
16

Register Coalescing Techniques for
Heterogeneous Register Architecture
with Copy Sifting

MINWOOK AHN and YUNHEUNG PAEK

Seoul National University

Optimistic coalescing has been proven as an elegant and effective technique that provides better

chances of safely coloring more registers in register allocation than other coalescing techniques. Its

algorithm originally assumes homogeneous registers, which are all gathered in the same register

file. Although this register architecture is still common in most general-purpose processors, embed-

ded processors often contain heterogeneous registers, which are scattered in physically different

register files dedicated for each dissimilar purpose and use. In this work, we show that optimistic

coalescing is also useful for an embedded processor to better handle such heterogeneity of the reg-

ister architecture, and developed a modified algorithm for optimal coalescing that helps a register

allocator. In the experiment, an existing register allocator was able to achieve up to 13.0% reduction

in code size through our coalescing, and avoid many spills that would have been generated without

our scheme.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors—Code gener-
ation, compiler and optimization

General Terms: Algorithms, Performance, Design, Experimentation

Additional Key Words and Phrases: Register allocation, register coalescing, compiler, embedded

processors, heterogeneous register architecture

Part of this work was published in LCTES 2007. New contributions added to this article include

Section 4.3, which describes the coloring heuristic which was applied to our modified optimistic

coalescing; Sections 4.4 and 4.5, which propose two new techniques for further reducing spills in

our modified optimistic coalescing; and Section 5, which extensively analyzes the impact of our

coalescing technique with fuller benchmark codes.

This research is supported by the Korea Science and Engineering Foundation (KOSEF) NRL Pro-

gram grant funded by the Korea government (MEST) (No. R0A-2008-000-20110-0) and the En-

gineering Research Center of Excellence Program of Korea Ministry of Education, Science, and

Technology (MEST)/Korea Science and Engineering Foundation (KOSEF), grant number R11-2008-

007-01001-0.

Authors’ addresses: M. Ahn and Y. Paek, School of EECS/Center for SoC Design Tech, Seoul

National Univ. #058, Kwanak, P.O. Box 34, Seoul 151-600, Korea; email: mwahn@optimizer.

snu.ac.kr, ypaek@snu.ac.kr.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or direct commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,

to redistribute to lists, or to use any component of this work in other works requires prior specific

permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn

Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2009 ACM 1539-9087/2009/01-ART16 $5.00 DOI 10.1145/1457255.1457263 http://doi.acm.org/

10.1145/1457255.1457263

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 16, Publication date: January 2009.



16:2 • M. Ahn and Y. Peak

ACM Reference Format:
Ahn, M. and Paek, Y. 2009. Register coalescing techniques for heterogeneous register architecture

with copy sifting. ACM Trans. Embedd. Comput. Syst. 8, 2, Article 16 (January 2009), 37 pages.

DOI = 10.1145/ 1457255.1457263 http://doi.acm.org/10.1145/1457255.1457263

1. INTRODUCTION

The graph-coloring algorithm proposed by Chaitin [1982] is a popular heuristic
for register allocation for traditional processors, adopted by almost all com-
mercial compilers. It represents the interference relationship between the live
ranges of symbolic variables in the application code as a graph called the inter-
ference graph (IG). In the IG, each node is checked if it can be trivially colored
from the neighboring nodes.

A node is called significant-degree if the number of its neighbors is higher
than that of the available colors, and otherwise called low-degree [Park et al.
2004]. If there is no available color, we “spill” a node, which means that it is
removed from the IG in order to provide room for coloring the other nodes.

In the code generation of a compiler, many temporary variables and copy
(or move) instructions are generated as the side effects of some analyses and
optimizations. Many of these variables and copies are redundant, which only
increase the overall code size as well as the number of spills during register
allocation. As a result, register coalescing has been a key ingredient of register
allocation as the technique that eliminate such copies. In the graph-coloring-
based register allocation, register coalescing can eliminate copies by merging
the copy related nodes in the IG. Two most well-known strategies for coalesc-
ing are optimistic coalescing [Park 2004] and iterated coalescing [George 1996].
According to an empirical study, optimistic coalescing generally shows better
performance than the iterated counterpart; eliminating up to 20% more copy
instructions [Park 2004]. This improvement is made possible because optimistic
coalescing, in its first phase, can eliminate all coalescible copies by employing
an aggressive coalescing scheme [Chaitin 1982], which aggressively merges ev-
ery copy related node in the IG. But, the aggressive scheme alone sometimes
adversely affects the coloring of the IG. That is, when we merge the copy-related
nodes in the IG, the degree of the merged node may be increased, which would
make it impossible to color the merged node, and might produce a large num-
ber of spills in the end. To minimize this malicious effect of aggressive coalesc-
ing on graph coloring, optimistic coalescing subsequently applies an additional
scheme, called live range splitting, which splits the merged nodes in the IG
and, checks the possibility of separately coloring the split nodes. This added
scheme enables optimistic coalescing to produce a less number of spills than
mere aggressive coalescing.

Embedded processors often have complex, irregular architectures that are
customized to optimize the performance and the energy efficiency of certain ap-
plications. This irregularity usually makes the coalescing for these processors
more challenging than for conventional general-purpose processors (GPPs) with
relatively regular architectures. One such example is an architecture with mul-
tiple register files that are physically distributed to different functional units in

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 16, Publication date: January 2009.



Register Coalescing Techniques for Heterogeneous Register Architecture • 16:3

Fig. 1. Partial diagram of DSP563xx

the processor. We name this, a heterogeneous register architecture, in the point
of view that the accessibility of its registers to each functional unit is limited
by the topology of the data path inside the processor, and hence the use of each
register file is differentiated in the code. DSP56k, ADSP21xx, TMS320C2xxx,
and DSP563xx are the examples of the heterogeneous register architectures.
Figure 1 shows the data-path of Freescale DSP563xx, which has two accumu-
lator registers (A, B) connected to the output of the ALU. Four input registers
(X0, X1, Y0, Y1) are used as input operands of the multiplier or ALU.

Heterogeneous register architectures are not common in GPPs, which
usually have registers gathered in a single common register file. We view
these GPP registers as homogeneous registers, since they are all accessible
to the same functional unit in the processor, thus being used interchangeably
for the same purpose. In general, register coalescing has greater significance
for heterogeneous register architectures than for homogeneous ones because
the compiled code for processors with heterogeneous registers has more copy
instructions than that for those with homogeneous registers since extra copy
operations are needed to move data between different register files to execute
ALU instructions that demand registers in specific files as their operands. For
instance, according to [Zivojnovic 1994], about 55% of instructions in the code
for the Motorola DSP56k processor are copies, which are unusually high, as
compared to the case of GPPs. This fact indicates that the code quality in a
heterogeneous register architecture would rely on how efficiently to minimize
such copy instructions [Araujo 1998]. Unfortunately, the register coalescing
problem is more complex for the heterogeneous register architecture than
the homogeneous one. In the homogenous architecture, it is relatively trivial
to merge copy related nodes in the IG because all the registers that can be
assigned to those nodes belong to a single file, and any register in the file can
be allocated to the merged node. In contrast, in the heterogeneous architecture,
each node of the IG may belong to different register files. Thus, we should
decide a register file in which a register is allocated to that merged node.
Likewise, we should take care of the colorability of each split node after live
range splitting. Also in the homogeneous architecture, all registers are in the
same file, so we only check the degree of each node for the colorability of that
node. But, in the heterogeneous one, the colorability is also influenced by the
decision of the register files where the registers allocated to each node belong.

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 16, Publication date: January 2009.



16:4 • M. Ahn and Y. Peak

In this article, we propose an extended version of existing optimistic coalesc-
ing algorithm to cope with the heterogeneous register architectures. Section 2
explains a generalized graph-coloring algorithm for register allocation target-
ing heterogeneous register architectures, which we use as the basis of our
register allocation framework in this work. Section 3 compares iterated and
optimistic coalescing schemes in principle. Then, Section 4 describes how we
extend the existing optimistic coalescing scheme to handle heterogeneous reg-
ister architecture and proposes two techniques for reducing more spills in the
extended optimistic coalescing scheme. Section 5 presents our experimental
results that demonstrate where our register allocator implemented with the
extended optimistic coalescing scheme outperforms an existing register alloca-
tor by Smith et al. [2004] for heterogeneous register architectures.

2. REGISTER ALLOCATION FRAMEWORK

Several studies (Kong et al. [1998], Scholz et al. [2002], Koes et al. [2005], Lee
et al. [2006], Daveau et al. [2004]) on the exploitation of the register resources
have been conducted to handle the irregularity of heterogeneous register ar-
chitectures. Due to the extreme complexity of the register allocation for such
architectures, Kong et al. [1998], Scholz et al. [2002], and Koes et al. [2005] re-
sort to expensive algorithms based on the integer linear programming or others
with exponential-time complexities. To solve this problem practically in poly-
nomial time, Smith et al. [2004], Lee et al. [2006], and Daveau et al. [2004] do
register allocation based on the traditional graph coloring scheme. LEE et al.
[2006] use some cost model for improving copy propagation. Daveau et al. [2004]
deal with the heterogeneity of the registers based on the Briggs’ style register
allocation [1992]. Smith et al. [2004] suggest a generalized graph-coloring algo-
rithm that handles both homogeneous and heterogeneous architectures. In our
work, we use basically the same algorithm as Smith’s with additional modifica-
tions to fit into our compiler [Ahn et al. 2007], where we also add our optimistic
coalescing technique proposed in this paper. In this section, we describe the
register allocation algorithm framework.

2.1 Register Class

In our register allocation framework, heterogeneous registers are grouped by
logical units called register classes. The term “register class” has been frequently
used by others [Smith et al. 2004; Liem et al. 1994; Paulin et al. 1994; Feuerhan
1988; Stallman 1994]. Although the name is the same, its definition differs
depending on its usage in each work. To avoid confusion with others, we formally
define our notion of register classes in this section.

