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ABSTRACT
The state of the art commercial query optimizers employ cost-based
optimization and exploit dynamic programming (DP) to find the
optimal query execution plan (QEP) without evaluating redundant
sub-plans. The number of alternative QEPs enumerated by the DP
query optimizer can increase exponentially, as the number of joins
in the query increases. Recently, by exploiting the coming wave of
multi-core processor architectures, a state of the art parallel opti-
mization algorithm [14], referred to as PDPsva, has been proposed
to parallelize the “time-consuming” DP query optimization process
itself. While PDPsva significantly extends the practical use of DP
to queries having up to 20-25 tables, it has several limitations: 1)
supporting only the size-driven DP enumerator, 2) statically allo-
cating search space, and 3) not fully exploiting parallelism. In this
paper, we propose the first generic solution for parallelizing any
type of bottom-up optimizer, including the graph-traversal driven
type, and for supporting dynamic search allocation and full paral-
lelism. This is a challenging problem, since recently developed,
state of art DP optimizers such as DPcpp [21] and DPhyp [22] are
very difficult to parallelize due to tangled dependencies in the join
pairs they generate. Unless the solution is very carefully devised,
a lot of synchronization conflicts are bound to occur. By viewing
a serial bottom-up optimizer as one which generates a totally or-
dered sequence of join pairs in a streaming fashion, we propose a
novel concept of dependency-aware reordering, which minimizes
waiting time caused by dependencies of join pairs. To maximize
parallelism, we also introduce a series of novel performance op-
timization techniques: 1) pipelining of join pair generation and
plan generation; 2) the synchronization-free global MEMO; and
3) threading across dependencies. Through extensive experiments
with various query topologies, we show that our solution supports
any type of bottom up optimization, achieving linear speedup for
each type. Despite the fact that our solution is generic, due to so-
phisticated optimization techniques, our generic parallel optimizer
outperforms PDPsva tailored to size-driven enumeration. Experi-
mental results also show that our solution is much more robust than
PDPsva with respect to search space allocation.
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1. INTRODUCTION
For the last few decades, the CPU performance has been signifi-

cantly improved by increasing the clock rate according to Moore’s
law. However, fundamental physical limitations such as power con-
sumption and heat generation clearly prevent us from relying on
this trend any more [11, 12, 29, 30]. Instead, the industry has
been improving the CPU performance by integrating more execu-
tion cores into each processor. The number of cores is expected to
grow significantly over time [11, 35].

Recently, by exploiting this new wave of multi-core processor
architectures, Han et al. [14] have proposed a novel framework re-
ferred to here as PDPsva, to parallelize the “time-consuming” dy-
namic programming (DP) query optimization process itself. The
DP query optimizer enumerates many alternative query execution
plans (QEPs) for evaluating a declarative SQL query, while esti-
mating the cost of each QEP, and then chooses the one with lowest
estimated cost. The number of alternative QEPs enumerated by the
DP query optimizer can increase exponentially, as the number of
joins in the query increases. In fact, PDPsva significantly extends
the practical use of DP to queries having up to 20-25 tables. We
otherwise would have to depend on sub-optimal (randomized or
greedy) heuristics [4, 19, 23, 31, 32] to complete query optimiza-
tion in a reasonable time.

However, PDPsva has three limitations. First, it supports only
one specific bottom-up optimizer, the size-driven DP optimizer.
That is, it does not support recently developed, state of the art DP
optimizers such as DPcpp [21] and DPhyp [22], which directly tra-
verse a query graph to generate join pairs. Such optimizers have
advantages over the size-driven enumeration. They can support
early termination, since they can generate QEPs for all tables (more
precisely, all quantifiers1) without generating QEPs for all smaller
quantifier sets (i.e., not size-driven). Thus, as soon as we obtain a
sufficiently good QEP or the estimated execution time of the ob-
tained QEP is less than the expected remaining enumeration time,
we can terminate the enumeration process early. DPhyp can handle

1Quantifiers correspond to the tuple variables seen in the FROM clause of
the SQL query [24].
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the widest class of non-inner joins very efficiently [22]. Therefore,
there is a need for a generic framework that can parallelize any type
of bottom-up optimizer so that it can support both existing and fu-
ture bottom-up optimizers.

Secondly, assuming all cores are evenly loaded, PDPsva employs
static search space allocation. Although the best allocation strategy
of PDPsva can allocate search space to threads evenly [14], the
slowest thread holds up all the other, faster threads, resulting in
seriously unbalanced workloads. Therefore, the search allocation
strategy must be dynamic to resolve this situation.

