
A Hybrid Genetic Algorithm for
a Variant of Two-Dimensional Packing Problem

Jin Kim
School of Computer Science and Engineering

Seoul National University
599 Gwanak-ro, Gwanak-gu, Seoul 151-744,

Korea
kimjin@soar.snu.ac.kr

Byung-Ro Moon
School of Computer Science and Engineering

Seoul National University
599 Gwanak-ro, Gwanak-gu, Seoul 151-744,

Korea
moon@snu.ac.kr

ABSTRACT

A variant of two-dimensional packing problem was given in
the GECCO’2008 competition. This paper describes the ge-
netic algorithm that produced the best result and thus won
the No. 1 prize. As the problem is naturally represented by
a two-dimensional chromosome, two-dimensional crossovers
are used to generate more diverse chromosomes and effec-
tively maintain geographical linkage among genes. We de-
veloped a local search heuristic based on the breadth-first
search algorithm; we describe how to implement the heuris-
tic efficiently using problem-specific knowledge. The local
search was combined with a steady-state genetic algorithm
and the combination showed strong synergy.

Categories and Subject Descriptors

G.1.6 [Numerical Analysis]: Optimization—Constrained

optimization

General Terms

Algorithms, Experimentation

Keywords

Breadth-first search, geographic crossover, hybrid genetic al-
gorithm, local search, packing, two-dimensional

1. INTRODUCTION
The 2008 Genetic and Evolutionary Computation Con-

ference (GECCO, Atlanta, July 12–16, 2008) announced a
2D Packing Problem competition. 1 The problem is a two-
dimensional variant of packing problem. The goal of the
problem is to pack a grid with numbers so that the sum of
the weights between adjacent cells on the grid is maximized.

1The competition site is accessible at
http://www.sigevo.org/gecco-2008/competitions.html.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’09, July 8–12, 2009, Montréal, Québec, Canada.
Copyright 2009 ACM 978-1-60558-325-9/09/07 ...$5.00.

This is different from other packing problems such as two-
dimensional bin packing, strip packing, or cutting stocks
which usually pack small rectangles into large rectangles.

Given an l×m grid and n numbers in {0, 1, . . . , n− 1}, a
non-negative integer weight is given to every pair of the num-
bers. The two-dimensional packing problem for the compe-
tition is to assign a number to every cell of the grid in order
to maximize the sum of the pair weights between all adjacent
cells, where the term adjacent means horizontal, vertical, or
diagonal adjacency. This sum corresponds to the fitness of
the grid, a solution. When summing up the pair weights,
the weight of a particular pair is counted only once; with-
out this constraint, the problem becomes trivial, because the
best grid can be easily obtained by filling the grid repeatedly
with the pair having the largest weight.

3 1 4
1 5 3

pair weight
1 1 5
1 3 2
1 4 9
2 2 8
2 4 4
4 4 11
3 1 7
3 3 9
4 5 3
4 3 4
5 1 5

Table 1: A sample grid and number pairs that are
weighted. The weight of a pair not shown in this
table is regarded as zero.

Table 1 shows an example. A sample 2 × 3 grid is shown
on the left and a table of pair weights is shown on the right;
all the other pairs not appearing in the table has weight
0. The fitness of the grid is computed as follows. For each
pair of adjacent cells on the grid, add the corresponding pair
weight if the pair has not been counted yet. For example, we
may start with the left upper cell with the number 3. It has
three adjacent cells having numbers 1, 5, and 1. The pairs of
adjacent cells are (3, 1), (3, 5), and (3, 1); their corresponding
pair weights are 7, 0, and 7; although the pair (3, 1) appears
more than once, it is only counted once; so we add 7 + 0
for these pairs. This process is repeated until all pairs of
adjacent cells have been considered. In this example, the
fitness is 35.

287

As can be seen in the example, if a pair (a, b) is consid-
ered once, the symmetric pair (b, a) is eventually consid-
ered. Therefore, we can regard the pairs as unordered and
the weight of each pair as the sum of the two pair weights.
Since we can save the time of computing fitnesses by this
change of table, we hereafter modify the weight table in this
way.

