natural numbers up to N .
During the production of a vehicle, each ECU is initialized
by the center which possesses the pairs of a serial number
and a key of each ECU: The Master ECU Em, e.g., gets
and stores a KPS key-generation algorithm F0(·) and a list
of acceptable hash values for a type of vehicle where this
Master ECU is implemented, (version,H(ROMx))x. Each

29-1-3-3

Copyright Ⓒ 2009 IEEE

ECU Ex gets and stores the hash value H(ROM0) of the
Master ECU and the key-generation algorithm Fx(·).

Every time when a vehicle is started, all the ECUs will be
initialized by the Master ECU as follows: Sigk{m} (resp.
{m}k) denotes the signed (resp. encrypted) message m with
a symmetric key k.

(i) Em → all : broadcast of r1

(ii) Ex → Em : SigFx(0){Ex, H(ROMx), r1, r}
(iii) Em → Ex : {r2, r, H(ROMm)}F0(x)

TABLE I
INITIALIZATION ATTESTATION

(i) The Master ECU Em generates random numbers r1, r2

and broadcasts r1 to all ECUs. (ii) Each ECU Ex runs an
attestation process to the Master ECU by sending a signed
message of the fresh hash value of its ROM H(ROMx)
together with its serial number and a new nonce r (as a
challenge to the following attestation protocol run by the
Master ECU). (iii) If the signature check using F0(x) is
successful and if the newly measured hash value H(ROMx)
is in the list of valid hash values, the Master ECU measures
its hash value and sends it back to Ex encrypted together
with r2, r using the key F0(x).

In the protocol above there is a typical challenge-response
communication between the Master ECU and each ECU
using random numbers r1, r2, r, individual properties like
hash values, and keys for cryptographic primitives. This
kind of challenge-response communication provides entity
authentication, i.e., one communication party identifies itself
to a second party.

B. Automatic verification with ProVerif

Now we are going to analyze this protocol and verifies
that it fulfills the security features mentioned in Section IV.
Below is a ProVerif protocol for the initialization at start-up,
written in the language of the applied pi-calculus: a Master
ECU and two ECU Ex and Ec. Ex represents an honest agent
while Ec a colluded agent. (Texts between (* and *) are
comments and will be ignored by ProVerif.)2

a) Preamble: The preamble contains basic information
about functions and their properties like for symmetric key
cryptography, signature, KPS, hash function, etc. The infor-
mation given here is, however, not just information, because
the protocol behavior changes depending on it, hence could
have impact on the security properties.

Declaring r1 and r2 in the preamble, for instance, means
that they are global constants instead of being local. In this
way, we can realize the broadcast of r1 and the globalness
of r2. r1 and r2 behave like a session identifier for each
start-up.

We assume without loss of generality that there is only
one public channel and no secret channels.

2The protocol can be copy-and-pasted into a ProVerif protocol.

(* A public channel ‘c’. *)

free c.

(*
Creation of r1 and r2 which act like
a session identifier for each
start-up.

r2 should be kept secret (hence
‘private’) if no ECU is colluded
while r1 will be broadcasted
publicly.

*)

free r1.
private free r2.

(*
Symmetric-key cryptography with two
binary functions ‘encrypt’ and
‘decrypt’ and its decryption scheme.

*)

fun encrypt/2.
reduc decrypt(encrypt(x,y),y) = x.

(*
Signature function ‘sign’,
‘checksign’ for checking signer, and
‘getmess’ for getting message from a
signed message without knowing who
signed it.

*)

fun sign/2.
reduc checksign(sign(x,y),y) = x.
reduc getmess(sign(x,y)) = x.

(*
Key Predistribution System ‘F’ which
corresponds to the KPS being used.

*)

private fun F/2.
equation F(x,y) = F(y,x).

(*
Hash function ‘H’ which could have
been made public

*)

fun H/1.

(* ROM reading function ‘ROM’. *)

fun Rom/1.

29-1-3-4

Copyright Ⓒ 2009 IEEE

b) Queries: ProVerif checks full automatically the va-
lidity of queries about secrecy of a message or about authen-
tication of a communicating partner.

(*
Queries about the secrecy of KPS and
r2 with some compromised keys

*)

(* Query 1 *)

query attacker: F(hostX, hostM).

(* Query 2 *)

query attacker: r2.

The first two queries are about whether the attacker could
get the key Fx(0) or the secret session identifier r2. A
negative answer for a query imply that secrecy is guaranteed.
Since r2 will be put into each outgoing message after the
initialization, all messages without r2 will be ignored.

The secrecy of Fx(0) will not be endangered even in the
presence of a colluded ECU Ec. A compromised key does not
endanger any other principal. In other words, to impersonate
an uncorrupted ECU, just compromising an ECU is not
enough to extract the key generation algorithm of another
ECU. Moreover, the maximum collusion does not exceed
the number of the implemented ECUs. This verifies (P4).