Lastly, PDPsva does not fully exploit parallelism since it merges
per-thread MEMOs to the global MEMO in serial execution for
each size of resulting quantifier sets. Here, each MEMO entry
stores QEPs for a given quantifier sets. Thus, the best version of
PDPsva achieves only up to 6.1 speedup for star queries2 using 8
threads [14]. Therefore, in order to achieve linear speedup, all such
serial steps must be executed by exploiting full parallelism.

In this paper, we propose the first generic solution for paralleliz-
ing any type of bottom-up optimizer, including the graph-traversal
driven type, and for supporting dynamic search allocation and full
parallelism. This is a challenging problem, since DPcpp and DPhyp

are very difficult to parallelize [14]. Unless the solution is very
carefully devised, a lot of synchronization conflicts are bound to
occur. Figure 1 shows a motivating example using a sequence of
join pairs (more precisely, a sequence of pairs of quantifier sets)
generated by DPcpp or DPhyp. Note that DPcpp and DPhyp gener-
ate the same sequence for equi-join. An arrow from one pair to
another pair represents a dependency. As opposed to size-driven
enumeration, the sizes of resulting quantifier sets do not monotoni-
cally increase. This leads to tradeoff between early termination and
tangled dependencies. That is, since we obtain some QEPs for all
quantifiers at the 17th pair of quantifier sets (q1, q2q3q4), we might
be able to terminate the optimization process early, if the best QEP
obtained thus far is good enough. On the other hand, the resulting
tangled dependencies in the pairs of quantifier sets hinder paral-
lelizing DPcpp. For example, if a thread Ta processes the eighth
pair (q2, q3q4), and a thread Tb processes the fifth pair (q3, q4),
Ta must wait until Tb finishes the processing of (q3, q4) first, since
the quantifier set q3q4 has a dependency on the pair (q3, q4). If
we change the order of the eighth and the eleventh pairs, Ta can
process (q1, q4) without waiting.

The overview of our solution is as follows. To parallelize any
type of bottom-up enumeration, we view a serial bottom-up opti-
mizer as one which generates a totally ordered sequence of pairs of
quantifier sets in a streaming fashion. We buffer a fixed number of
pairs and delay plan generation for the pairs buffered. Then on the
fly, we convert the total order over these buffered pairs into a partial
order over unordered groups of pairs, where threads can generate
QEPs independently for all pairs within a group without waiting.
These steps correspond to reordering of the original sequence so
that the tangled dependencies in the original sequence are unrav-
eled. We repeat these steps until we consume all pairs of quantifier
sets.

Our contributions are as follows: 1) We propose the first generic
framework for parallelizing any type of bottom-up optimization.
2) We propose a novel concept of dependency-aware reordering,
which minimizes waiting time caused by dependencies of pairs
of quantifier sets and propose a generic algorithm DPEGeneric
for parallelizing query optimization. 3) To maximize parallelism,
we propose a series of optimization techniques for DPEGeneric:

2A star query containing N quantifiers consists of a hub quantifier, N-1
neighboring quantifiers, and N-1 edges, where each neighboring quantifier
is connected only to the hub quantifier.

q1 q2

q3 q4

Query graph G

SELECT ∗
FROM R1 q1, R2 q2,
FROM R3 q3, R4 q4

WHERE q1.a2 = q2.a1 and
WHERE q1.a3 = q3.a1 and
WHERE q1.a4 = q4.a1 and
WHERE q2.a3 = q3.a2 and
WHERE q2.a4 = q4.a2 and
WHERE q3.a4 = q4.a3

SQL query statement

1. (q4)
2. (q3)
3. (q2)
4. (q1)
5. (q3, q4)
6. (q2, q4)
7. (q2, q3)
8. (q2, q3q4)
9. (q4, q2q3)
10. (q3, q2q4)
11. (q1, q4)
12. (q1, q3)
13. (q1, q3q4)
14. (q1, q2)
15. (q1, q2q3)
16. (q1, q2q4)
17. (q1, q2q3q4)
18. (q4, q1q2)
19. (q3, q1q2)
20. (q1q2, q3q4)
21. (q4, q1q3)
22. (q2, q1q3)
23. (q1q3, q2q4)
24. (q4, q1q2q3)
25. (q3, q1q4)
26. (q2, q1q4)
27. (q1q4, q2q3)
28. (q3, q1q2q4)
29. (q2, q1q3q4)

Figure 1: Pairs of quantifier sets generated by DPcpp.

pipelining of join pair generation and plan generation; the synchro-
nization-free global MEMO; and threading across dependencies. 4)
Through extensive experiments, we show that DPEGeneric sup-
ports any type of bottom up optimizer, achieving linear speedup for
each type. Our algorithm is even better than the state of the art
parallel optimizer tailored to size-based enumeration, PDPsva. Our
algorithm is also much more robust than PDPsva with respect to
search space allocation.