The competition site announced a 20 × 20 grid problem
with a corresponding pair weight table. The table of pair
weights is too large to show here; see the competition site 1

for details. In this paper, we describe the algorithm of
the competition winner. It is based on a traditional frame-
work of hybrid steady-state genetic algorithm (GA). Two-
dimensional crossovers are used because a solution is natu-
rally represented by a two-dimensional chromosome. Com-
paring the attractiveness of those crossovers, we chose one
of them, the geographic crossover [5]. We also devised a
local search heuristic which improves the chromosomes by
a breadth-first search (BFS)-based search. The GA showed
strong synergy with the local search heuristic.

The competition site shows the history of records in the
competition. Starting from a random solution of fitness
1.538×108 and the first non-trivial solution of fitness 8.627×
108, the site eventually published the authors’ final winner
solution 10.32×108 . The runner-up solution was 10.27×108 .
After the competition, we eventually improved the solution
up to 10.35× 108 . We show both of the winner solution and
the improved solution in the experimental report.

This paper is organized as follows. In the next section, we
introduce the framework of our GA and the two-dimensional
crossovers. In Section 3, we describe our local search heu-
ristic and explain how to implement it efficiently. Experi-
mental results are given in Section 4. The effect of various
crossovers and that of hybridization are also reported. Fi-
nally, Section 5 gives the concluding remarks.

2. PRELIMINARIES

2.1 Genetic Algorithm
We use a typical hybrid steady-state GA, that produces

only one offspring for each generation. Figure 1 shows the
flow of a conventional hybrid GA.

create initial population;
while stopping condition is not satisfied {

choose parent0 and parent1 from population;
offspring ← crossover(parent0, parent1);
offspring ← mutation(offspring);
local-search(offspring);
replace(population, offspring);

}
return the best individual;

Figure 1: A conventional hybrid steady-state GA

2.2 Two-Dimensional Crossover
For one-dimensional chromosomes, one-point crossover,

multi-point crossover, and uniform crossover [8] are repre-
sentative. However, for two-dimensional chromosomes, such
traditional crossovers have limit to reflect the geograph-
ical linkage of genes and make various cutting patterns.

Figure 2: Example mask generation of geographic
crossover with three cuts. Two offspring are gener-
ated from the masks.

Thus several crossovers were proposed for higher dimen-
sional problems. The first two-dimensional crossover was
proposed by Cohoon and Paris [3]. It randomly selects rect-
angular region from one parent chromosome, and combine
it with the other parent. Anderson et al. [1] proposed block-
uniform crossover. Similar to the uniform crossover, it tes-
sellates parents and copies each part from a randomly se-
lected parent. Bui and Moon [2] proposed Z3 crossover,
which is a multi-dimensional generalization of the multi-
point crossover. It chooses a specified number of cutting
surfaces on multi-dimensional chromosomes and alternately
copies areas of parent chromosomes which are made by the
cutting surfaces.

Kahng and Moon proposed geographic crossover [5]. In
fact, geographic crossover does not indicate only one cross-
over scheme, but a general class of crossovers. They found
that cuts divide the chromosome to two equivalent classes.
Thus one can guarantee that cuts properly divide a chro-
mosome. It makes several zigzag cuts on a grid, and copies
region by region into offspring. As the cuts can form ar-
bitrary patterns, the geographic crossover produces various
cutting patterns. The possible number of k-cut geographic

crossover in l × l two-dimensional chromosomes is f(l)
k
− d

where f(l) = 4 2l−1
l−1
− 2(l + 1) and d is the number of du-

plications (i.e., when the same classification is possible via
different combinations of cuttings). The geographic cross-
over produced good result in both a non-hybrid GA and a
hybrid GA [6]. Figure 2 shows an example of geographic
crossover with three cuts.