Definition 1. Given a processor P, let I = {i1, i2, . . . , in} be a set of all in-
structions defined on P , and R = {r1, r2, . . . , rm} be a set of all its registers. For
instruction i j ∈ I , we define a set of all its operands, op(i j ) = {O j 1, O j 2, . . . , O j k}.
Assume φl (i j ) is a set of all the registers that can appear at the position of some
operand O jl , 1 ≤ l ≤ k. Then, we say that φ l (i j ) forms a register class for i j .

Our definition of register class is rather logical, as being classified accord-
ing to their usages in the instruction set rather than physical layouts in

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 16, Publication date: January 2009.



Register Coalescing Techniques for Heterogeneous Register Architecture • 16:5

the hardware. By Definition 1, any member in the register class for a given
instruction can be interchangeably referenced as an operand of the instruc-
tion. In this sense, we view all registers in the same class as being homoge-
neous in terms of their roles in the code generation. For instance, the ARM
machine has an instruction, add reg1,reg2,reg3, where any of its sixteen reg-
isters (r0,r1,. . . ,r15) can appear as any operand in the instruction; that is,

φ1(add) = φ2(add) = φ3(add) = {r0, r1, . . . , r15}
So, this set forms a single register class for add according to Definition 1.
This means that all the 16 registers in ARM are homogeneous for add. As
another example in Figure 1, consider the instruction mpy s1,s2,d of DSP563xx,
which multiplies the first two sources and places the product in the destination.
DSP563xx restricts s1 and s2 to be four registers X0, X1, Y0 or Y1, and d to
be the upper half of A or B (i.e., A1 or B1). Consequently two register classes
{X0,X1,Y0,Y1} and {A1,B1} are dedicated to mpy, respectively at s1/s2 and at d .

From this, we see that unlike in the case of add, not all registers in DSP563xx
are equally usable by mpy. So, we here say that the DSP563xx registers are
nonhomogeneous (or in other words, heterogeneous) for mpy.

Definition 2. Using Definition 1, we define �(i) a collection of distinct reg-
ister classes for instruction i as follows:

�(i) =
⋃k

l=1
{φl (i)}.

We say that two instructions, i and j , have disjoint register classes if �(i) ∩
�( j ) = Ø.

Definition 3. For processor P with instruction set I = {i1, i2, .., in}, the
whole collection of register classes, denoted by �P , is defined:

�P =
⋃n

j=1
�(i j )

By Definition 2, we have �(add) = {{r0, . . . , r15}} for instruction add in the
earlier example. In ARM, for virtually all other ALU instructions i, we have
�(i) = �(add). This equivalently means that �ARM contains only one regis-
ter class consisting of the whole sixteen registers. In this sense, we regard
the register architecture of ARM as being homogeneous. In case of DSP563xx,
however, different registers are usually dedicated to the machine instructions,
which make the processor partially homogeneous only in the subsets of ma-
chine instructions. For example, recall that even a single instruction mpy in
DSP563xx, has two different sets of homogeneous registers. In fact, �DSP563xx

is listed in Figure 2, from which we can recognize that the register architecture
of DSP563xx is heterogeneous.

2.2 Register Aliasing

Multiple register names may be aliased for a single hardware register in various
modern architectures [Smith et al. 2004]. For instance, Figure 1 shows that
double-word registers X and Y of DSP563xx are divided into two subregisters,
each of which can be also referenced as an individual operand. So, the same

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 16, Publication date: January 2009.



16:6 • M. Ahn and Y. Peak

Fig. 2. Register classes of DSP563xx.

physical register is accessible via three different names X0, X1, and X. This
relationship between registers is called register aliasing. The register aliasing
makes the register allocation a little bit complicated because if we assign one
register to a node in the IG, we cannot assign the aliased registers to its adjacent
nodes. As the register aliasing is also often found in the heterogeneous register
architecture, it is crucial to consider it in the register allocation.

2.3 Generalized Graph Coloring Algorithm

Chaitin [1982] assumes a single register class architecture where all registers
are homogeneous. Under this assumption, it reduces register allocation to a
k-coloring problem where k homogeneous registers for m variables are rep-
resented as k distinct colors on m nodes in the IG. However, this k-coloring
problem is no longer directly applicable to the heterogeneous register architec-
ture such as DSP563xx. To explain this, consider the IG for four variables in
Figure 4. First of all, in conventional k-coloring, every node in the graph is as-
sumed to be the same k-colorable. However, to handle heterogeneous registers,
we must allow a different colorability for each node. For instance, if φx denote
a register class bound to variable x, we see from Figure 2 that φt3 contains
two registers. This implies that node t3 in Figure 4 is 2-colorable. On the other
hand, node t1 is 4-colorable since φt1 has four registers. In ordinary k-coloring,
every node must share the k resources of the same types, which is not always
true for the heterogeneous register architecture. As an example, notice that the
colors of t1 are {A,B,X,Y} while the colors of t3 are {A1,B1}. Another complex-
ity imposed by the heterogeneous register architecture on register allocation
is that each node has different impacts on the colorability of its neighbors in
the IG due to the register aliasing. For instance, suppose register A is assigned
to node t1. Then, this coloring decision will strip two colors off node t4 since
t4 can be no longer assigned register A0 or A1. However, at the same time, it
strips only one color (i.e., A1) off node t3.

Based on all these observations on the complexities of register allocation for
the heterogeneous register architectures, Smith et al. [2004] introduce a new
measure, called the squeeze, which supplements the notion of k-colorability in
graph coloring. Since register allocation is an intrinsically intractable problem,
conventional k-coloring algorithms have used a heuristic, called the degree-
less-than-k, based on the colorability information of each node, and reduce the

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 16, Publication date: January 2009.



Register Coalescing Techniques for Heterogeneous Register Architecture • 16:7

Fig. 3. Alias relation of DSP563xx.

problem size substantially, thereby achieving a practically tractable computa-
tion time. Smith et al. [2004] also devise a similar heuristic technique based on
the squeeze in their algorithm.

Suppose there is a variable node x in an interference graph G and a register
class φx is bound to x. Then, the squeeze for x, denoted by σ ∗

x , is defined as
the maximum number of registers from φx that cannot be allocated to x due to
an assignment of registers to all its neighbors. To formally define σ ∗

x , assume
that φx has k registers, implying that x is initially k-colorable. Now, suppose a
neighbor y of x is assigned a register r from its class φ y . Then, if r aliases with
k′ registers in φx , the initial colorability of x will reduce by k′ due to its neighbor
y because by the definition of alias, the k′ registers could not be allocated to x
anymore. As a result, x would become at most (k-k′)-colorable after r is allocated
to y . This can be summarized as follows:

reduction of colorability of x due to y = k′ = |A(r) ∩ φx |.
where A(r) denotes the set of all aliases of r. Likewise, the remaining neighbors
are all assigned registers from their classes, forming a set of registers assigned
to x ’s neighbors, say R, as a result. Now, let k′′ be the total amount of reduction
of x ’s colorability due to all its neighbors. Then, obviously, we have:

k′′ = ∣∣A(R) ∩ φx
∣∣ for A(R) = ⋃

∀r∈R
A(r) .

For every coloring of x ’s neighbors, we would have many different configurations
for R. The squeeze σ ∗

x is defined for the set 	 of all colorings of x ’s neighbors as
follows:

σ ∗
x = max

(∣∣A(R) ∩ φx
∣∣)

∀R∈	
From the result, we conclude that node x would always be at least (k-σ ∗

x)-
colorable with any coloring of its neighbors. This finding induces a heuristic
that x can be immediately removed from G as long as k > σ ∗

x since it is then
trivially colorable under any circumstance. For instance, in Figure 4, to compute
the squeeze σ ∗

t4 for node t4, we identify all possible colorings R∗ of its neighbor
t1. From Figure 2, we find four possible colorings: that is, 	 = {{A},{B},{X},{Y}}.
Then, from Figure 3, we identify the aliases of each coloring as follows:

A(A) = {A, A0, A1}, A(B) = {B, B0, B1},
A(X) = {X, X0, X1}, A(Y) = {Y, Y0, Y1}.

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 16, Publication date: January 2009.



16:8 • M. Ahn and Y. Peak

Fig. 4. Interference graph and the calculation of squeeze.

Using this information, we compute for φt4 = {A0,A1,B0,B1}:
σ ∗

t4 = max(|A(A) ∩ φt4|, |A(B) ∩ φt4|, |A(X) ∩ φt4|, |A(Y) ∩ φt4|)
= max(2, 2, 0, 0) = 2.

Node t4 is initially 4-colorable since |φt4| = k = 4. As a result, we have k –
σ ∗

t4 = 2. This means that even after t1 is assigned any register from its class
φt1, t4 would remain at least 2-colorable. Here, we therefore safely remove node
t4 from the interference graph of Figure 4. In the same manner, we identify the
remaining nodes are trivially colorable, hence removing all from the graph. Our
experiments show that, similar to the degree-less-than-k heuristic, this new
squeeze-based heuristic is also effective to simplify the register allocation for
the heterogeneous register architecture by precluding many trivially-colorable
nodes.

Unfortunately, finding an ideal squeeze σ ∗ is virtually impossible for a large
interference graph because the set 	 has exponential size complexity in the
number of nodes. For instance, in Figure 4 to compute σ ∗

t1 for node t1, we
should consider 16(= 2 × 2 × 4) cases of colorings for its three neighbors even
for such a small graph. So, in practice, an approximated squeeze σ [Smith et al.
2004] is sought to prevent the compilation time from increasing dramatically.
To compute σ x for node x in a graph G, assume the followings:

1. All register classes bound to x ’s neighbors are classified into m distinct reg-
ister classes π i,1 ≤ i ≤ m.

2. ni = |{ y | y ∈ N ∧ φ y = π i}| where N is the set of x ’s neighbors.

Then, we define σ xas follows:

σx =
∑

∀πi ,1≤i≤m

ni · max
∀r∈πi

(|φx ∩ A(r)|)

This formula guarantees that σ is a safe approximation of σ ∗. However, it is
sometimes too conservative, thus hindering some trivially colorable nodes from
being removed from G. In Figure 4 for example, σ ∗

t1 is 2, implying that t1 is
always at least 2-colorable since it is initially 4-colorable. But, σt1 evaluates to:

σt1 = max
∀r∈AB

(|φt1 ∩ A(r)|) + 2 · max
∀r∈AB0

(|φt1 ∩ A(r)|) = 1 + 2 = 3.