The rest of this paper is organized as follows. Section 2 reviews
the current bottom-up join enumeration algorithms and the state of
the art parallel algorithm for the size-based enumeration. The next
two sections give the details of two generic parallel enumeration
algorithms. Section 3 gives a basic parallel enumeration algorithm
that can support any type of bottom-up enumeration algorithms,
and Section 4 gives a theoretical framework for the dependency-
aware reordering and an enhanced parallel enumeration algorithm
exploiting the dependency-aware reordering. Section 5 presents a
series of performance optimization techniques to maximize paral-
lelism. Section 6 presents the results of performance evaluation.
We compare our contributions with related work in Section 7, and
conclude in Section 8.

2. BOTTOM-UP ENUMERATION
An enumeration algorithm is called bottom-up if it processes all

smaller quantifier sets of both qs1 and qs2 before processing a pair
of quantifier sets (qs1, qs2). To avoid evaluating redundant sub-
plans, the bottom-up enumerator exploits the principle of optimal-
ity and stores the optimal QEPs in an in-memory quantifier set table
(a.k.a. MEMO) [18]. Each entry in MEMO contains a list of QEPs
for a quantifier set, and MEMO is typically implemented by using
a hash table with the quantifier set as the key.

Existing bottom-up enumerators can be classified into the fol-
lowing three categories based on how they generate pairs of quanti-
fier sets: 1) size-driven enumeration; 2) subset-driven enumeration;
and 3) graph-traversal driven enumeration. We omit explanation
of subset-driven enumeration since it is far slower than the graph-
traversal driven enumeration [21] and is not used by commercial
optimizers. For a more detailed description on the subset-driven
enumeration, refer to reference [21].
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2.1 Size-Driven Enumeration
The size-driven optimizer iteratively increases the size of the re-

sulting quantifier set until it obtains the optimal QEP for all quanti-
fiers in the query, starting from sets containing only a single quanti-
fier. The join enumerators of conventional optimizers, such as those
of DB2 and PostgreSQL [26], belong to this category.

At each iteration, to produce all QEPs representing quantifier
sets of size SZ, the optimizer uses “nested loops” between quan-
tifier sets of smallSZ and quantifier sets of largeSZ such that
largeSZ = SZ−smallSZ. Here, for each pair of quantifier sets,
the optimizer must check whether the two quantifier sets can form
a feasible join; the two quantifier sets are disjoint and connected
using at least one join predicate between them. If the connectiv-
ity check is disabled, Cartesian products in the resulting QEPs are
permitted. Note that, to avoid unnecessary generations of infeasi-
ble pairs (i.e., overlapped pairs) of quantifier sets, a special index
called the skip vector array (SVA) can be used [14]. We omit expla-
nation of how the SVA can be exploited during enumeration since
this is not our focus.

Algorithm 1 outlines the state of the art parallel optimization al-
gorithm for size-driven enumeration, PDPsva. For each size of the
resulting quantifier sets, we first allocate parts of the search space to
m threads (Line 3), each of which then executes its allocated nested
loops in parallel (Line 4). In order to merge per-thread MEMOs
and prune expensive QEPs in the global MEMO, we need to wait
until all threads finish their processing (Line 5). After complet-
ing the parallel QEP generation for each size of resulting quantifier
sets, PDPsva merges per-thread MEMOs to the global MEMO in
serial execution (Line 6). To speed up the process of finding feasi-
ble join pairs, the SVA must be built over MEMO entries we just
constructed (Line 7).