Although geographic crossover has been used in many pa-
pers [4, 5, 6, 7], they do not explicitly noticed the perfor-
mance according to the number of cuts. We give some ex-
perimental results in Section 4.4.

3. LOCAL SEARCH
It is necessary to define the neighborhood structure of

the two-dimensional packing problem before describing local
search. For a given grid, we can consider its neighborhood
as the matrices that have only one different cell with it, e.g.,
(a)–(b), (b)–(c), (c)–(d), and (e)–(f) in Figure 4. A local
search may consist of replacing each cell with the “best”
number, i.e., the number that maximizes the fitness of the
grid when it is assigned to the cell. Right after replacing

288

a cell, it is natural to replace the adjacent cells of the cell.
Here, the order to visit each cell affects much to the quality.
This is the motivation of our local search described below.

// M : the given grid (matrix)
// Mij : the (i, j)-th cell of M
// Q: an empty queue
Choose a starting cell (x, y) randomly;
Q.enqueue(x, y);
while Q is not empty {

(x, y)← Q.dequeue();
n← a number for Mxy maximizing the fitness of M ;
Mxy ← n;
for each (x′, y′) adjacent to (x, y)

if (x′, y′) has not been considered
Q.enqueue(x′, y′);

}

Figure 3: BFS-based local search

The local search algorithm works like the breadth-first-
search (BFS). It first randomly chooses a starting cell on
the given grid, and replaces the value of the chosen cell to
a number that maximizes the fitness of the grid. Then it
repeat the process in the order of BFS traversal in the grid
until all the cells are visited. Figure 3 shows the pseudo
code. This is a round of the local search; it is repeated
until no improvement is observed. In our experiment, the
number of repetition was usually between 5 to 10 in early
generations, and decreases to 1 or 2 in later generations.

Figure 4 illustrates the progress of our local search on
a sample grid. It starts from a randomly selected cell of
number 351 that is marked by thick border. After replacing
the number of the cell to the best number 347, it adds the
adjacent cells into the BFS queue in arbitrary order. Then
the right, below, and left-below cells are replaced by the
most appropriate numbers and their adjacent cells are added
to the queue in turn. Figure (e) shows the grid after visiting
the cells of distance one from the starting cell. Then the
cells of distance two are visited and so on.

3.1 Speedup
The most frequently used operation in this local search

algorithm is to find the best number for a cell. A näıve
finding algorithm just tries to assign every possible number
to the cell and calculates the sum of pair weights of the
assigned number and the numbers of adjacent cells. The
process takes 18×18×8+18×4×5+4×3 = 2964 addition
operations.

Faster algorithm can be derived by considering that there
are many zero-weight pairs in the weight table. There are
only about 20 percent of weighted pairs and the others are
weighted zero. Now we may consider positive-weight pairs
only. For each number, we prepare a list of numbers that
have positive pair weight with the number. Since the weight
table is fixed, we can prepare this one time in advance while
reading the weight table. A list will have about 80 (400 ×
0.2) numbers on average. Then, we can refer to the list to
compute the sum of weights.

The improved finding algorithm takes advantage of the
weighted number lists. This algorithm is similar to the näıve
algorithm in that the sum of score for each number is cal-

67 102 374 48 309 162

373 288 236 331 230 40

67 102 374 48 309 162

373 288 236 331 230 40

15522860115146294

1381012315838146

232317178302317 347

398102238102 14921

67 102 374 48 309 162

373 288 236 331 230 40

14921 398102238102

232317302317 347 338

1381012315838146

15522860115146294

67 102 374 48 309 162

373 288 236 331 230 40

14921 398102238102

67 102 374 48 309 162

373 288 236 331 230 40

102 148 146 238 102 398

232317338347344317

46 320 41 23 101 138

294 146 115 60 228 155 294 146 115 60 228 155

138101234132046

317 344 347 338 317 232

102 148 146 238 43 398

40230331236288373

67 102 374 48 309 162

294

46

146 115 60 228 155

381 158 23 101 138

317 302 178 317 232

39810223814921102

351

15522860115146294

138101234138146

232317302317 347 338

(c)