This estimated value σ t1 falsely informs us that t1 is only 1-colorable. To pre-
vent σ from being too overly estimated, as in this case, other safeguards such
as the upper bound are applied [Smith et al. 2004].

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 16, Publication date: January 2009.



Register Coalescing Techniques for Heterogeneous Register Architecture • 16:9

Fig. 5. (a) Iterated coalescing and (b) optimistic coalescing

3. ITERATED VS. OPTIMISTIC COALSECING

Iterated coalescing uses a conservative coalescing scheme. In the conservative
scheme, two copy-related nodes x and y in the IG are coalesced only when the
original colorability of the IG is not affected by the coalescing. This can be en-
sured by testing if their coalesced node xy has less than k significant-degree
neighbors, which equivalently means that xy is low-degree. Conservative coa-
lescing guarantees that it does not produce any spills from coalescing. But it
sometimes misses the further chance of coalescing [George et al. 1996]. As illus-
trated in Figure 5(a), iterated coalescing attempts to overcome this drawback
by iteratively applying both conservative coalescing and simplification phases.
The simplification phase prunes the low-degree, non-copy-related nodes from
the IG, and reduces the degree of copy-related nodes, yielding more opportuni-
ties for coalescing in the conservative coalescing phase. These two phases are
repeated until there are left only significant or copy-related nodes in the IG.
If neither phase can be applicable, low-degree copy-related nodes are frozen,
which means giving up a further chance of its coalescing by removing its copy-
related edges and marking it as a non-copy-related node. As frozen nodes are
no more a copy-related nodes, they may be pruned in the simplification phase
(see Figure 5(a)) [George et al. 1996].

Although iterated coalescing usually eliminates many more copy instruc-
tions than conservative coalescing without introducing spills, it still has some
weaknesses. One is that it gives up the chances of coalescing too early even if
a coalescible node violating the colorability criterion is not necessarily spilled.
If a coalesced node violates the criterion without being actually spilled, the
decision for spill could be delayed, which provides room for further coalescing
[Park et al. 2004]. Moreover, like conservative coalescing, iterated coalescing
is too conservative to enjoy the positive impact of coalescing. To explain this,
consider the IGs in Figure 6, where nodes a and c are copy-related. Notice that
in Figure 6(a), these nodes have a common neighbor b, while in Figure 6(b),
each of them respectively has different neighbors b and d. As shown here, if
copy-related nodes have a common neighbor, coalescing brings positive impact
on coloring, but otherwise, it brings negative impact. In Figure 6(a), see that
the IG remains 2-colorable with fewer nodes after coalescing. In contrast, in

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 16, Publication date: January 2009.



16:10 • M. Ahn and Y. Peak

Fig. 6. Examples of (a) positive and (b) negative impact of coalescing.

Fig. 7. An example of the live range splitting.

Figure 6(b), the IG turns from 2-colorable to 3-colorable. The aggressive coa-
lescing scheme attempts to overcome this weakness of conservative coalescing
by fully exploiting this positive impact of coalescing. Park et al. [2004] have
shown in their experiments that the aggressive scheme usually better colors the
IG than a conservative scheme. As shown in Figure 5(b), optimistic coalescing
employs the aggressive scheme. We have observed that taking such advantage
of aggressive coalescing, it outperforms iterated coalescing in most cases. In
optimistic coalescing, the decision of spills for coalesced nodes is delayed after
coalescing.

Although the negative impact of coalescing is negligible, the aggressive
scheme should be applied with caution because once the coalesced node is ac-
tually spilled, it may trigger producing many other spills. This is due mainly to
the fact that the coalesced nodes in the IG create variables with long live ranges
in the code. This detrimental effect can be reduced by live range splitting [Park
et al. 2004], which splits a long live range into short ones by inserting copy/move
or load/store instructions. If the live range of a variable becomes shorter by live
range splitting, it will surely increase the chance of avoiding spills since a
shorter live range would less likely conflict with other ranges. Registers are
allocated for the split live ranges of the variable. To minimize spills, we must
carefully decide where the live range of the coalesced node is split. According to
Park et al. [2004], the original location of a copy instruction before coalescing
its copy-related nodes is the good place for splitting. This in fact corresponds to
the undo of coalescing. This undo splits the coalesced node back into its original
copy-related nodes, recovering the original IG. See that the IG in Figure 7(b)
is restored after splitting the coalesced node cd. In Figure 7(a), the degree of
split nodes c and d is lower than that of cd, which makes it easy to color the
split nodes.

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 16, Publication date: January 2009.



Register Coalescing Techniques for Heterogeneous Register Architecture • 16:11

As shown in Figure 5(b), optimistic coalescing merges all the copy-related
nodes (c,d) before simplification, resulting in the IG of Figure 7(b). Suppose
there are three available registers. Then, following the conventional register
allocation algorithm, node f can be pruned and pushed into the bottom of a
stack in Figure 7(c), where all nodes except f are significant-degree nodes. In
this case, optimistic coalescing chooses the coalesced node cd as a candidate of
spill (potential spill) due to live range splitting. This choice enables us to prune
three nodes (a, b, e) from the IG and push them into the stack of Figure 7(c).
Now that there is no node left in the IG, we pop nodes from the stack and color
each of them. Nodes e, b and a can be trivially colored. The coalesced node cd
has no available color since the interfering nodes e,b, and a preoccupied all
available colors. In this case, optimistic coalescing applies live range splitting
to restore the IG into the original one in Figure 7(a). Then, all nodes can be
colored as shown in Figure 7(d). However, if we do not apply live range splitting
to the IG in Figure 7(b), we would arbitrary choose for the potential spill a
different node instead of cd. Suppose we choose node a. Then, the resulting
stack should be the one in Figure 7(e), and node a becomes a real spill (actual
spill).

If all of the split nodes from live range splitting are significant-degree nodes,
they are marked as actual spills. If there are any colorable nodes among them,
optimistic coalescing decides the coloring of the nodes in a way of minimizing
spills. This decision should be made carefully to prevent the integrity of coloring
the other nodes after splitting. To explain this, notice in Figure 5(b) that the
undo coalescing phase that performs live range splitting follows the simplifi-
cation phase because, right after simplification, we can identify what nodes in
the IG are potential spills. In this phase, all nodes in the IG are colored in the
reverse order that they were pruned from the IG and pushed into a stack, as
described above. The nodes under a coalesced node in the stack might be pruned
from the IG as their degrees were decreased after coalescing. So, if the coalesced
node is split, the degrees of some nodes under the node may be altered, which
makes the coloring of all nodes ruined. Optimistic coalescing prevents this by
coloring only one of the split nodes.1 That is, when a coalesced node is split into
multiple nodes, only one split node is left in the original position in the stack,
and the others are all placed at the bottom of the stack to delay their coloring
decision till the end. In this way, we do not change the coloring of all the nodes
below the coalesced node. Thus, it is now safe to color the other split nodes later
if there are available colors at the time. In Figure 7(c), the coalesced node cd
is split. One of the split node, c is colored first, but the other node d is colored
later than node f in the stack, as shown in Figure 7(d).

4. OPTIMISTIC COALESCING FOR HETEROGENEOUS REGISTERS

The coalescing techniques described in Section 3 are originally designed to work
with the traditional graph-coloring algorithm for an architecture with homo-
geneous registers. Therefore, despite the advantages of optimistic coalescing,

1If there are multiple colorable nodes among the split nodes, optimistic coalescing chooses a node

with the highest spill cost to minimize spills.

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 16, Publication date: January 2009.



16:12 • M. Ahn and Y. Peak

its existing technique cannot be directly used in our register allocation frame-
work because, as explained in Section 2, the graph-coloring algorithm in our
framework has been extended to support heterogeneous registers, so the ex-
isting technique cannot deal properly with unique constraints enforced by het-
erogeneous register architectures incorporated in the extended graph coloring
algorithm. In this section, we discuss how we have modified the optimistic
coalescing technique to cope with heterogeneous registers. This requires two
additional considerations related to coalescing copy-related nodes and splitting
the live ranges of coalesced nodes in the IG. Furthermore, as we will show you
in our experiments, our extended optimistic coalescing scheme produces more
spills in some benchmark codes. We have discovered that these are the cases
where the negative impact of the aggressive coalescing strategy in optimistic
coalescing overwhelms the merit of optimistic coalescing despite of those con-
siderations; therefore, our modified optimistic coalescing inserts many spills.
We propose two additional techniques for decreasing the spills. In the following
subsections, we discuss each of them.

4.1 Coalescing Copy-Related Nodes with RCRT

In our register allocation framework, a register name can be bound to multiple
register classes. If copy-related nodes are bound to different register classes, the
register class of their coalesced node should be the intersection of their register
classes. To compute the intersection of register classes, we should know the
relationship between the register classes defined in the target architecture. To
summarize this relationship, we propose a table called, the register class rela-
tion table (RCRT) in this work. Figure 8 shows the RCRT of the DSP563xx con-
structed from the register class information in Figure 2 and Figure 3. This table
represents the inclusion relationship between the register classes of DSP563xx.
For instance, the intersection of the register class AB1XY and AB1 is the regis-
ter class AB1. Besides the intersection of two register classes, this table shows
two special attributes a and d. The attribute a denotes that each of the two
register classes contains the registers whose aliased registers belong to the
opposite register class. We use d to denote the two disjoint register classes
explained in Section 2.

In optimistic coalescing, all copy-related nodes are aggressively coalesced be-
fore simplification. As we noted above, if the register classes of the copy-related
nodes in the IG are different, we should determine whether coalescing is pos-
sible or not. Even if it is possible, we also need to determine the register class
of the coalesced node. There are three cases in this decision process. First, if
the two register classes are disjoint, we cannot coalesce them because there
is no common registers to allocate in the source operand and the destination
operand of the copy instruction. We can check this by using the RCRT. Second,
we do not coalesce the copy-related nodes whose register classes are aliased.
In the aliased register classes, there is a common physical register to be allo-
cated. but this register may not be explicitly shown in both register classes.
For example, Figure 8 shows that two classes AB and ABL are aliased. No-
tice that the registers in AB is {A0, A1, B0, B1} and those in ABL are {A, B}.
ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 16, Publication date: January 2009.