Algorithm 1 PDPsva

Input: a connected query graph with quantifiers q1, · · · , qN

Output: an optimal bushy join tree
1: create table access plans and prune expensive QEPs for each quantifier.
2: for SZ ← 2 to N
3: allocate to m threads portions of nested loops for QEPs representing

quantifier sets of size SZ ;
4: each thread generates QEPs in parallel by using its allocated nested

loops. ;
5: wait until all threads finish generating QEPs representing quantifier

sets of size SZ ;
6: merge per-thread MEMOs into a global MEMO;
7: build the skip vector array for MEMO entries corresponding to quan-

tifier sets of size SZ .
8: return MEMO [q1 · · · qN ];

2.2 Graph-Traversal Driven Enumeration
By directly traversing the query graph, the graph-traversal based

optimizer generates a pair of quantifier sets that are disjoint and
connected. Two state of the art algorithms—DPcpp [21] and DPhyp

[22]—belong to this category. They have been developed very re-
cently.

Both behave similarly except that DPhyp can handle non-inner
and anti-join predicates as well. Both generate pairs of quantifier
sets (qs1, qs2) such that qs1 is generated by enumerating all con-
nected subgraphs of the query graph, and qs2 is generated by enu-
merating all other connected subgraphs that are disjoint and con-
nected to qs1.

As shown in Figure 1, the resulting dependencies in the pairs of
quantifier sets generated by DPcpp or DPhyp would prevent cleanly

parallelizing DPcpp or DPhyp. This motivates us to dynamically
reorder pairs of quantifier sets on the fly to exploit parallelism.

3. BASIC PARALLEL ENUMERATION
In this section, we propose a basic parallel enumeration algo-

rithm, BPEGeneric, for parallelizing any type of bottom-up opti-
mizer. Algorithm 2 outlines the algorithm of BPEGeneric. Each
thread invokes BPEGeneric concurrently. At each iteration in
BPEGeneric, the algorithm obtains a pair of quantifier sets by
calling the subroutine GetNextQSPair (Line 2). When GetNex-
tQSPair generates a pair of quantifier sets (qs1, qs2), qs2 is set
to empty if GetNextQSPair generates a singleton set. If qs2 is
empty, BPEGeneric invokes the subroutine CreateTableAccess-
Plans to generate QEPs for accessing a single table (Line 9). Oth-
erwise, it invokes the subroutine CreateJoinPlans (Line 11) to gen-
erate various join QEPs by trying out different access paths, join
methods, and join orders. BPEGeneric then calls PrunePlans to
prune any plan QEP1 if there is another plan QEP2 such that
cost(QEP1) > cost(QEP2), and whose properties (e.g., order-
ing of rows and partitioning, etc.) subsume those of QEP1 (Line
12).

Algorithm 2 BPEGeneric (Basic Parallel Enumeration)
Input:
• G: a query graph with quantifiers q1, · · · , qN

• MEMO: a concurrent global MEMO
Output: an optimal bushy join tree
1: loop
2: atomic {(qs1, qs2, e)← GetNextQSPair (G);}
3: if e = NO_MORE_PAIR then
4: return;
5: atomic {
6: if CheckDependency(qs1 , qs2) = true then retry;
7: }
8: if qs2 = ∅ then /*qs1 must be a singleton.*/
9: newP lans← CreateTableAccessPlans(qs1 );

10: else
11: newP lans← CreateJoinPlans (MEMO[qs1], MEMO[qs2]);
12: PrunePlans(MEMO[qs1 ∪ qs2], newP lans); )

Here, we assume that GetNextQSPair always returns a feasible
join pair of quantifier sets. With the state of the art graph-traversal
driven enumerators such as DPcpp and DPhyp, we can directly gen-
erate feasible pairs of quantifier sets only. On the other hand, in
other join enumerators, we must execute a series of filters to find a
feasible join pair. BPEGeneric is generic in that any type of join
enumerator can be employed by calling the overloaded subroutine
GetNextQSPair of a specific join enumerator. We note that BPE-
Generic must use a concurrent global MEMO table, since each
thread can 1) concurrently access the MEMO table and 2) concur-
rently operate on MEMO entries to add and remove QEPs. We use
the concurrent hash map in Intel Threading Building Block [28],
which is known for its good scalability.

Before calling CreateJoinPlans, BPEGeneric invokes the sub-
routine CheckDependency to ensure that neither qs1 nor qs2 is de-
pendent on any pair of quantifier sets (qs′1, qs′2) being processed by
all the other threads. To do so, it checks whether either qs1 or qs2

is a superset of qs′1 ∪ qs′2. For example, suppose that (q1q2q3, q4)
is about to be processed in thread Ta, and (q1q2, q3) is being pro-
cessed in thread Tb. In this case, thread Ta must wait until thread Tb

finishes the processing of (q1q2, q3) since the quantifier set q1q2q3

is dependent on (q1q2, q3).
To minimize memory allocation/deallocation synchronization con-

flicts, each thread uses a per-thread memory manager. Thus, when
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a thread allocates a memory region or deallocates its own pre-
viously allocated memory region, it does not need any synchro-
nization efforts. However, when a thread Ta tries to deallocate
memory regions (e.g., QEPs) allocated by another thread Tb as in
PruneP lans, Ta adds a free request to the queue maintained by
Tb, and Tb periodically deallocates its free requests.