(f)

(d)

(e)

(a) (b)

Figure 4: Example of BFS-based local search. En-
queued cells are marked by shade and visited cells
are colored black. The degree of shade corresponds
to the distance from the starting cell.

culated. However, it does not bother to consider the zero-
degree number pairs. It calculates scores only referring the
numbers in the lists. The pseudo code of this algorithm is
given in Figure 5.

for each a adjacent to x {
for each i in the weighted number list of a

if (a, i) has not been considered
score[i] ← score[i] +w(a, i);

}
return the index of the maximum score;

Figure 5: The improved algorithm finding the best
number for a cell

This algorithm requires just 8 times the average degree
(80), i.e., about 640 addition operations, which is 5 times
faster than the näıve algorithm. Thus the time complexity
is reduced from O(8n) to O(8d) where n is the number of
rows of weight matrix, and d is the average size of adjacency
list. Sparse weight matrices particularly benefit from this.

Since the local search must visit every cell once and the
number of cells is ltimesm as we mentioned earlier, the time
complexity of local search is O(8d) × O(lm) = O(8dlm) =
O(dlm).

289

When calculating the fitness, we should check that a pair
has been counted. To quickly find out whether a pair was
used or not, we use a 400 × 400 matrix to count the num-
ber of references to each number pair. Every element of the
matrix is initialized to zero when a local search started, in-
creased by one whenever a number pair corresponding to the
element is found, and decreased by one whenever a number
pair no longer exists in the grid. When we encounter a pair
in the course of optimization, we only add the pair weight
only when the corresponding cell has value 0 in the counting
matrix.

4. EXPERIMENTAL RESULTS

4.1 Test Instance
The test case was given by the competition website. It is

to pack a 20×20 grid with numbers in {0, 1, . . . , 399} Among
all possible pairs of numbers, about 10% was selected uni-
form randomly and assigned weights which are random inte-
gers uniformly distributed between 1 and 999,999. Figure 6
shows some part of the pair weights given in the problem;
since the whole matrix is 400× 400, it shows only a fraction
of the matrix. Since a 20 by 20 grid has 2964/2 = 1482
pairs of adjacent cells, we can obtain a rough upper-bound
of the fitness by summing up the largest 1482 pairs: about
15.06× 108. Although far from easy, a tighter upper-bound
may be drown considering duplication and conflicts between
pairs.

4.2 Experimental Settings
We conducted 100 runs for each experiment on CoreTM2

Duo CPU 2.66GHz with Linux operating system. The hy-
brid GA was programmed in C++ language and the pro-
gram was compiled by GNU g++ compiler. A run of the
GA took about 20 minutes. The genetic operators and their
parameters that we used are summarized in the following:

• Encoding — We encode the grid directly, that is, a
chromosome is a two-dimensional matrix that corre-
sponds to a grid and each gene of the chromosome
corresponds to each cell of the grid.

• Population Initialization — Every gene of a chromo-
some is assigned a random number between 0 and 399.

• Population Size — We chose 100.

• Selection — Tournament selection with size of 16. Con-
trary to typical settings, in each competition, the bet-
ter individual is selected as the winner with probabil-
ity 0.2 and the worse is selected with probability 0.8.
This is rather an anomaly in the perspective of gen-
eral practice: the better has at least more than 0.5 of
chance to win. The traditional rates, more than 0.5
to the better, were not comparable to the final set-
ting. We do not claim or recommend this setting as a
general one. It must be highly related to other parts
of the GA. In this case, we strongly conjecture that a
relatively weak mutation and a strong local optimiza-
tion affected the anomaly. Rather than correcting the
rate to a common-sense one, we decided to accept the
situation as a context.

• Crossover — Various crossover operators are used. See
Section 4.4.

 9.95e+08

 1e+09

 1.005e+09

 1.01e+09

 1.015e+09

 1.02e+09

 1.025e+09

 1.03e+09

 1.035e+09

403530252015105

fit
ne

ss

number of cuts

maximum
average

Figure 7: Fitness of GA using geographic crossover
with 5 to 40 cuts.