Register Coalescing Techniques for Heterogeneous Register Architecture • 16:13

Fig. 8. Register class relation table (RCRT) of DSP563xx.

Fig. 9. An example of coalescing and live range splitting.

Although A0, A1, B0, and B1 are the upper and lower half subregisters of A
and B, respectively, there is no common register name to allocate. Third, if in
RCRT we find an intersection of two register classes of the copy-related nodes,
we can coalesce them. In this case, the register class of the resulting node is
the intersection of the register classes. The copy-related nodes b and f in Figure
9(a) have different register classes. The register class of b is AB1XY and that of
f is XY. Figure 8 gives that the intersection of the register classes AB1XY and
XY is XY. Figure 9(b) shows the resulting IG after coalescing including their
coalesced node bf with the intersected class XY. In the example of Figure 8, one
register class always subsumes the other when two register classes are inter-
sected. If not, a new register class is temporarily made during the compilation,
and the RCRT is updated, which is different from the previous work of Smith
[2004]. In their work, they should manually modify the register allocator in
order to deal with this case.

4.2 Splitting Live Range with New Spill Metric

After merging all copy-related nodes, optimistic coalescing prunes nodes from
the IG if the nodes are trivially colored. If nodes remaining in the IG are not
trivially colorable any more, the register allocator selects a node for a potential

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 16, Publication date: January 2009.



16:14 • M. Ahn and Y. Peak

spill. This decision for the potential spill is based on the spill metric of every node
in the IG. The spill metric, denoted by M (v), of node v2 in the IG is calculated
from the following equation:

M (v) = C(v)/D(v) (1)

where C(v) is the spill cost of v, and D(v) is the degree of v in the IG. The spill
cost of v is computed as:

C(v) = wd ×
1∑

def∈v

0d (def) + wu ×
10d (use)∑
use∈v

where wd is the relative weight of the definition in v, wu is the relative weight
of the use in v, and d (x) is the depth of the loop nest at the location of x in
the application code [Chaitin 1982]. C(v) indicates how much the performance
is degraded by the spill of v. So does M (v), since it is proportional to C(v), but
notice that M (v) is inversely proportional to D(v) . This is due to the simple
fact that the more interfering nodes a node has in the IG, the greater chance of
spilling the node opens up for coloring other nodes. Consequently, a node with
a minimum spill metric is selected for a potential spill since it helps the color-
ing of as many neighboring nodes as possible with the minimum performance
degradation due to the insertion of load/store instructions from spills.

Recall in Section 2 that our register allocator for heterogeneous register ar-
chitectures determines the colorability of node v by the value of its squeeze
σ v. As σ vis the maximum number of registers from the register class φv of
node v that could be denied to v due to an assignment of registers to the cur-
rent neighbors of v, v is trivially colorable if σv < |φv|. Likewise, the decision
for the potential spill is influenced by not only the degree of a node in the IG
but also the register class bound to the node. For instance, in Figure 9(b), af-
ter two nodes a and e were pruned from the IG, all remaining nodes (bf, c, d,
g, h) cannot be pruned because there is no node whose squeeze is less than
the size of its register class. Recall that optimistic coalescing prefers a coa-
lesced node than a noncoalesced one for a potential spill. Thus, in Figure 9(b),
node bf is selected for a potential spill and pruned from the IG. Then, the four
nodes (c, d, g, h) could be pruned. The pruned nodes are piled inside a stack
(see Figure 9(c)).

As being popped from the stack later for coloring, each node is assigned a
register among the registers in the register class bound to the node. Assume
that as the four nodes (c, d, h, g) at the top of the stack are popped, they
are respectively assigned the registers {X0, X1, Y0, Y1}. Then, we can clearly
see that the coalesced node bf has no register available for allocation since its
squeeze σbf(= 4) is identical to the size of the register class |φX Y |(= 4) bound
to bf. To escape from this dead end, we follow the original scheme of optimistic
coalescing in Section 3; that is, we try a second chance for the coloring of bf by
restoring the original IG of Figure 9(a) via live range splitting. Now, nodes b and

2A node in the IG represents a live range of a symbolic variable in the code. So we use the terms

node in the IG, symbolic variable, and live range interchangeably without clearly differentiating

their meanings.

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 16, Publication date: January 2009.



Register Coalescing Techniques for Heterogeneous Register Architecture • 16:15

f in the IG are colorable since both σb and σf are less than the size of their register
classes AB1XY and XY. Therefore, we color one of the split nodes immediately,
and delay the coloring of the other node by placing it at the bottom of the stack,
as in the case of either Figure 9(d) or (e). The question here is which node
should be selected for immediate coloring. Recall in Section 3 that among all
split nodes, the original scheme of optimistic coalescing would select the node v
with the maximum value of the spill metric M (v), above shown in Equation (1).
For homogeneous register architectures, this simple metric should be workable
since any register can be interchangeably assigned to any one among the split
nodes. But, for heterogeneous architectures, a more elaborate spill metric that
reflects the heterogeneity of registers allocatable to the split nodes is required
to avoid creating unnecessary spills. To illustrate this, assume C(b) = C(f) in
the example of Figure 9. Then, in the original optimistic coalescing scheme, the
spill metrics of nodes b and f is obviously the same. So the scheme would like to
break the tie by coloring arbitrarily first either b or f. Suppose b is first colored
with A1 or B1 as shown in Figure 9(d), then there might be an actual spill when
a and e are being assigned registers. On the other hand, if f is first colored with
X0 (see Figure 9(e)), there would be no spill. Any registers in AB1XY except
those assigned to c, a, and e can be allocated to b.

The different outcome of register allocation between these two cases is caused
by the fact that both split nodes are bound to different register classes with dif-
ferent sizes, which does not likely occur in a homogeneous register architecture.
To manage this characteristic of heterogeneous register architectures, we sug-
gest a heuristic that gives the first priority for coloring to a node bound to a
register class with the smallest size. This is of course based on our observation
that the other split nodes with larger-sized register classes usually have more
chance to be colored later. In the above example, the register class XY bound to
node f is a proper subset of the class AB1XY bound to node b, so we have

|φX Y | = 4 < |φAB1X Y | = 6,

implying that two more registers are allocatable to b than to f. Thus, coloring f
first would likely increase the chance to avoid extra spills, which actually turns
out to be true, as discussed above.

This example has motivated us to modify the existing spill metric so as to
reflect such effect of the register class on optimistic coalescing for heterogeneous
register architectures. For this purpose, we introduce a value, called the register
class influence ε(φv), which measures the amount of influence a node v bound
to a register class φv has on the coloring of its neighboring nodes. From the fact
that σ x is proportional to |φ y | ( y is a neighboring node of node x in an IG), we
can derive a relation of the register class influence between two nodes v and u
respectively bound to register classes φv and φu:

ε(φv) ≤ ε(φu) for φv ⊆ φu.

For instance, in Figure 9(a), since the register class XY of node f is a subset
of the class AB1XY of node b, the neighbors of b would more likely have larger
squeezes than those of f. This implies that the colorability of b’s neighbors should
be more limited than that of f ’s neighbors, thus resulting in ε(φf) ≤ ε(φb). This

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 16, Publication date: January 2009.



16:16 • M. Ahn and Y. Peak

Fig. 10. Register class tree (RCT) of DSP563xx.

relation can be visualized by the Register Class Tree (RCT) where the nodes
are all register classes of the target architecture, and the edges represents the
inclusion relation between the classes. In the tree, a register class φ is a descent
of another class φ′ if φ ⊂ φ′. If there is no other class φ′′ such that φ ⊂ φ′′ ⊂ φ′,
then there will be an edge between φ and φ′ in the RCT. Figure 10 shows an
example of the RCT from the RCRT in Figure 8. Notice that two register classes
ABL and XYL are the children of the class ABXYL since they are subsets of
ABXYL. We can see from the figure that the RCT built for the target processor
can be actually a forest (i.e., a collection of multiple trees).

The depth δ(φ) of a register class φ in an RCT is the distance from the root
node of a tree to φ, assuming the depth of the root node is one. For instance
in Figure 10, the depth of ABXYRN is 1 and that of XY is 3. Based on the
argument above, we conclude that δ(φ) is inversely proportion to ε(φ), resulting
in the equality:

ε(φv) = 1

δ(φv)

where φv is the register class of a node v in an IG. In the example of Figure 10,
we have

εABXYRN = 1 and εXY = 1/3.

Now, we modify the original spill metric in Equation (1) by taking into account
the influence ε of the register class φv of each node v on the coloring. The degree
D(v) in Equation (1) shows how many nodes are interfered with node v in the
IG. For a heterogeneous register architecture, it is in fact insufficient to show
the interference relationship between two nodes since different register classes
may be bound to the nodes. Two more factors must be considered here. First,
the more registers a node has in its register class, the more number of the
interfering nodes it has in the IG. Second, even when there is an edge between
two nodes in the IG, there might be no actual interference between their live
ranges if their register classes are disjoint. To reflect into the spill metric this
interference relationship between nodes bound to different register classes, we
devise a new interference degree I (v):

I (v) = ε(φv) ×
∑

n∈ad j (v)

f (v, n)

where adj(v) is a set of the neighboring nodes of v. For the register classes
φv and φu, of two nodes v and u, we have f (v, u) = 1 if φv ∩ φu 
= Ø, and

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 16, Publication date: January 2009.



Register Coalescing Techniques for Heterogeneous Register Architecture • 16:17

f (v, u) = 0 otherwise. I (v) represents how many neighboring nodes are ac-
tually interfered with node v. Using I (v), we propose a new spill metric
S(v):

S(v) = C(v)/I (v) (2)

In Section 5, we will experimentally demonstrate that this new metric S(v)
improves the coloring of the IG, and also reduces the spills considerably. In the
example of Figure 9, the original optimistic coalescing scheme could not effi-
ciently break the tie between the spill metrics for nodes b and f when their spill
costs C(b) and C(f) are identical. So in the experiment, it colors b first after live
range splitting, resulting in an unnecessary spill. However, with our modified
coalescing scheme with S(v), we have I (b) = 3 and I (f) = 1, and consequently
we have S(b) = C(b)/3 and S(f) = C(f). Thus, even for C(b) = C(f) > 0, we have
S(b) < S(f), which places node f in the higher priority for coloring, preventing
the spill as the result.