BPEGeneric employs “dynamic” search space allocation as op-
posed to static search space allocation employed in [14]. That is,
each thread consumes only one join pair at a time by calling Get-
NextQSPair. However, in [14], for each size of the resulting quan-
tifier set, the search space (i.e., nested loops) for that size is first
evenly divided. Then, each divided search space is allocated to a
thread. Thus, although perfectly evenly divided search spaces are
allocated to threads, the slowest thread can hold up all the other,
faster threads, leading to severely biased workloads. Since the unit
of search space allocation in BPEGeneric is a pair of quantifier
sets, the maximum delay incurred by BPEGeneric is the process-
ing time of one pair of quantifier sets, which is negligible.

However, BPEGeneric pays the price for dynamic search space
allocation, incurring a lot of synchronization overhead by using
GetNextQSPair, CheckDependency, and the concurrent MEMO.
Only one thread executes GetNextQSPair at a time, so the other
threads must wait if they try to invoke it concurrently. Due to tan-
gled dependencies, when a pair of quantifier sets qs is being pro-
cessed by a thread Ta, Ta must execute CheckDependency to check
whether there is another thread Tb currently processing any other
pair that qs depends on.

This presents the question: “Can we avoid such synchroniza-
tion overhead while using dynamic search space allocation?” This
motivates us to develop a completely new approach that exploits
1) separation of join pair generation and plan generation, and 2)
dependency-aware reordering. That is, to avoid the synchroniza-
tion overhead incurred by GetNextQSPair, we separate join pair
generation from plan generation. That is, we first generate pairs of
quantifier sets by using one thread, and then, perform plan genera-
tion using multiple threads. We explain dependency-aware reorder-
ing in the next section.

4. SCALABLE PARALLEL ENUMERATION
The formal foundation of our dependency-aware reordering tech-

nique is presented in Section 4.1. More specifically, we propose
the novel concepts of valid reordering, partial orders over search
spaces, and dependency-aware reordering based on group topolog-
ical sort. In Section 4.2, we propose an enhanced generic algorithm
called DPEGeneric that exploits dependency-aware reordering as
well as separation of join pair generation from plan generation, and
we show the validity of the join pair sequence reordered by DPE-
Generic.

4.1 Partial Orders over Search Spaces
To avoid synchronization conflicts, we convert the total order

over join pairs into a partial order over unordered groups of pairs.
The rational for grouping is that threads can generate QEPs inde-
pendently for all pairs within a group without synchronization con-
flicts. However, grouping may reduce the opportunity for early ter-
mination. Thus, a grouping method supporting early termination
must be devised. Grouping also may increase waiting time. For ex-
ample, although a group G1 is dependent on a group G2, we may
process some entries in G1 before completely processing all entries
of G2. This phenomenon is explained in detail in Section 5.3.

Before explaining detailed grouping methods, we formally de-
fine several important concepts. When we reorder an incoming se-

quence of pairs of quantifier sets (called join pair sequence), we
make sure that the reordered sequence is valid as well. Otherwise,
we can not guarantee that the reordered sequence can generate the
same final QEP as the original sequence. The following definition
formally defines validity of a join pair sequence.

Definition 1. A join pair sequence S is valid if any pair in S
depends solely on its preceding pairs. Otherwise, the join pair se-
quence is invalid.

We now define the important property of valid reordering in Def-
inition 2.

Definition 2. A reordering is valid if it transforms one valid
join sequence into another valid join sequence.

In order to find the valid reorderings for a streaming join pair se-
quence, we construct inherent partial orders over a set of unordered
groups from the streaming join pair sequence, where no depen-
dencies exist among entries in such a group. Then, we generate
a totally ordered sequence by using group topological sort over the
partial order. The formal definition of group topological sort is in
Definition 3. Theorem 1 states the validity of a reordered sequence
generated by group topological sort.

Definition 3. For a given partial order P over a set of un-
ordered groups, group topological sort performs topological sort
[8] over P and obtains a totally ordered group sequence. Then, for
each group G obtained, group topological sort generates a permu-
tation for G.