• Mutation — With probability 0.01, each cell of a grid
is changed to a random number between 0 and 399.

• Replacement — In a steady-state GA, usually one indi-
vidual of the population is replaced out for each gener-
ation. However our GA replaces two individuals. Two
replacement policies are applied simultaneously. First,
the worst individual in the population is replaced out.
Second, the worse one of the two parents is replaced
out.

• Local Search — We developed a BFS-based local search
heuristic. Details are described in Section 3.

• Stop Condition — The GA stops when one hundred
thousand generations reached.

4.3 The Results
Our GA produced the solution of fitness 10.32×108 which

won the first prize; Figure 9 shows the solution in detail.
After the competition, we eventually improved the solution
up to fitness 10.35 × 108; Figure 10 shows the solution in
detail. In the best grid, each cell have about 6.32 adjacent
cells with positive weight on average, and the average weight
is 437,912.

4.4 Crossover
Table 2 shows that solution qualities generated by GAs

with a number of different crossovers. Among them, geo-
graphic crossover turned out to be the most attractive. Ge-
ographic crossover is known to provide diverse recombina-
tion of chromosomes and effectively preserve the geographi-
cal linkages between genes. If the diversity of recombination
is the only important factor, the uniform crossover must be
the choice; but it did not perform attractively. The result
implies that the diversity of recombination is not the only
important factor in crossover.

After choosing geographic crossover, we also observed the
performance over various numbers of cuts. Figure 7 shows
the result in the range of 5 to 40 and Figure 8 shows the de-
tailed graph of cuts in the range from 20 to 30. The above
line shows the maximum fitness of 100 runs and the below
shows the average. Among them, 20 to 30 showed similar
result and 25 showed the best average result, but 5 to 10

290

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 171654 0 0 0 0 0 0 0 0 0 765315 0 0 0 0

1 0 0 0 0 0 0 0 726814 548819 0 0 0 0 0 151665 0

2 0 0 0 0 889588 0 660929 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 435241 389017 0 0 0 0 0 0 0 0

4 0 0 898036 0 0 0 0 0 0 0 803512 0 0 0 0 0

5 0 0 0 19413 0 0 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0 0 0 0 0 321431 0 0 0

8 0 0 0 0 604908 0 0 0 0 0 0 248494 0 0 0 0

9 0 0 0 0 694318 0 0 0 0 0 0 0 0 0 30414 533000

10 632728 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

11 0 0 0 0 141901 0 0 0 17066 0 561301 0 0 0 0 0

12 0 0 0 0 0 0 0 0 0 0 293977 0 0 0 0 0

13 0 0 0 0 0 0 0 0 0 426559 0 0 0 523107 0 0

14 0 0 129837 0 0 0 0 0 0 0 0 0 409335 0 594046 0

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 6: Part of weight table.

crossover number of possible cuts maximum fitness average fitness

one-point l − 1 9.90 × 108 9.79 × 108

multi-point
`

l−1
k

´

10.01 × 108 9.92 × 108

Z3
`2(l−1)

k

´

10.20 × 108 10.14 × 108

geographic see Section 2.2 10.28 × 108 10.20 × 108

uniform 2l
2
−1 10.03 × 108 09.05 × 108

Table 2: Comparison of crossovers. In this table, l = m is assumed and k denotes the cut size. This shows
cut sizes that produce the best average performance. The cut size of multi-point crossover is 5, that of Z3 is
10, and that of geographic crossover is 25.

 9.95e+08

 1e+09

 1.005e+09

 1.01e+09

 1.015e+09

 1.02e+09

 1.025e+09

 1.03e+09

 1.035e+09

3029282726252423222120

fit
ne

ss

number of cuts

maximum
average

Figure 8: Fitness of GA using geographic crossover
with 20 to 30 cuts. (A detailed version of Figure 7)

performed poor. It suggests that sufficiently many cuts are
necessary in the context of the GA here. The best number
of cuts 25 is rather surprising because it is significantly de-
structive. If we did not use a strong local optimization, the
result would have been different.