4.3 Strategy for Coloring as Many Split Nodes as Possible

Instead of spilling a coalesced node, optimistic coalescing splits it into several
“ingredient” nodes, trying to color as many nodes as possible among them.
We call these ingredient nodes as primitive nodes, as denoted in [Park et. al.
2004]. If some nodes among the primitive nodes cannot be colored, they are
immediately spilled. However, among the colorable ones, the node with the
maximum spill metric can be immediately colored, as we explained in Section 3.
For other colorable primitive nodes, we delay the decision of coloring them after
all the nodes below the coalesced node in the stack are colored. In the original
optimistic coalescing scheme, we just hope that as many nodes as possible could
be colored then. In order to color the maximize number of the primitive nodes,
we immediately color all the nodes whose register classes are as the same as that
of the original coalesced node. As shown in Figure 11, when the coalesced node e
is split into f and g, f is spilled immediately, but g is colorable. We delay coloring
g until all the nodes in the stack like d are colored. In this case, if unfortunately
r0 is assigned to d like in Figure 11(e), g cannot be colored. As the register
class of g is the same as that of the original coalesced node e, we can assign a
register to g in advance like in Figure 11(d). The colors (registers) assigned to
these nodes does not ruin the coloring of other nodes left in the stack. It is due
to the fact that the register class of the coalesced node is already considered
when the other nodes below in the stack are pruned, and the register classes of
those primitive nodes being immediately colored are the same as the one of the
coalesced node. This coloring heuristic increases the number of the primitive
nodes being immediately colored, which shows better register allocation with
the decreased number of spills.

4.4 Copy Sifting

As we explained, optimistic coalescing takes the aggressive way of coalescing,
where all the copy related nodes are merged before simplification. It tries to
alleviate the negative impact of coalescing by splitting the coalesced nodes

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 16, Publication date: January 2009.



16:18 • M. Ahn and Y. Peak

Fig. 11. An example of coloring as many split nodes as possible.

Fig. 12. Negative impacts of the coalesced neighboring nodes.

when it is chosen as spill. But there are some cases where we cannot avoid the
spill of the coalesced node or all (some) of its primitive nodes if the coalesced
node has the neighboring nodes which are already coalesced.

Figure 12(a) shows an IG where two registers are available and all the nodes
have the same register class composed of these two registers. In this example, all
the copy related nodes are aggressively coalesced as optimistic coalescing does.
Figure 12(b) shows the result, where all the nodes are the significant nodes. If
we assume that the spill costs of all nodes are the same, the node df is firstly
chosen as a spill candidate due to its largest degree. After the coalesced node
df is pruned, all the rest nodes can be pruned like in the stack of Figure 12(c).
After simplification, all other nodes are colored except the node df. Instead of
spilling it, optimistic coalescing splits it into the primitive nodes d and f, trying
to color them all. Unfortunately, the coalesced nodes ac and eg adjacent to df
are already colored, so we have to spill d and f like in Figure 12(c). We can avoid
this if we do not coalesce some of the coalesced nodes. For example, if we coalesce
only node d and f, not others, we get the IG of Figure 12(d). In this IG, all the
nodes are pruned like the nodes of Figure 12(e).3 They are colored following the
order of popping nodes from the stack. Due to splitting the coalesced node df,
we can color all the nodes without spills like in Figure 12(f). Likewise, we can
avoid the unnecessary spills of the coalesced nodes or all (some) of its primitive
nodes by sifting the copies when we apply the aggressive coalescing strategy.
We call this technique copy sifting.

3There are other ways of pruning (simplification) in the IG of Figure 12(d). In any case, they do not

produce spills.

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 16, Publication date: January 2009.



Register Coalescing Techniques for Heterogeneous Register Architecture • 16:19

Fig. 13. The live range to be spilled after coalescing.

What is important in copy sifting is how to ‘sift’ copies. Once a copy is chosen
not to be coalescible, it cannot be eliminated later like the copies (a-c and
e-g) in Figure 12(d). Therefore, the more copies are chosen as not coalescible
in copy sifting, the more number of redundant copies are left, resulting in the
degradation of the code quality. On the other hand, the less copies are sifted, the
more spills may be produced. This tradeoff makes copy sifting an interesting
problem. We found that several things should be considered for maximizing
the code quality in copy sifting. First, in the HRAs, we can use the similarity
between register classes and the register class influence ε(φv) as the criterion
of sifting. Figure 13 shows an example, where the vertical lines and the bars
represent the live ranges of variables, and each variable has a register class φA
or φB. In Figure 13, two copy related variables y and w have different register
classes φ y (= φA) and φw(= φB). The coalesced node yw has the register class
φ yw(= φAB) which is the intersection of those two register classes φA and φB.
Now, the coalesced node yw has a long live range. If we assume that it becomes
an actual spill later, yw is split into two primitive nodes y and w. Whether two
primitive nodes are colored or not, it is not necessary to coalesce two nodes y and
w aggressively because the coalesced nodes yw is undo-coalesced in live range
splitting. In this case, two variables with different register classes φA and φB are
coalesced into the one with a register class φAB whose size is smaller than that
of the original register class φ y . If the register classes of two coalescible nodes
are very similar and the number of the common registers in both register classes
is large, it is good to coalesce them aggressively. If not, coalescing them might
be useless due to live range splitting, and worse, still produce additional spills
like in Figure 12(b). As noted in the example of Figure 13, two different register
classes φ y and φw makes the coalesced nodes yw split later. If the register class
φ y is the same as the small-sized register class φw(= φB), the coalesced node yw
will be split for coloring which makes the aggressive coalescing strategy useless,
too. However, if the register class φw is the same as φ y (= φA), the size of the
register class φ yw(= {A, B, C, D}) is 4. In this case, the coalesced node yw can
be colored and the aggressive coalescing is not nullified by live range splitting.

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 16, Publication date: January 2009.



16:20 • M. Ahn and Y. Peak

Likewise, in HRAs, unnecessary aggressive coalescing might be avoided when
only the copy related nodes with ‘similar’ and ‘large-sized’ register classes are
coalesced. How much the size of register class φv is can be represented using
the register class influence ε(φv), as explained in Section 4.2. In order to use the
similarity between the register classes as a criterion of copy sifting, we define
the similarity between two register classes here.

Definition 4. The similarity θ (φv, φu) is defined between the register classes
φv and φu, of two nodes v and u, as follows:

θ (φv, φu) = 1

2
×

( |φu ∩ φv|
|φu| + (|φu ∩ φv|)

|φv|
)

If two register class φv and φu are the same, θ (φv, φu) = 1. On the other extreme,
if φv and φu have no common registers, θ (φv, φu) = 0.

The other factor that should be considered in copy sifting is how much benefit
we get from coalescing is. In order to estimate the benefit from coalescing, both
the positive impact of coalescing and the negative impact should be considered.
The positive impact of coalescing decreases the number of edges in the IG. It
may result in less number of spills because the less number of edges might be
less squeeze of each node in the IG, as explained in Section 2.3 and Section 3.
So the more the positive impact is, the more benefit from the coalescing is. On
the other hand, the negative impact of coalescing increases the degree of each
coalesced node in the IG, increasing the possibility of producing more spills.
The more the negative impact is, the less benefit from the coalescing is. As ex-
plained in Section 3, the aggressive coalescing strategy in optimistic coalescing
can fully enjoy the benefit from the positive impact of coalescing, and live range
splitting can alleviate the negative impact of coalescing. However, as shown in
the example of Figure 12, we still have more chances to suppress the negative
impact of coalescing by copy sifting. In order to maximize the benefit from coa-
lescing, it is necessary to measure it. Unfortunately, it is hard to estimate the
negative impact of coalescing before coalescing. Although the negative impact
increases the degree of each edge in the IG as stated above, the increased num-
ber of edges after coalescing does not always produce a spill due to live range
splitting. The example is the coalesced node df in Figure 12(d). On the other
hand, it is easy and accurate to estimate the positive impact of coalescing. We
just calculate the number of the common neighboring nodes when we coalesce
two copy related nodes in the IG. The more common neighboring nodes they
have, the more positive impact of coalescing they have. Therefore, we define the
positive impact of coalescing ρvu as follows when we coalesce two copy related
nodes v and u:

ρvu = |adj(v) ∩ adj(u)|
|adj(v) + adj(u)|

where adj(u) is the set of the neighboring nodes of u in the IG. If two nodes v and
u have only common neighbors, ρvu is 0.5. If they have no common neighbors,
ρvu is 0. Now we can determine whether it is beneficial to coalesce a copy or not
by using the above considerations before coalescing, and sift it.

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 16, Publication date: January 2009.



Register Coalescing Techniques for Heterogeneous Register Architecture • 16:21

Fig. 14. A example of selecting potential spill with/without considering the register alias.

Definition 5. Sifting criterion τ : When we coalesce two copy related nodes
u and v, we determine whether it is beneficial or not by the sifting criterion τuv

τvu = ε(φv ∩ φu) · θ (φv, φu) · (1 + ρvu)

We do not aggressively coalesce v and u if τ vu < τ T ,where τ T is a threshold for
sifting.

4.5 Impact of Register Alias on Our New Spill Metric

In Section 4.2, we propose a new spill metric S(v). Using S(v), we select a
potential spill candidate among the significant nodes in the IG and decide the
immediate colorable node in live range splitting. In S(v), we consider the effect
of the register class of each node on its neighboring nodes by the register class
influence ε, obtained from RCT. This register class influence is the inverse of
the depth in RCT. As the depth represents the inclusion relationship between
the register classes in target architecture, it is the same as the number of
registers in each register class is considered. We discover that not only the
number of registers in each register class but also the register aliasing explained
in Section 2.2, is important. Figure 14 shows an example.