Theorem 1. For a given partial order P over a set of unordered
groups, any totally ordered sequence generated by group topologi-
cal sort from P is valid.
PROOF: We prove by contradiction. Assume that group topological
sort generates an invalid sequence S′. Let S′ be s1s2...sm. Then,
by Definition 1, there exist two entries si and sj in the sequence
such that i < j, and si depends on sj . Let unordered group G1 and
G2 be the unordered groups that contain si and sj , respectively.
Note that there is no order in entries in a group. Thus, due to the
property of the partial order, G1 must depend on G2. Since group
topological sort performs topological sort over the set of unordered
groups, all entries in G2 must precede all entries in G1. Thus, it
contradicts the assumption above that si precedes sj .

Since there can exist several partial orders over a set of unordered
groups from the original join pair sequence, the one which best
maximizes parallelism should be chosen. To measure goodness of
a partial order, we use the following three criteria: 1) early ter-
mination is supported; 2) the cost of maintaining the partial order
over streaming join pairs is minimized in the multi-threaded envi-
ronment; and 3) waiting time due to dependencies is minimized.
Therefore, if a partial order satisfies all three criteria, then paral-
lelism is maximized while early termination is supported.

Different partial orders can be formed depending on how we
group join entries as follows. We note that, in order to use Theorem
1, each group must have no dependencies among entries within the
group.

1. Group by the resulting quantifier set. Each group is called an
RQS group.

2. Group by the size of the resulting quantifier set. Each group
is called an SRQS group.

3. Group by the size of the larger quantifier set in the join pair.
Each group is called an SLQS.
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4.1.1 Group by the resulting quantifier set
Let URQS be a set of RQSs. We can define a binary relation �RQS

on URQS, where for any (rqs, rqs′) in �RQS, rqs is a subset of rqs′.
The binary relation �RQS is a partial order since it is 1) reflexive
(rqs �RQS rqs), 2) anti-symmetric (if rqs �RQS rqs′ and rqs′ �RQS

rqs, then rqs = rqs′), and 3) transitive (if rqs �RQS rqs′ and rqs′

�RQS rqs′′, then rqs �RQS rqs′′), for all rqs, rqs′, rqs′′ in URQS.
Figure 2 shows the partial order �RQS for the sequence of pairs of
quantifier sets in Figure 1. Each rounded box represents an RQS.

(q1)q1 (q2)q2 (q3)q3 (q4)q4

(q1, q2)

q1q2

(q1, q3)

q1q3

(q1, q4)

q1q4

(q2, q3)

q2q3

(q2, q4)

q2q4

(q3, q4)

q3q4

(q1, q2q3),
(q2, q1q3),
(q3, q1q2)

q1q2q3

(q1, q2q4),
(q2, q1q4),
(q4, q1q2)

q1q2q4

(q1, q3q4),
(q3, q1q4),
(q4, q1q3)

q1q3q4

(q2, q3q4),
(q3, q2q4),
(q4, q2q3)

q2q3q4

(q1, q2q3q4),(q2, q1q3q4),(q3, q1q2q4),(q4, q1q2q3),
(q1q2, q3q4),(q1q3, q2q4),(q1q4, q2q3)

q1q2q3q4

Figure 2: An example of partial order �RQS.

We explain how to construct �RQS from the incoming join pair
sequence. For each entry (qs1, qs2), we create an RQS correspond-
ing to qs1 ∪ qs2 if the RQS has not been created, and add two
incoming edges to that RQS, one from the RQS corresponding to
qs1 and the other from the RQS corresponding to qs2. Due to the
transitivity property of �RQS, one might think that we don’t need
to add any edge between an RQSi and an RQSj when RQSi is a
subset of RQSj and |RQSi | < |RQSj | + 1. For example, the ad-
dition of the direct edge between RQS q1q2q3 and RQS q3 doesn’t
seem to be necessary. However, in general, its omission is not al-
lowed. Consider a query where there is only one join predicate
q1.a+ q2.b = q3.c between q1q2 and q3. This leads to a hyperedge
[22] in the query graph. Thus, the direct edge between RQS q1q2q3

and RQS q3 must not be removed.
To use Theorem 1 for the partial order �RQS, all entries of each

group in �RQS have no dependencies among them. Lemma 1 guar-
antees this property.

Lemma 1. No dependencies exist among entries in an RQS.

PROOF: Refer to [15].