4.5 Hybridization
Table 3 shows the effect of hybridization. For fair compar-

ison, each method is run for similar time. The non-hybrid
GA and hybrid GA have the same settings except for the for-
mer does not include the local search. The input grid of local
search is initialized by random numbers in {0, 1, . . . , 399}.

Usually the non-hybrid GA did not produce better solu-
tion than the local search. Although the local search itself
is better than the non-hybrid GA, it is highly probable to
get stuck in local optima. Hybridization of the local search
and the GA improved the fitness significantly.

method best average

non-hybrid GA 7.68 × 108 7.60 × 108

local search 8.79 × 108 8.55 × 108

hybrid GA 10.28 × 108 10.20 × 108

Table 3: Performance of hybrid GA

5. CONCLUDING REMARKS
We presented a hybrid GA for a variant of two-dimensional

packing problem that were announced for competition. A
BFS-based local search heuristic was proposed and combined
with GA. The combination of the local search and the GA
improved the fitness significantly. We could observe notable
difference in performance among different crossovers; we be-
lieve that the difference is due to the abilities to generate di-
verse new chromosomes and maintaining geographical link-
ages between genes. Our final choice was two-dimensional
geographic crossover. We should also mention that we used
a relatively large number of cutting lines in the final geo-
graphic crossover. We strongly believe that it has something
to do with the low degree of mutation in our setting. Since
a strong local optimization algorithm is supporting in ev-
ery generation, relatively strong perturbation is allowed; so
the crossover can try stronger perturbation instead of the
weak mutation. We expect that our approach could be also
applied to other two-dimensional problems in grid form.

6. ACKNOWLEDGEMENT
We are grateful to Kim Jin Hyun for his useful comments.

The ICT at Seoul National University provides research fa-
cilities for this study. This work was supported by the Brain
Korea 21 Project and the Engineering Research Center of
Excellence Program of Korea Ministry of Education, Science
and Technology(MEST) / Korea Science and Engineering
Foundation(KOSEF), grant number R11-2008-007-2002-0.

291

129 84 196 293 35 225 2 74 281 161 317 81 272 20 323 35 302 219 99 365
101 115 58 227 38 173 394 30 284 8 180 43 6 282 328 320 347 155 336 370
66 270 301 200 185 364 182 127 79 237 369 94 98 181 278 26 13 238 140 73
276 361 189 296 41 105 303 391 234 280 249 201 103 119 325 33 129 53 261 207
344 245 229 376 234 167 201 156 389 318 77 209 266 238 80 125 38 112 206 81
249 374 367 49 215 68 233 377 236 227 9 245 144 28 56 198 40 324 101 47
22 154 381 262 148 105 350 264 1 252 242 231 333 374 83 396 213 28 113 271
387 130 256 342 348 164 356 355 243 73 334 327 260 143 373 149 395 145 370 261
153 327 83 71 268 161 219 84 221 118 235 243 332 249 174 255 281 241 362 155
244 164 201 87 357 365 286 332 388 339 391 277 208 214 350 112 226 196 133 108
272 140 360 138 148 18 191 159 367 87 291 364 136 93 398 65 195 139 166 126
383 346 157 302 124 152 48 42 116 45 163 202 251 192 86 277 99 114 59 115
168 359 67 203 363 373 19 30 382 172 218 61 77 352 381 379 137 305 361 22
379 341 235 27 229 338 312 114 282 29 82 32 269 74 37 392 143 36 14 372
30 94 49 290 70 76 106 44 24 18 59 69 306 90 109 243 326 177 328 56
280 140 249 113 196 159 3 274 214 375 135 228 127 93 362 397 180 257 348 61
264 12 72 285 138 268 254 258 173 360 310 40 319 144 384 188 174 117 146 135
142 389 230 346 244 55 142 314 248 383 294 179 279 92 211 27 220 178 17 219
393 65 4 2 91 129 329 337 182 51 38 333 380 81 394 224 331 363 345 321
291 210 273 194 294 376 287 213 117 347 393 184 351 11 16 253 259 128 153 247

Figure 9: The grid that won the competition; its fitness is 1,032,295,097.

