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Abstract: This paper deals with a task assignment problem of cooperative multiple Unmanned Aerial Vehicles (UAVs). The problem 

about assigning the tasks to each UAV can be interpreted as a combinatorial optimization problem such as Travelling Salesman 

Problem (TSP), Vehicle Routing Problem (VRP), and Generalized Assignment Problem (GAP). These problems have NP-complete 

computational complexity which has features such that the computation time cannot be determined in polynomial scale and the 

problem cannot be solved correctly except for examining all possible solution cases. To solve this combinatorial optimization 

problem, Genetic Algorithm (GA) which is one of the meta-heuristic algorithms is adopted. By using GA, multiple UAVs-multiple 

targets-multiple tasks scenario example is simulated, and the results of GA are compared with those of Mixed Integer Linear 

Programming (MILP) method to verify the optimality. Then the decentralized task assignment method based on chromosomes 

negotiation scheme approach is employed, and the simulation for a decentralized task assignment scenario is performed to evaluate 

the validity of the proposed method. 
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1. INTRODUCTION 

UAV (Unmanned Aerial Vehicle) has various applications 

in the area of military use such as reconnaissance, surveillance, 

attack, etc., and therefore the research on the UAV control has 

been actively performed. As the interests of the UAV control 

are increased, researches of Multiple UAVs’ cooperative 

control are also increased. Many complicated missions related 

to the military purpose can be preformed efficiently through 

the multiple UAVs’ cooperative control, and the insufficiency 

on the single UAV’s operating condition can be compensated 

by using the cooperation of multiple UAVs. For those reasons, 

there are many research subjects about the cooperative control 

of multiple UAV systems [1]. In this study, a task assignment 

method is proposed in the process of the multiple UAVs’ 

cooperative control. 

To complete a given mission efficiently, resources of UAV 

should be distributed to each UAV properly. This is a kind of 

task assignment problem, and it can be interpreted as a 

combinatorial optimization problem that minimizes total cost 

of UAVs. In the aspect of the calculation complexity, the 

combinatorial optimization problem has Nondeterministic 

Polynomial (NP)-complete features such as Traveling 

Salesman Problem (TSP), Vehicle Routing Problem (VRP) 

and Generalized Assignment Problem (GAP) [2]. It is hard to 

solve the NP-complete problem within polynomial time scale, 

and therefore approximation methods and heuristic methods 

are generally used. 

Recently, various methods are proposed to solve the task 

assignment problem [4, 7-18]. In [7], Mixed Integer Linear 

Programming (MILP) method is used to solve the problem. 

MILP is a representative linear approximation method. MILP 

can obtain a solution by composing constraints and 

environment variables through the linear approximation [5-7]. 

On the other hand, heuristic methods such as Particle Swarm 

Optimization Algorithm [8-9], Tree Search Algorithm [10], 

and Genetic Algorithm (GA) [11-14] are used to solve the 

problem. These methods find a solution gradually through the 

intensification and diversification process. 

In this study, GA is adopted to solve the task assignment 

problem, and the results of GA are compared with those of 

MILP method to verify the optimality. GA emulates the law of 

heredity in nature to improve the probability of generating 

superior genes at next generation through the selection, 

crossover, mutation, and substation operators. By using GA, 

each UAV can generate a minimum cost path and perform the 

tasks successfully. Each UAV has the chromosomes related to 

the task assignment and forms a set of the chromosomes. UAV 

reorganizes the chromosome in the set on the given constraint 

conditions. In this way, GA solves the task assignment 

problem. 

In case of a centralized task assignment problem, 

chromosomes of all UAV are integrated together, thus solution 

can approach nearly to the minimum cost solution. However, 

each UAV is generally controlled on decentralized, and 

therefore there are communication limits to each other. Also, 

the environments of task field may be changed abruptly. 

Therefore, the centralized task assignment cannot be applied 

to real time operation of multiple UAVs. To deal with this 

problem, we employ a decentralized task assignment problem 

using chromosomes negotiation scheme approach [18]. To 

evaluate the validity of this method, simulations with multiple 

UAVs-multiple targets-multiple tasks scenario are performed. 

The construction of this paper is as follows: Section 2 

describes the task assignment scenario configuration, dynamic 

model for estimation, and combinatorial optimization problem. 