In this example, there are four physical registers s0, s1, s2, and s3. And
the registers d0, d1, and d2 have the alias relationship to the registers s0, s1,
s2, and s3, as shown in Figure 14(d). Each node in the IG of Figure 14(a) has a
register class φA or φB. As all the nodes in the IG are significant nodes, we select
a potential spill by comparing the new spill metric of each node. We assume that
the spill costs of all nodes are the same and the register class influence of each
register class is 1. Figure 14(e) shows the new spill metric of each node. The spill
metric of node e is the smallest, so we select it as a potential spill. Then other
nodes can be pruned into the stack of Figure 14(b). When we try to color each
node from the stack, node e is spilled. As a large-sized register in φB includes
two small-sized registers in φA due to register aliasing, it has less freedom to
color e later by selecting it as a potential spill. Therefore if we select a node
except e as potential spill (e.g., node a in Figure 14(c)), we can color all the
nodes in the IG without spills. Generally, the register class with large-sized
registers aliased to other small-sized registers (e.g., double-word registers like
d0, d1, or d2 of the example) can further prevent the coloring of the neighboring

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 16, Publication date: January 2009.



16:22 • M. Ahn and Y. Peak

nodes having the register class with the small-sized registers. If we consider
the effect of it in the new spill metric, we can avoid unnecessary spills like in
Figure 14(c). We define register size influence ω, which represents the effect of
the size of registers in each register class. All the registers in each register class
has the same sized registers. We modify the new spill metric Equation (2) by
adding the ω as follows:

S(v) = ω(φv) · C(v)/I (v) (3)

where ω = 1 for the register class with single word registers. In the register
class whose register size is larger than a single word size of target architecture,
ω is the value that is obtained from dividing the size of a register by the word
size. For the register class whose register size is smaller than that the size of a
single word, ω = 1.

5. EXPERIMENTS

In our experiment, we compare our modified optimistic coalescing scheme with
two different schemes: that is, one is the existing scheme based on iterated
coalescing in a related work, and the other is the original optimistic coalesc-
ing scheme. Probably the work most closely related to ours is the one con-
ducted by [Smith et al. 2004]. As stated earlier, ours and theirs basically
use almost the same register allocation framework for heterogeneous regis-
ter architectures, but in their framework, they adopt a special scheme based
on iterated coalescing for heterogeneous registers while we adopt a modified
optimistic coalescing scheme described in Section 4. In our experiment, we
try to compare the performance of our scheme and theirs. For fair compari-
son, we implement both schemes in our register allocation framework. Also,
for the other comparison, we test how much our new spill metric S(v) im-
proves the performance of optimistic coalescing with the original spill metric
M (v) for allocating heterogeneous registers to node v in the IG. So, in this
section, we will report the performance results of two optimistic coalescing
schemes each with M (v) and S(v). Also we will show what impact the tra-
ditional optimizations such as copy-propagation and common-subexpression
elimination has on our register allocation algorithm and three coalescing
schemes.

5.1 Experimental Environment

Our experiments have been performed on DSP563xx (refer to Figure 1) from
FreeScale, which is a popular low end DSP with typical heterogeneous reg-
ister architecture. We compile the benchmark codes using our retargetable
compiler platform SoarGen. As shown in Figure 15, the machine dependent
modules of our compiler are automatically generated from architecture de-
scription language (ADL). So we describe the ISA of DSP563xx using our
ADL (SoarDL), and generate its compiler. Our compiler uses GNU gcc 3.3
c-compiler as front end. The front end generates the virtual assembly code
based on a virtual machine that we assume. Its ISA is very simple and similar

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 16, Publication date: January 2009.



Register Coalescing Techniques for Heterogeneous Register Architecture • 16:23

Fig. 15. The structure of SoarGen retargetable compiler platform.

with a typical load/store based RISC architecture. The back end of our com-
piler takes the virtual assembly codes as input and generates the target ma-
chine code. Due to gcc 3.3 c-compiler, we can apply many traditional optimiza-
tion techniques such as dead code elimination, copy propagation and common
subexpression elimination during code generation. Our instruction selector
does partially-coupled code generation where the register classes in DSP563xx
are assigned to all the operands of the instructions before register allocation
[Ahn et al. 2007].

We ran our compiler on 3.2Hz Pentium IV with 2GB RAM. Our benchmarks
include twenty one nontrivial integer DSP core applications shown in Figure 16.
Benchmarks are of various sizes from MiBench to MediaBench [Lee et. al. 1997]
and EEMBC 0.1. The smallest ones are crc32 and stringsearch from MiBench,
which are the kernel codes frequently used in many DSP applications. The
larger ones are ac3, pegwit, and gsm decoder, which are all typical applica-
tions in the DSP domain. As the expensive floating-point calculation should be
avoided in embedded system, we try to choose the benchmark codes consisting
of only integer calculation. For some benchmark codes like ac3, we manually
convert the floating-point calculation into integer calculation. Instead, in order
to show you what each benchmark code is, we briefly explain the core feature
of each benchmark code in Figure 16.

5.2 Comparing Three Coalescing Techniques

Figure 17 shows the features of the IR code right before register allocation. The
ratio of copy instructions is very high. It is about 55% of the IR code. This is
in fact not the case only for our compiler; other compilers such as the one in
Zivojnovic [1996] also report a similar ratio of copy instructions during their
code generation for heterogeneous register architectures. Actually, this high
ratio of copy instructions gives us the chance of optimization for eliminating

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 16, Publication date: January 2009.



16:24 • M. Ahn and Y. Peak

Fig. 16. Benchmark program.4

Fig. 17. Ratio of the copies in IR code right before register allocation.5

4We exclude some benchmarks codes including all small benchmarks from DSPStone [Zivojnovic

et al. 2004] used in our previous work. Instead, we do our experiment for larger benchmarks from

various benchmarks such as EEMBC, Mibench, and MediaBench.
5In all figures from now on, the last bar named ‘ave’ represents the average value, not benchmark

result.

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 16, Publication date: January 2009.



Register Coalescing Techniques for Heterogeneous Register Architecture • 16:25

Fig. 18. Ratio of removed copies compared to those before coalescing: (a) No optimization is applied,

and (b) O2 optimization is applied.

copies by using the coalescing techniques. When we apply O2 optimizations,6

the ratio of copy instructions is decreased a little bit in most of the benchmark
codes. It is because the traditional optimizations for minimizing the code size
such as copy propagation are applied. After those optimizations are applied in
the virtual assembly code by our front end, our compiler produces additional
copy instructions in the instruction selection stage, which makes the ratio of
copy instructions still high [Ahn et al. 2007].

In Figure 18, we compare how many copies can be removed in the three coa-
lescing schemes. As you can see, the iterated coalescing scheme in Smith et al.
[2004] cannot coalesce many copy related nodes, as compared to both optimistic
coalescing schemes. For example, in ttsprk01, iterated coalescing eliminates
only 20.1% of copies while optimistic coalescing eliminates up to 42.0% of them
when O2 optimizations are applied. (Our coalescing scheme eliminates 42.3%
of them.) In all the benchmark codes, optimistic coalescing merges much more

6Our front-end gcc 3.3 c-compiler does O2 optimizations. O2 optimizations include many traditional

optimizations like copy propagation, and common subexpression elimination. It is for minimizing

the code size.

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 16, Publication date: January 2009.



16:26 • M. Ahn and Y. Peak

copies than iterated coalescing. The reason is that, as explained earlier, iter-
ated coalescing takes too conservative coalescing strategy, thus giving up the
chance of coalescing too early. When no optimizations are applied, the ratio
of the eliminated copies is higher in the iterated coalescing scheme. It is be-
cause the live ranges with no optimizations applied have less conflict to others,
compared to the one with O2 optimizations applied.7 The live ranges with less
conflict produce the less number of the interfering edges in the interference
graph. When a live range has less number of conflicts like this, the coalesced
nodes may have less number of conflicts, which can increase the number of
removed copies without using the aggressive coalescing scheme like optimistic
coalescing. In this case, the conservative coalescing strategy can show not so
inferior performance. Iterated coalescing eliminates up to 36.2% of the copies,
which is close to that of both optimistic coalescing (40.8%). However, the gap
between the ratios of the eliminated copies is larger when O2 optimizations are
applied (iterated coalescing: 29.9%, optimistic coalescing: 39.9%, our optimistic
coalescing: 40.2%). In any case, being compared with the original optimistic
scheme, our modified scheme eliminates more copies.

Figure 19 illustrates how many spills are produced by the three coalescing
schemes. As stated earlier, the live ranges of the variables in the codes with
no optimizations applied have relatively less conflicts with other live ranges,
so many of the spills are determined by the way of register allocation and the
coalescing schemes. Therefore, in some benchmark codes with no optimizations
applied, (3des, cacheb01, ospf, gsm decoder, and routelookup) both optimistic
coalescing schemes insert smaller number of spills than the iterated coalescing
scheme. This is mainly because optimistic coalescing minimizes the negative
impact of coalescing via live range splitting. But, in other codes with no opti-
mizations applied, like aes, adpcm decoder, viterb00, pegwit, and ttsprk01, both
optimistic coalescing techniques insert more spills than the iterated coalescing
technique. It is because many of the nodes coalesced by optimistic coalescing
are spilled despite of live range splitting. With O2 optimizations applied, where
each live range conflicts with more other live ranges, this is the case.

Luckily, in our optimistic coalescing, the new spill metric and the coloring
heuristic help us to choose the better nodes for selecting potential spill and
coloring all the split nodes during live range splitting, especially with O2 opti-
mizations applied. Therefore, as displayed in Figure 19, our modified coalescing
scheme produces fewer spills than the original optimistic coalescing schemes in
most benchmark codes. 9.0% of spills are reduced more, in the codes with O2 op-
timizations applied, but there are some benchmark codes like 3des, and pegwit,
where our scheme produces more spills. As previously explain in Section 4.4, it
is due to the aggressive way of coalescing in the optimistic coalescing schemes.
As live range splitting considers only one node at a time, if the coalesced node

7How much conflict a live range has depends on the kinds of the applied optimizations. But in

this context, we wanted to explain the difference between O0 optimizations and O2 optimizations

in our experimental environment. (We think that this may be true in many other compilers) We

examine how many conflicts a live range has in each optimization. This data is collected from the

first live range analysis of the register allocation in each optimization. In O0 optimizations, it has

5.79 conflicts on average. In O2 optimizations, it has 8.38 conflicts on average.