322 389 245 365 286 216 148 127 79 137 90 37 238 82 115 361 95 28 113 271
377 222 43 161 226 31 319 22 292 10 148 74 338 58 59 301 78 324 101 370
383 378 317 196 1 236 249 372 4 163 87 229 293 114 227 9 352 112 226 297
311 344 203 48 381 264 364 2 242 180 83 367 245 276 361 77 251 307 255 191
36 62 391 392 10 41 394 277 310 243 60 374 332 205 64 189 217 373 48 18
139 118 235 102 105 86 398 286 332 383 206 88 6 94 282 98 45 239 68 214
59 154 73 167 68 350 33 219 38 292 19 51 316 280 30 382 103 385 173 360
182 358 360 201 233 26 355 347 155 129 294 194 123 281 321 212 28 145 261 23
337 267 0 64 105 182 328 1 238 376 91 57 204 121 3 312 15 370 269 338
287 213 81 318 17 245 61 56 200 226 159 225 35 189 283 20 155 340 76 106
351 11 141 178 173 242 144 28 348 268 241 196 81 200 296 387 323 128 38 159
380 75 104 248 94 319 83 71 342 38 293 133 139 188 125 207 22 53 42 116
234 68 259 220 341 49 157 256 333 179 40 251 166 114 278 306 13 274 64 367
215 224 331 363 168 359 140 231 327 294 136 93 163 19 32 320 214 331 311 262
328 67 27 365 383 346 72 12 141 339 214 208 373 188 220 398 179 172 184 115
315 229 203 235 339 386 230 389 3 326 332 249 374 300 7 185 189 243 257 264
363 302 263 150 20 7 65 268 234 159 143 333 260 155 147 270 363 176 356 166
45 347 381 298 272 273 55 142 254 137 379 37 302 310 375 276 329 153 48 55
198 395 182 236 252 143 129 30 34 199 168 183 352 360 135 371 280 159 138 279
396 213 149 228 177 281 19 312 44 24 375 127 30 74 284 61 163 250 193 144

Figure 10: The new best grid of fitness 1,034,734,528.

7. REFERENCES

[1] C. A. Anderson, K. F. Jones, and J. Ryan. A
two-dimensional genetic algorithm for the Ising
problem. Complex Systems, 5:327–333, 1991.

[2] T. N. Bui and B.-R. Moon. On multi-dimensional
encoding/crossover. In Sixth International Conference

on Genetic Algorithms, pages 49–56, 1995.

[3] J. P. Cohoon and W. Paris. Genetic placement. In
IEEE International Conference on Computer-Aided

Design, pages 422–425, 1986.

[4] C.-H. Im, H.-K. Jung, and Y.-J. Kim. Hybrid genetic
algorithm for electromagnetic topology optimization.
IEEE Transactions on Magnetics, 39(5):2163–2169,
2003.

[5] A. B. Kahng and B.-R. Moon. Toward more powerful
recombinations. In Sixth International Conference on

Genetic Algorithms, pages 96–103, 1995.

[6] B.-R. Moon, Y.-S. Lee, and C.-K. Kim. GEORG: VLSI
circuit partitioner with a new genetic algorithm
framework. Journal of Intelligent Manufacturing,
9(5):401–412, 1998.

[7] E.-J. Park, Y.-H. Kim, and B.-R. Moon. Genetic search
for fixed channel assignment problem with limited
bandwidth. In Genetic and Evolutionary Computation

Conference, pages 1172–1179, 2002.

[8] G. Syswerda. Uniform crossover in genetic algorithms.
In Third International Conference on Genetic

Algorithms, pages 2–9, 1989.

292