Section 3 deals with genetic algorithm for task assignment 

problem and section 4 introduces negotiation scheme for 

decentralization. Finally, section 5 shows the simulation 

results, and section 6 concludes the research.  

 

2. PROBLEM DESCRIPTION 

2.1 Task assignment scenario 

When UAV is operated in a task field, some goals 

according to a given mission should be accomplished. Let us 

assume that a UAV flies in a battle field, it can perform 

various tasks. For example, UAV can search and observe 

targets for reconnaissance and patrol a specified area. 

Sometimes, UAV may have to attack dangerous facilities. 

Because UAV can take various tasks in this way, it is expected 

that many tasks can be distributed efficiently through multiple 



UAVs. The total cost of the multiple UAVs can be reduced by 

the task assignment. 

The task assignment problem varies according to the 

number of UAVs, targets, and tasks. The capabilities of the 

UAVs also affect the problem. Therefore, the configuration of 

the task assignment scenario is very important. 

In this study, it is assumed that 3 homogeneous UAVs and 

4 targets are located in a 2 dimensional task field, and UAVs 

are supposed to perform 2 tasks to each target. The tasks are 

divided into two stages {classification and attack, and target 

damage assessment (verification)} [7]. 

In addition, each UAV has its own source point and sink 

point as shown in Fig. 1. UAV starts from the source point, 

and it is terminated at the sink point. The capabilities of UAVs 

are assumed unrestricted in this scenario, because it is a 

relatively small scale example. For the simplicity of the 

problem, collisions each UAV and obstacles are not 

considered in the task field. 

 
Fig.1 Task operation field 

 

2.2 Dynamic model 

To distribute the tasks, the information of each UAV’s 

capabilities should be given to the decision maker. In this case, 

the dynamic model of UAV is directly related to the 

capabilities. Dynamic model may affect the complexity of the 

task assignment algorithm. In this study, the Dubin’s model is 

considered for all 3 UAVs [12]. 

Eq. (1) shows the dynamic equations of the Dubin’s model. 
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where angular rate control input is bounded as |u|≤1 and v is 

constant. 

The control of UAV is also related to the capability of each 

UAV. The trajectory of UAV is determined according to the 

control law. In this example, all UAVs are supposed to move 

as bang-off-bang control (minimum control input control), and 

therefore the travelling distance and time of each UAV can be 

estimated by the bang-off-bang control trajectory. Figure 2 

shows Dubin’s model and bang-off-bang control trajectory. 

 
Fig.2 Dubin’s model and its Trajectory 

 

2.3 Combinatorial optimization problem 

Task assignment problem about the scenario can be 

described in combinatorial optimization formulation. This 

problem has performance criterion which needs to be 

minimized or maximized subject to several constraints. 

2.3.1 Performance criterion 

In this study, the cumulative operation time of all UAVs is 

considered as a performance criterion. 
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It can be reduced the resources of the UAVs group such as fuel 

consumption or control input by minimizing the cumulative 

operation time. 

 

2.3.2 Constraints 

The constraints of the given task assignment scenario are 

described as follows. 

1) Task 1 should occur earlier than Task 2 for each target. 

(Timing Constraint) 

2) Each task is performed at once through all UAVs for 

each target. 

3) If UAV performs all tasks or has no tasks, it should go 

to the sink point, and the mission is terminated. 

4) Each path of UAV should be satisfied the continuity of 

its trajectory. 

5) Because the task assignment scenario is relatively 

simple, the number of attacks to the target is regarded 

as enough to perform all tasks. 

6) There are no collisions and obstacles. 

 

3. GENETIC ALGORITHM 

3.1 Chromosomes encoding 

UAVs have their own gene, and each gene consists of a set 

of chromosomes which intend the task information of their 

own UAV. Therefore a proper chromosomes encoding should 

be chosen to match the problem. Various chromosome 

encoding can be considered; using bit array, gray coding, or 

real number. In this problem, we set the chromosomes 

encoding as a string of natural number to express the order of 

targets and tasks. 

For centralized task assignment case, communication limits 

are not considered, And therefore each UAV’s chromosomes 

can be integrated on one chromosome. That is, one 

chromosome includes all UAVs’ task assignment information 

as summarized in Table 1. 