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 16, Publication date: January 2009.



Register Coalescing Techniques for Heterogeneous Register Architecture • 16:27

Fig. 19. The number of spills produced by three coalescing schemes.

has many other coalesced nodes in neighbors, it increases the number of the
significant neighboring nodes, producing inevitable spills despite live range
splitting.

Unfortunately, the improvement in our coalescing scheme comes at the ex-
tra cost of compilation time and memory requirement. In our scheme, we need
to maintain the RCRT and the RCT for the coalescing, which can be ignored
in comparison with the memory size needed for the whole register allocation
algorithm. Figure 20 shows the register allocation time of the original opti-
mistic scheme and that of our optimistic scheme. In the figure, both times are
normalized to that of iterated coalescing. Note that in almost all benchmarks,
the register allocator with both the optimistic schemes runs faster than the
one with the iterated scheme. This result is actually not surprising because it-
erated coalescing needs to repeat multiple times the simplification, coalescing
and freeze phases, as shown in Figure 5. Our optimistic coalescing technique
generally takes more time because it should do additional jobs described in

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 16, Publication date: January 2009.



16:28 • M. Ahn and Y. Peak

Fig. 20. Ratio of compile time for register allocation with two optimistic coalescing schemes

normalized to that with iterated coalescing.

Section 4, but sometimes in our optimistic coalescing technique, a successful
allocation or coalescing in the a round of the register allocation does not re-
quire the next round of the register allocation, where it takes less time than
the original optimistic coalescing technique.

Although there are some benchmark codes where optimistic coalescing pro-
duces more spills (especially the ones with O2 optimizations applied), we ob-
serve that optimistic coalescing generally outperforms iterated coalescing in
various aspects because optimistic coalescing can eliminate more copy instruc-
tions (4.5% more on average with no optimizations applied, 10.0% with O2
optimizations applied) and produces less spills (15% less on average with no
optimizations applied), as shown in Figure 18 and Figure 19. In Figure 21,
we show the final code sizes of both optimistic coalescing schemes normalized
to those of the iterated coalescing scheme. The original optimistic scheme re-
duces the code size by up to 13.0% (on average 5.7%), as compared to iterated
coalescing when O2 optimizations are applied (on average 3.0% with no op-
timizations applied). Our optimistic scheme further reduces the code size by
1.0% on average in O2 optimizations. This code size reduction is small in our
optimistic coalescing scheme, but our coalescing scheme produces much less

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 16, Publication date: January 2009.



Register Coalescing Techniques for Heterogeneous Register Architecture • 16:29

Fig. 21. Ratio of total code size compared to iterated coalescing.

spills compared to the original optimistic coalescing scheme (9% less on av-
erage with O2 optimizations applied). This is thanks to the combined effects
of aggressive coalescing and live range splitting using our new spill metric
S(v) and the coloring heuristic, mitigating the negative effect of aggressive
coalescing. The runtime result in Figure 22 shows that both optimistic coa-
lescing schemes generate fast code than the iterated coalescing scheme. (1.4%
decrease with no optimizations applied, and 5.5% with O2 optimizations ap-
plied). However, there is no big difference between the runtime performances
of the original coalescing scheme and our optimistic coalescing scheme. In order
to get more runtime performance increase in our optimistic coalescing scheme,
we reduce more spills by applying copy sifting. This result is in Section 5.4.
In the next section, we will examine the negative impact of optimistic
coalescing.

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 16, Publication date: January 2009.



16:30 • M. Ahn and Y. Peak

5.3 Negative Impact of Coalescing In Two Optimistic Coalescing Schemes

As explained in Section 3, the negative impact of optimistic coalescing increases
the degrees of the coalesced nodes in the IG, producing more spills. We estimate
its effect by measuring how many nodes that are coalesced despite violating
the conservative coalescing strategy used in iterated coalescing are actually
spilled. As explained in Section 4.3, several primitive nodes are included in
a coalesced node. A coalesced node, which is coalesced despite violating the
conservative coalescing strategy, is called a violating coalesced node. Figure 23
shows the ratio of the number of actually spilled nodes to the number of nodes
in the violating coalesced nodes. In the original optimistic coalescing scheme,
an average of 13.9% of nodes is actually spilled when O2 optimizations are
applied. This rate further drops down to 13.1% on average in our optimistic
coalescing with the help of the combined effects of aggressive coalescing and
live range splitting using our new spill metric S(v) and the coloring heuristic. As
the low ratio means the smaller number of spills, the benefit from the aggressive
coalescing strategy gets bigger due to the large positive impact of coalescing,
which the conservative coalescing strategy used in iterated coalescing would
miss even if they can be colored successfully after being coalesced. When no
optimizations are applied, this rate is 6.2% on average.

As explained in Section 3, live range splitting would help mitigating the neg-
ative impact of coalescing. We investigate this effect of the live range splitting of
coalesced nodes in the original optimistic coalescing scheme and our optimistic
coalescing scheme. Coalesced nodes are categorized into three according to the
result of live range splitting: (1) All the primitive nodes are spilled. (2) All the
primitive nodes are colored successfully. (3) Some primitive nodes are colored,
whereas others are spilled. The nodes in (1) are the same as the coalesced node
itself is spilled. Only in (2) and (3), optimistic coalescing can enjoy the goodness
of live range splitting. Figure 24 shows the ratio of the number of successfully
colored nodes (this includes the cases where some of the primitive nodes in the
violating coalesced nodes are colored) to the number of all the nodes in violating
coalesced nodes. When no optimizations are applied, this ratio is 89.5% in the
original optimistic coalescing scheme. This is very high ratio compared to the
result of [Park et. al. 2004]. In their work, this ratio is 17.1% in the original
optimistic coalescing scheme. Our result means that almost all the primitive
nodes in spilled coalesced nodes can be colored by undo-coalescing except 9.5%
of the nodes. We think that it is due to the feature of the register classes of
our target architecture and the register allocation algorithm. Each register
class in our target architecture has small number of registers inside, as shown
in Figure 2. The squeeze σv(ϕu) of a node v caused by the neighboring nodes
u(∈ U ) is bound to |ϕv ∩ ϕu|, where U is a set of the neighboring nodes with the
same register class [Smith et al. 2004]. So although the degree of the neigh-
boring nodes with the same register class is very high, the node can still have
chances to color using the registers in the non-intersecting part of ϕv and ϕu.
In Park et al. [2004], the target architecture (SPARC machine) is homogeneous
register architecture; that is, its register class is one because they use a single
large register file (32 general purpose registers). In this case, the high degree

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 16, Publication date: January 2009.



Register Coalescing Techniques for Heterogeneous Register Architecture • 16:31

Fig. 22. Ratio of runtime compared to iterated coalescing.

of a node directly makes the node spilled. That is why the successful coloring
ratio is so high in our experiment, which is the evidence that the optimistic
coalescing scheme shows good performance in HRAs. In other point of view,
this high successful coloring ratio also informs us that in live range splitting,
the original places where the eliminated copies exist is good to undo-coalesce
because most of the split live ranges (i.e., primitive nodes in the coalesced node)
are successfully colored. In our modified coalescing scheme, the ratio of the suc-
cessfully colored nodes is 91.5% due to the new spill metric and the coloring
heuristic. With O2 optimizations applied, these ratios go up to 95.8% and 96.1
each.

5.4 Further Decreasing Spills

As previously shown, our modified optimistic coalescing scheme reduces more
spills in most benchmark codes compared to the original optimistic coalescing
scheme, but in some benchmark codes such as pegwit and 3des, our modified
optimistic coalescing scheme produces more spills. In order to reduce the num-
ber of spills in these cases, we introduce copy sifting described in Section 4.4.

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 16, Publication date: January 2009.



16:32 • M. Ahn and Y. Peak

Fig. 23. Ratio of spilled nodes in violating coalesced nodes.

Figure 25 and Figure 26 show the result. In these experiments, we apply copy
sifting to our modified optimistic coalescing, and measure the change of the code
quality in all benchmark codes, changing τ T from 0.0 to 1.0 by 0.1. Our compiler
does register allocation eleven times per benchmark codes, and select the best
quality code, even though it takes eleven times more time. We summarize the
code quality using three factors—the number of spills, the number of left copies
after finishing register allocation, and the code size in Figure 25. All of them
are normalized to the results in the case at threshold 0.0. The figure shows
the average values of the results from all benchmark codes. The three lines
in the figure show them. The upper one represents the change in the number of
the left copies. The middle one represents the change of the code size. The lower
one represents the change of the number of spills. As expected, the number of
spills is decreased against the increase of τ T . The number of spills is not changed
from 0.0 to 0.5. It starts to be decreased from the threshold 0.6. At threshold
0.7, 70.9% of the spills are eliminated more. It continues to be decreased, but

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 16, Publication date: January 2009.



Register Coalescing Techniques for Heterogeneous Register Architecture • 16:33

Fig. 24. Successful coloring ratio of live range splitting in the original optimistic coalescing scheme

and our optimistic coalescing scheme.

the amount of decrease is so small. Finally when we aggressively coalesce no
copies (τ T is 1.0), 78.8% of spills are eliminated more in our modified coalescing
scheme. As explained above, we should pay for this large amount of reduction
in spills at the cost of the losing chances of coalescing in copy sifting. As we
decrease the spills, we lose more chances of coalescing, left more copies uncoa-
lesced, resulting in the increase of the left copies and the code size. As shown in
Figure 25, the number of the left copies and the code size are increased along
with τ T . From 0.0 to 0.5 of τ T , they are not changed. At 0.6, the code size is
increased by 0.3%. It is because the increase of the uncoalescible copies in copy
sifting overwhelms the decrease in spills. At 0.7, the code size is increased by
1.3% more. The code size continues to be increased, resulting in 5.5% of in-
crease at threshold 1.0. It means that the code size will be increased by 5.5%
if we do not coalesced any copy related nodes in the IG at all. From the result
in Figure 25, we conclude that we can get the best code quality at threshold
0.7, where the spills are decreased by 70.9%, whereas the code size is increased

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 16, Publication date: January 2009.