On the other hand, the secrecy of r2 depends on the
presence of a colluded ECU. If no ECU is colluded, then
the session identifier r2 remains secret. This implies that,
without knowing the encryption key, one cannot perform the
initialization and hence no communication as it is required
in (P1) and (P2).

(*
Queries about non-injective agreement

*)

(* Query 3 *)

query ev:e1(m,x,z,v) ==> ev:e3(m,x,z,v).

(* Query 4 *)

query ev:e2(m,y,z,v) ==> ev:e3(m,y,z,v).

(*
Queries about injective agreement

*)

(* Query 5 *)

query evinj:eX(m,x,z,v,w)
==> evinj:eM(m,x,z,v,w).

The queries above are about authentication of each par-
ticipating ECU. The first two correspond to the injective

agreement and the last one to non-injective agreement. (m
stands for Master ECU Em, x for the honest ECU Ex, and y
for the compromised ECU Ec.) See Lowe [9] for more about
a hierarchy of authentication.

(Query 3) Before sending the second message r2, the
master ECU can be sure that Ex has previously been running
the protocol, apparently with Em, and Ex was acting as
responder in his run, and the two agents agreed on the data
values in {r1, r}, and each such run of Em corresponds to a
run of Ex under the assumption that Ex is not colluded.

(Query 5) A Positive answer to the query means that
the protocol guarantees to the initiator, Master ECU Em,
agreement with a responder, an ECU Ex, on a set of data
items {r1, r, r2} in the following way: Whenever a ECU Ex
completes a run of the protocol, apparently with Em, then Em
has previously been running the protocol, apparently with Ex,
and the two agents agreed on the data values in {r1, r, r2},
and each such run of Ex corresponds to a unique run of
Em. This means that, without knowing the symmetric key
Fx(0), the communication would fail. The injectivity means
that the initialization process is totally secure and ensures
authenticity of each ECUs, which corresponds to (P3).

On the other hand, the answer to (Query 4) is negative
as expected. This is because the colluded ECU can send a
message anytime. However, the positive answers to (Query
3) and (Query 5) indicate that it does not endanger the
communication between two honest participants as required
in (P4).

c) Main part: The main part describes the communi-
cation protocol in the language of the applied Pi-calculus.
There are processes for each participant of the communica-
tion.

(*
Protocol for the Master ECU

*)

let processM =

(* (i) broadcast of r1 *)

out(c, r1);

(*
(ii) reception of answers from hostB

*)

in(c,m);

(*
confirmation of the signature

*)

let (x_hostX, x_HRomX, =r1, x_r)
= getmess(m) in

if (x_hostX, x_HRomX, r1, x_r)
= checksign(m, F(hostM, x_hostX)) then

29-1-3-5

Copyright Ⓒ 2009 IEEE

(* attestation of hashed ROMs *)

if (x_hostX, x_HRomX)
= (hostX, H(Rom(hostX))) then

(*
authentication challenge of each ECU

*)

event e1(hostM, hostX, r1, x_r)
else

if (x_hostX, x_HRomX)
= (hostC, H(Rom(hostC))) then

event e2(hostM, hostC, r1, x_r);

(*
(iii) answer to the challenge by
sending r2

*)

event eM(hostM, x_hostX, r1, x_r, r2);
out(c, encrypt((r2, x_r, H(Rom(hostM))),

F(hostM, x_hostX))).

Above is a description of the process from the viewpoint
of the Master ECU while the following is that from the
viewpoint of an ECU.

(*
Protocol for each ECU

*)

let processX =

(* (i) reception of r1 *)

in(c, x_r1);

(*
(ii) creation and sending of r with a
signature

*)

new r;

(* answer to authentication challenge *)

event e3(hostM, hostX, x_r1, r);
out(c,

sign((hostX, H(Rom(hostX)), x_r1, r),
F(hostX, hostM)));

(*
(iii) reception of the final answer
from the Master ECU and attestation of
the hashed ROM

*)

in(c, m);
let (x_r2, =r, x_HRomM)

= decrypt(m,F(hostX,hostM)) in
if x_HRomM = H(Rom(hostM)) then

(*
authentication challenge of the
Master ECU

*)

event eX(hostM, hostX, x_r1, r, x_r2).

d) Protocol itself: One puts the processes for each
participant together. First, one makes the name of the partic-
ipants public and assumes some keys are compromised, i.e.,
the protocol will be checked that under the assumption that
some symmetric keys are colluded. ProVerif checks then the
queries under the assumption that the attacker could perform
unlimited sessions of the protocol.