We now discuss the pros and cons of the partial order �RQS. 1)
In terms of early termination, �RQS does not support early termina-
tion, since the topmost RQS q1q2q3q4 depends on all RQSs under-
neath. 2) In terms of maintenance cost, maintaining �RQS would
be expensive due to concurrent edge removals in multi-thread envi-
ronments. That is, when thread Ta finishes processing an RQS, Ta

must remove all of its outgoing edges. This can incur significant
synchronization cost. 3) In terms of waiting time, as soon as the
processing of an RQS is completed, we can find a set of RQSs that
have no incoming edges, and thus, can be processed concurrently.
The entries in an RQS can also be processed concurrently according
to Lemma 1, minimizing waiting time.

4.1.2 Group by the size of the resulting quantifier set
Let USRQS be a set of SRQSs. We denote SRQSi as an SRQS that

contains every join pair whose resulting quantifier set size is i. We
can define a binary relation �SRQS on USRQS, where for any (SRQSi ,
SRQSj ) in �SRQS, i ≤ j. The binary relation �SRQS is a partial or-
der since it is 1) reflexive (SRQSi �SRQS SRQSi), 2) anti-symmetric
(if SRQSi �SRQS SRQSj and SRQSj �SRQS SRQSi, then SRQSi

= SRQSj), and 3) transitive (if SRQSi �SRQS SRQSj and SRQSj

�SRQS SRQSk, then SRQSi �SRQS SRQSk), for all SRQSi, SRQSj ,
SRQSk in USRQS. Figure 3 shows the partial order �SRQS for the
sequence of pairs of quantifier sets in Figure 1. Each rounded box
represents an SRQS.

(q1),(q2),(q3),(q4)

SRQS1

(q1, q2),(q1, q3),(q1, q4),(q2, q3),(q2, q4),(q3, q4)

SRQS2

(q1, q2q3),(q1, q2q4),(q1, q3q4),(q2, q3q4),
(q2, q1q3),(q2, q1q4),(q3, q1q4),(q3, q2q4),
(q3, q1q2),(q4, q1q2),(q4, q1q3),(q4, q2q3)

SRQS3

(q1, q2q3q4),(q2, q1q3q4),(q3, q1q2q4),(q4, q1q2q3),
(q1q2, q3q4),(q1q3, q2q4),(q1q4, q2q3)

SRQS4

Figure 3: An example of partial order �SRQS.

Now, we explain how to construct �SRQS from the incoming join
pair sequence. Given a query having n quantifiers, we create in
advance n SRQSs and add outgoing edges from SRQSi to SRQSj

where i + 1 ≤ j ≤ n. For each entry (qs1, qs2) in the join pair
sequence, we add that entry to SRQS|qs1∪qs2|.

Lemma 2. No dependencies exist among entries in an SRQS.

PROOF: Refer to [15].

Next, we discuss the pros and cons of the partial order �SRQS.
Like �RQS, �SRQS does not support early termination either, since
the topmost SRQS depends on all SRQSs underneath. However,
the cost of maintaining �SRQS is negligible, since we only need to
access SRQSs in the increasing order of the size of the resulting
quantifier sets. No synchronization is needed to process entries
within the same SRQS, thus minimizing waiting time.

4.1.3 Group by the size of the larger quantifier set in
the join pair

Let USLQS be a set of SLQSs. We denote SLQSi as an SLQS
that contains every join pair whose larger quantifier set size is i. To
represent a set of single quantifiers (not join quantifiers), SLQS0 is
used. We can define a binary relation �SLQS on USLQS, where for
any (SLQSi , SLQSj ) in �SLQS, i ≤ j. We can easily verify that the
binary relation �SLQS over USLQS is a partial order. Figure 4 shows
the partial order �SLQS for the sequence of pairs of quantifier sets
in Figure 1. Each rounded box represents an SLQS.

The construction of �SLQS from the incoming join pair sequence
is similar to that of �SRQS. That is, we create the partial order for
a given query in advance. For each pair (qs1, qs2) in the incoming
join sequence, we add this pair to SLQSmax(|qs1|,|qs2|) if qs2 is not
empty. If qs2 is empty, we add the pair to SLQS0.
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SLQS0

SLQS1

SLQS2

SLQS3

SLQS[1,0]

SLQS[1,1]

SLQS[1,2] SLQS[2,2]

SLQS[1,3]

(q1), (q2), (q3), (q4)

(q1, q2),(q1, q3),(q1, q4),
(q2, q3),(q2, q4),(q3, q4)

(q1, q2q3), (q1, q2q4), (q1, q3q4),
(q2, q1q3), (q2, q1q4), (q2, q3q4),
(q3, q1q2), (q3, q1q4), (q3, q2q4),
(q4, q1q2), (q4, q1q3), (q4, q2q3)

(q1q2, q3q4),
(q1q3, q2q4),
(q1q4, q2q3)

(q1, q2q3q4),(q2, q1q3q4),(q3, q2q1q4),(q4, q1q2q3)

Figure 4: An example of partial order �SLQS.