16:34 • M. Ahn and Y. Peak

Fig. 25. The change of code quality with threshold from 0.0 to 1.0.

Fig. 26. The change of runtime with threshold from 0.0 to 1.0.

only by 1.3%. As stated in Section 5, our modified optimistic coalescing scheme
decreases the code size by 1.0% more, comparing with the original optimistic
coalescing scheme. So, if we apply copy sifting with the threshold value 0.7, our
modified coalescing scheme can eliminate large amount of spills with almost
the same code size as the original coalescing scheme.

Figure 26 shows the change of the runtime with threshold from 0.1 to 1.0 in
all benchmark codes. Similar to the result in Figure 25, at the threshold 0.7,
the runtime is decreased by 1.0% on average. However, in some benchmark
codes like ac3, 3des, and pktflow, the runtime is decreased by about 10%, due
to copy sifting. In these benchmark codes, copy sifting is very efficient because
it reduces the runtime up to 10% with 1.0% code size increase.

Figure 27 show the decrease of spills after we apply Equation (3) to our mod-
ified optimistic coalescing. In each benchmark code, upper bar is the number
of spills when we apply Equation (2) (without ω) and lower bar is the number
of spills when we apply Equation (3) (with ω). As many double-word register
accesses exists in the IR codes before register allocation, we focus on reducing
spills in two benchmark codes-ttsprk01 and aes. In this experiment, we apply

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 16, Publication date: January 2009.



Register Coalescing Techniques for Heterogeneous Register Architecture • 16:35

Fig. 27. The ratio of spills before/after applying register size influence ω to the new spill metric in

Equation (2).

the new spill metric with ω when we break the tie where all the significant
nodes including the ones with the register class having large-sized registers
have the same spill metric value. In ttsprk01 and aes, we more reduce 2 and
10 of spills each. Although these reductions make the number of the removed
copies from coalescing a little bit, their final code sizes have no big difference.
In ttsprk01, the number of the removed copies is decreased from 993 to 992. In
aes, it is decreased from 3,913 to 3,907, so their code sizes are not so changed.
We think this spill metric is helpful to reduce the spills without the code size
increase in many other benchmark codes where frequent double-word register
accesses are required.

6. CONCLUSION

This article reports our recent efforts of building a compiler with a register
allocation framework specifically designed to handle the heterogeneity of reg-
ister architectures commonly encountered in many embedded processors. Since
register coalescing is indispensable for the register allocator, we implement a
coalescing algorithm in our register allocation framework. In order to coalesce
as many copy instructions as possible, we resort to optimistic coalescing in-
stead of iterated coalescing. Optimistic coalescing generates a better quality
code than iterated coalescing. Unfortunately, the original optimistic scheme
cannot handle heterogeneous registers effectively, thus producing unneces-
sary spills. To tackle this issue, we adapt the modified optimistic coalescing
scheme into our register allocation framework. In this work, we cope with ad-
ditional constraints that the heterogeneous register architectures requires to
determine the register classes of coalesced nodes in the IG and to choose the
immediately colorable node among all split nodes after live range splitting.
Our experiments show that our adapted scheme outperforms both the origi-
nal optimistic scheme and the existing iterated scheme [Smith et al. 2004] for
most of benchmark codes. Also, we propose two techniques for further decreas-
ing spills by considering the relationship between register classes assigned
to each node in IG and measuring the benefit from the aggressive coalescing
strategy.

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 16, Publication date: January 2009.



16:36 • M. Ahn and Y. Peak

Fig. 28. A simple example of infinite spill.

In future work, we want to compare the performance of our optimistic coalesc-
ing and the register allocation algorithm with the optimal register allocation
from the generic methods like integer linear programming.

APPENDIX

A. IMPLEMENTATION ISSUES

This appendix provides some issues about the implementation of the register
allocation and coalescing algorithm. The detailed pseudocode about optimistic
coalescing is described in Park et al. [2004]. Smith et al. [2004] deal with gen-
eralized graph coloring well. We want to explain one thing about the way of
avoiding infinite spilling, which happens frequently and its debugging is a little
bit complicated. In infinite spilling, a node is infinitely spilled with no squeezes
in IG changed. For example, as shown in Figure 28, we assume that a variable
y is spilled whose live range is included by the other live range of a variable
x. It produces spill codes but x still has an interfering edge with y in IG, s the
next round of register allocation, y, is marked as spills again, so on.

Most previous works briefly deals with this. They propose that the register
allocator should be careful for not choosing the short live range generated from
the spills in previous register allocation round. Chaitin [1982] and Bergner
[1997] also note that spill code should not be generated in some cases such that
a definition is ‘close’ to its use. For most of the cases including the example
in Figure 28, they are good advices to avoid infinite spilling. We implemented
Chaitin’s spilling heuristic for minimizing spills. But when we implement our
register allocation and optimistic coalescing, we found a case where infinite
spills are still generated. It is because a node spilled in previous round of reg-
ister allocation is coalesced again in next coalescing round. We can avoid this if
we do not coalesce the nodes previously spilled in the aggressive coalesce stage
described in Figure 5(b).

ACKNOWLEDGMENTS

This research is based on earlier work [Ahn et al. 2007] in which the work of
Jooyeon Lee was pivotal. We thank him for his time and effort.

REFERENCES

AHN, M., LEE, J., JUNG, S., YOON, J. W., AND PAEK, Y. 2007. A code generation approach for Hetero-

geneous register architectures. In Proceedings of the 11th Annual Workshop on the Interaction
between Compilers and Computer Architecture. IEEE, Los Alamitos, CA.

ARAUJO, G. AND MALIK, S. 1998. Code generation for fixed-point DSPs. ACM Trans. Des. Automat.
Electr. Syst. (TODAES) 3, 2, 136–161.

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 16, Publication date: January 2009.



Register Coalescing Techniques for Heterogeneous Register Architecture • 16:37

BERGNER, P. E. 1997. Spill Code Minimization Techniques for Graph Coloring Register Allocators.

PhD thesis, Minnesota University, Minneapolis, Minnesota.

BRIGGS, P. 1992. Register allocation via graph coloring. PhD thesis, Rice University, Houston,

TX.

CHAITIN, G. J. 1982. Register allocation and spilling via graph coloring. In Proceedings of the
SIGPLAN Symposium on Compiler Construction. ACM, New York, 98–105.

DAVEAU, J-M., THERY, T., LEPLEY, T., AND SANTANA, M. 2004. A retargetable register allocation

framework for embedded processors. In Proceedings of the ACM SIGPLAN/SIGBED Conference
on Languages, Compilers, and Tools for Embedded Systems. ACM, New York, 202–210.

FEUERHAHN, H. 1988. A data-flow driven resource allocation in a retargetable microcode compiler.

In Proceedings of the 21th Annual Workshop on Microprogramming and Microarchitecture. IEEE,

Los Alamitos, CA, 105–107.

GEORGE, L. AND APPEL, A. W. 1996. Iterated register coalescing. ACM Trans. Program. Lang. Syst.
18, 3, 300–324.

KOES, D. AND GOLDSTEIN, S. C. 2005. A progressive register allocator for irregular architectures. In

Proceedings of the International Symposium on Code Generation and Optimization. ACM, New

York, 269–280.

KONG, T. AND WILKEN, K. D. 1998. Precise register allocation for irregular architectures. In Pro-
ceedings of the 31th Annual ACM/IEEE International Symposium on Microarchitecture. ACM,

New York, 297–307.

LEE, C., POTKONJAK M., AND MANGIONE-SMITH, W. H. 1997. MediaBench: a tool for evaluating

and synthesizing multimedia and communications systems. In Proceedings of the 30th Annual
ACM/IEEE International Symposium on Microarchitecture. IEEE, Los Alamitos, CA, 330–335.

LEE, J. K., CHEN, S. Y., AND WU, C. J. 2006. Copy propagation optimizations for VLIW DSP pro-

cessors with distributed register files. In Proceedings of the 19th International Workshop on
Languages and Compilers for Parallel Computing (LCPC). Springer, Berlin, Germany.

LIEM C., MAY T., AND PAULIN P. G. 1994. Register assignment through resource classification

for ASIP microcode generation. In Proceedings of the IEEE/ACM International Conference on
Computer-Aided Design. IEEE, Los Alamitos, CA, 397–402.

PARK, J. AND MOON, S-M. 2004. Optimistic register coalescing. ACM Trans. Program. Lang. Syst.
26, 4, 735–765.

PAULIN P. G., LIEM, C., MAY, T. C., AND SUTARWALA, S. 1995. DSP design tool requirements for

embedded systems: a telecommunications industrial perspective. J. VLSI Signal Process. Syst.
9, 1-2, 23–47.

STALLMAN, R. M. 1994. Using and Porting GNU CC. Free Software Foundation, Cambridge, MA.

SCHOLZ, B. AND ECKSTEIN, E. 2002. Register allocation for irregular architectures. In Proceedings
of the Joint Conference on Languages, Compilers and Tools for Embedded Systems: Software and
Compilers for Embedded Systems. ACM, New York, 139–148.

SMITH, M. D., RAMSEY N., AND RAMSEY G. 2004. A generalized algorithm for graph-coloring register

allocation. In Proceedings of the ACM SIGPLAN Conference on Programming Language Design
and Implementation. ACM, New York, 277–288.

ZIVOJNOVIC, V., VELARDE, J. M., AND SCHLAGER, C. 1994. DSPstone: A DSP-oriented benchmarking

methodology. In Proceedings of the International Conference on Signal Processing and Technology.
IEEE, Los Alamitos, CA.

ZIVOJNOVIC, V., PEES, S., SCHLAGER, C., WILLEMS, M., SCHOENEN, R., AND MEYR, H. 1996. DSP pro-

cessor/compiler co-design: a quantitative approach. In Proceedings of the 9th International Sym-
posium on System Synthesis. IEEE, Los Alamitos, CA,108.

Received October 2007; accepted July 2008

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 16, Publication date: January 2009.