 

Table 1 Centralized Chromosome Representation 

UAV1 

target 
0 1 1 0 2 0 0 2 

UAV1 

task 
0 1 2 0 1 0 0 2 

UAV2 

target 
3 0 0 4 0 0 0 0 

UAV2 

task 
1 0 0 1 0 0 0 0 

UAV3 

target 
0 0 0 0 0 3 4 0 

UAV3 

task 
0 0 0 0 0 2 2 0 

 

On the other hand, if communication limits exist, each 

UAV’s chromosome is disconnected each other, and only 

limited situation allows the chromosomes communication. In 

this case, UAVs’ chromosomes cannot be integrated, and each 

UAV’s chromosomes should be generated independently. 

Table 2 shows the decentralized chromosome representation. 

 



Table 2 Decentralized Chromosome Representation 

UAV1 

target 
0 1 1 0 2 0 0 2 

UAV1 

task 
0 1 2 0 1 0 0 2 

 

3.2 Genetic operators 

Genetic Algorithm has four genetic operators which consist 

of selection, crossover, mutation, and substitution. For one 

generation from chromosomes of their parents, these four 

stages should be operated step by step. 

3.2.1 Selection 

The proportionate selection with roulette wheel method is 

employed for the selection operator in the task assignment 

problem. Each chromosome has its own fitness which is based 

on quality as a solution candidate. Therefore, it has the chance 

to be selected proportionally according to its own fitness.  

The fitness of each chromosome is represented as follows. 
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where Cw is the worst chromosome, Cb is the best 

chromosome, and Ci is i-th chromosome in the chromosomes 

set. 

Through the roulette wheel method, two chromosomes of the 

parents are selected. 

 

3.2.2 Crossover 

Crossover operator employs an order crossover method 

[11]. Order crossover rearranges the internal array of the 

chromosomes as shown in Fig. 3, and therefore it is suitable 

for structure such as figures arrangement. In this example, the 

order crossover method is adopted to solve the TSP in the task 

assignment problem. 

 

 
Fig. 3 Order Crossover 

 

3.2.3 Mutation 

Mutation occurs randomly to prevent the solution 

converging to the local minima. The mutation probability 

parameter is set to change the chromosome. In this problem, 

the mutation occurs as the way of reversed order chromosome 

form. 

3.2.4 Substitution 

When offspring chromosome is generated, it will be 

substituted with a chromosome in the set. In this step, the 

survival of the fittest concept is used. One chromosome is 

generated from the chromosomes set sequentially, the fitness 

of the generated chromosome is evaluated, and it is substituted 

with the worst chromosome in the set instead of setting elitism. 

Through this process, superior chromosome can survive 

naturally. 

 

4. NEGOTITATION SCHEME FOR 

DECENTRALIZATION 

4.1 Decentralization of the task assignment 

When multiple UAVs group performs the assigned task, 

each UAV moves to the task field according to its own task 

plan. This plan is pre-allocated by solving the task assignment 

problem in the centralized method, and the optimal solution 

can be obtained on the fixed task environment. However, if the 

task environment changes, UAV cannot manage the changed 

circumstance actively by the centralized decision making 

structure. Moreover, when communication delays or limits 

exist among the UAVs group, each UAV cannot integrate the 

whole information of UAVs. 

Generally, for autonomous UAV operation, UAV should 

have decentralized control/guidance law and its own decision 

making process. Therefore, decentralization of the task 

assignment is naturally required. To apply the decentralized 

task assignment algorithm, it is assumed that the tasks of UAV 

are determined by its own task assignment algorithm and there 

is no ground station which sends commands to the all UAVs. 

It is also regarded that UAV does not know about other UAV’s 

plan unless it communicates with each other. 

 

4.2 Negotiation scheme approach 

In this study, a negotiation scheme approach is adopted to 

realize the decentralized task assignment [18]. It is assumed 

that UAV can communicate with only one UAV at the same 

time. 

When communication is possible, UAV organizes a set of 

proposals and sends it to another UAV. Then, another UAV 

examines each proposal of the set and determines whether it 

will be accepted. If UAV accepts one proposal, it determines a 

task assignment policy as the proposed policy and notifies 

acceptance to another UAV. Otherwise, if UAV rejects all 

proposals, it should send a better proposal set to another UAV. 

The criterion of acceptance by the cumulative operation time 

of two communicating UAVs is set as follows. 
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After negotiation, GA of each UAV solves the task 

assignment problem within tasks in the policy until other 

communications occur. When other communications occur, 

the policy of the each UAV is updated by negotiation stage as 

shown in Fig. 4. In this way, decision making processes of 

UAVs can be decentralized for the communication limit 

existence cases. 