(*
Protocol for start initialization

*)

process
new hostM;
new hostX;
new hostC;

(* making public the name of hosts *)

out(c, hostM);
out(c, hostX);
out(c, hostC);

(* hostC is compromised *)

out(c, F(hostC, hostM));
out(c, F(hostC, hostX));
out(c, H(Rom(hostC)));

(* unlimited number of sessions *)

((!processM) | (!processX))

If no ECU is compromised, all the answer will be as
expected. That is, there is no attack for the secrecy of
an uncompromised symmetric key or for the authentication
process. Having finished the initial process, both sides could
be sure of the authenticity of any other communicating
partner.

After a successful initial attestation, each ECU keeps
r2 secret and places it in every communication with other
ECUs as a proof that sender’s identity is authenticated by
the Master ECU. Furthermore, each ECU makes use of the
KPS to create an encryption key for each communication,
and each message - either signed or encrypted - contains a

29-1-3-6

Copyright Ⓒ 2009 IEEE

counter. A counter can be used to prevent replay attacks.

VII. CONCLUSION

We have presented an approach to a formal verification
of the features (P1) ∼ (P4), mentioned in Section IV,
which are required as basic for secure communication. In
general, security facility has to ensure safety in itself and
its logical soundness. The formal verification assures us that
our attestation scheme for vehicle provides trust relationship
and secure communication among all the ECUs. We strongly
believe that our approach will not remain as a special case
analysis in vehicular security. We will see more and more
application of automatic verification tools.

REFERENCES

[1] AISIN - investors - annual report -. Automotive parts and systems
business. http://www.aisin.com/finance/ir/report/
02annual/pdf/auto.pdf#5.

[2] AUTOSAR. http://www.autosar.org.
[3] Bruno Blanchet. Automatic verification of correspondences for secu-

rity protocols. Journal of Computer Security, 17(4):363–434, 2009.
[4] Cas J. F. Cremers. Scyther - Semantics and Verification of Security

Protocols. Ph.D. dissertation, Eindhoven University of Technology,
2006.

[5] Danny Dolev and Andrew C. Yao. On the security of public key
protocols. IEEE Transactions on Information Theory, 29(2):198–207,
1983.

[6] Cédric Fournet and Martı́n Abadi. Hiding Names: Private Authentica-
tion in the Applied Pi Calculus. In ISSS 2002, volume 2609 of LNCS,
pages 317–338. Springer, 2003.

[7] Goichiro Hanaoka, Tsuyoshi Nishioka, Yuliang Zheng, and Hideki
Imai. A hierarchical non-interactive key-sharing scheme with low
memory size and high resistance against collusion attacks. Comput.
J., 45(3):293–303, 2002.

[8] Gabriel Leen and Donal Heffernan. Expanding automotive electronic
systems. IEEE Computer, 35(1):88–93, 2002.

[9] Gavin Lowe. A hierarchy of authentication specification. In CSFW
’97, pages 31–44. IEEE Computer Society, 1997.

[10] Tsutomu Matsumoto and Hideki Imai. On the key predistribution
system: A practical solution to the key distribution problem. In
CRYPTO 1987, volume 293 of LNCS, pages 185–193. Springer, 1988.

[11] C. Meadows. Open Issues in Formal Methods for Cryptographic
Protocol Analysis. IN MMM-ACMS 2001, volume 2052 of LNCS,
pages 21, 2001.

[12] Daisuke Nojiri, Goichiro Hanaoka, and Hideki Imai. A practical
implementation of hierarchically structured key predistribution system
and its evaluation. In ISW 2000, volume 1975 of LNCS, pages 224–
236, 2000.

[13] Hisashi Oguma, Akira Yoshioka, Makoto Nishikawa, Rie Shigetomi,
Akira Otsuka, and Hideki Imai. New Attestation Based Security Ar-
chitecture for In-vehicle Communication. In IEEE Global Telecommu-
nications Conference (GLOBECOM 2008), pages 1909–1914, 2008.

[14] Pioneer USA - car navigation, Important: Notice of Free Firmware Up-
date for AVIC F-Series, http://www.pioneerelectronics.
com/PUSA/Support/Navigation/Notice+of+Free+
Firmware+Update+for+AVIC+F-Series

[15] Douglas R. Stinson. On some methods for unconditionally secure
key distribution and broadcast encryption. Des. Codes Cryptography,
12(3):215–243, 1997.

[16] Toyota recalls 160,000 Prius hybrids due to software glitch,
http://www.forbes.com/feeds/afx/2005/10/13/
afx2276901.html.

[17] Trusted Computing Group. TPM Specification Version
1.2. https://www.trustedcomputinggroup.org/
downloads/specifications.

[18] Marko Wolf, André Weimerskirch, and Thomas Wollinger. State of the
Art: Embedding Security in Vehicles. EURASIP Journal on Embedded
Systems, 2007(Article ID 74706, 16 pages), 2007.

29-1-3-7

Copyright Ⓒ 2009 IEEE