 

 
Fig.4 Negotiation Scheme approach 

 

5. SIMULATION RESULTS 

Simulations of the task assignment problem are performed 

using three methods - MILP, GA, and decentralized GA. MILP 

is an expanded linear programming method which can get the 

real number and integer solutions. For the simulations, each 

UAV has initial states such as (x, y) position and heading 

angle. 

First of all, MILP and GA results are compared for none 

dynamic model, that is to say the turn radius of UAV is zero 

and the distance between each node is calculated in Euclidean 

distance. In this case, MILP and GA obtain the same allocation 

as shown in Fig. 5-6. The calculation time of MILP is shorter 



than that of GA as summarized in Table 3. Because GA may 

not converge to the optimal solution within given generations 

(1,000 times), MILP is better than GA in the sense of 

optimality and efficiency. 
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Fig. 5 MILP Task Assignment for R=0m 
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Fig. 6 GA Task Assignment for R=0m 

 

However, if a dynamic model is considered, these two 

methods show different features. In this case, MILP does not 

know the travelling distance with dynamic model; it should be 

estimated as a constant variable by using approximation. 

However, GA can calculate the distance accurately by 

examining the chromosomes set, and therefore GA can 

provide a better solution. This feature is showed in Fig. 7-8. 

As summarized in Table 3, the computation time of GA is also 

favorable. 

 

Table 3 Minimum Cost and Calculation Time for The Methods 

 
Min. Cost 

(sec) 

Cal. Time 

(sec) 

MILP (R=0m) 264.1 0.7617 

GA (R=0m) 264.1 1.3600 

MILP (R=40m) 369.4 1.7100 

GA (R=40m) 347.3 1.5831 

Decentralized GA 

(R=40m) 
347.3 1.1421 

 

Figure 9 and 10 show Monte Carlo simulation result of GA 

for 1,000 generations and 2,000 generations. More generations 

will improve the probability of convergence to the optimal 

solution. However, it cannot guarantee the optimal solution. 

This is a weak point of GA. However, although it is not 

optimal solution, it can be used as a reasonable solution for 

task assignment. 
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Fig. 7 MILP Task Assignment for R=40m 
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Fig. 8 GA Task Assignment for R=40m 
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Fig. 9 Monte Carlo Simulation of GA (1,000 Generations) 
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Fig. 10 Monte Carlo Simulation of GA (2,000 Generations) 

 

In the decentralized GA case, it is assumed that the 

communications between two UAVs occur one after another in 

the middle of GA process. Then, GA only solves the TSP 

problem with its own tasks which is given by the negotiation. 

In this scenario, the communications of UAVs are separated, 

but limits of communications do not exist. As shown in Fig. 

11-12 and Table 3, the solution of decentralized GA is valid, 

and it is also efficient in the sense of computation. 
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Fig. 11 Decentralized GA Task Assignment for R=40m 
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Fig. 12 Monte Carlo Simulation for Decentralized GA (1,000 

Generations) 

 

 

6. CONCLUSIONS 

Task assignment problem for multiple UAVs is interpreted 

as a combinatorial optimization problem according to the 

number of tasks, UAVs, and targets, etc. In this study, GA 

which is a kind of meta-heuristic algorithms is adopted to 

solve the problem, and the results are compared with MILP 

method. In simple linear cases, MILP can solve the problem 

accurately and efficiently. However, if the problem is more 

complex such as nonlinear dynamic models or difficult 

constraints cases, it cannot guarantee the accuracy and 

efficiency of the solution. Moreover, if constraints are clashed 

to each other, it cannot solve the problem. On the other hand, 

GA can solve the problem at all times and adapt to the 

complex assignment cases by organizing feasible 

chromosomes. The calculation time is controlled by adjusting 

generation times. However, there is a conflict between the 

calculation time and solution convergences. In order to use GA 

method, it always keeps in mind the insufficient convergence. 

In addition, a negotiation scheme is adopted to deal with 

the decentralized task assignment problem. It is assumed that 

the communications of UAVs are divided into UAV to UAV, 

and a specific scenario example is considered. The simulation 

result shows the validity of this approach. Although this 

method cannot apply to real time simulation yet, it could be 

used for real time multiple UAVs task assignment with low 

computational efforts and low risk of the solution. 
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