Lemma 3. No dependencies exist among entries in an SLQS.

PROOF: Refer to [15].

We can further divide SLQSi into a set of subgroups by the size
of the smaller quantifier set of the join pair. SLQS[j,i] (j ≤ i)
denotes a subgroup of SLQSi that contains every join pair whose
smaller quantifier set size is j. As a special case, SLQS[1,0] repre-
sents SLQS0.

Let us discuss pros and cons of the partial order �SLQS. Un-
like �RQS and �SRQS, �SLQS supports early termination. Suppose
that a given query has N quantifiers. Then, we have N levels in
�SLQS. When we reach level �N

2
�, we can obtain QEPs containing

all quantifiers by processing join entries in SLQS[N−�N
2 �,�N

2 �]. For
example, when we process entries in SLQS[2,2] in Figure 4, we can
obtain QEPs containing all four quantifiers in the query. Thus, we
may terminate the optimization process if the obtained QEPs are
good enough. Like �SRQS, the cost of maintaining �SLQS is negli-
gible, and waiting time is minimized since it has the same number
of edges in the partial order as �SRQS.

It is clear that the partial order �SLQS is the best one among the
three we have considered. Using the same experimental setup in
Section 6, we empirically verified that, with �SLQS, the first join
entry that contains all quantifiers is processed just after process-
ing 33.4% ∼ 62.5% of the total join entries, depending on query
topologies. Thus, hereafter we use �SLQS as a default partial order.
We will empirically show that we can achieve linear speedup using
�SLQS in Section 6.

4.1.4 Discussion on grouping
We proposed three grouping methods and concluded that group-

ing by SLQS was the best grouping method of the three. However,
there might exist better approaches than SLQS. In fact, an SLQS
may be partitioned into smaller groups. In this case, parallelism
and the partial order management overhead could grow as we al-
low more groups. Thus, an interesting future topic would be to find
the optimal grouping method.

4.2 Dependency-Aware Parallel Enumeration
To convert a totally ordered join pair sequence to a partial order

�SLQS
3, we allocate a concurrent dependency buffer B[j,i] for each

3For ease of exposition, we use SLQS as a default partial order.

SLQS[j,i]. We denote B[∗,i] as a set of dependency buffers corre-
sponding to SLQSi. The dependency buffer B[j,i] is implemented
as a concurrent queue that supports two core operations: Push and
Pop. Here, we do not need any synchronization for Push, since we
separate join pair generation from plan generation. We need syn-
chronization for Pop since multiple threads can consume entries
from a dependency buffer concurrently. However, the overhead for
such synchronization is negligible as we will see in our extensive
experiments in Section 6. Note that we do not use monitoring-
based load balancing techniques as in [25], since such monitoring
can incur non-negligible overhead in CPU-bound jobs. We also
note that we have to buffer only a fixed size of join pairs to avoid a
huge memory footprint size.

Algorithm 3 shows a dependency-aware parallel enumeration
algorithm called DPEGeneric. The main thread invokes DPE-
Generic. It then invokes the subroutine EnumAndBuildPartial-
Order to convert a fixed number of join pairs into a partial order
over SLQSs. To do so, EnumAndBuildPartialOrder repeatedly in-
vokes GetNextQSPair to generate a join pair and pushes the pair
to the corresponding dependency buffer, delaying plan generation
for the pairs generated (Line 2). Here, to control the maximum
number of join pairs to generate, MAXENUMCNT is used. More
specifically, in EnumAndBuildPartialOrder, if a join pair generated
is (qs1, qs2), this pair is pushed to B[|qs1|,|qs2|]. After that, for
each SLQSi (Line 4), all threads concurrently consume join pairs
in B[j,i] for all j by executing GenerateQEPs (Lines 5 and 6). This
step corresponds to group topological sort in parallel. After the pro-
cessing of SLQSi is completed (Line 7), the main thread merges
per-thread MEMOs into the global MEMO (Line 8). We repeat
these steps until all join pairs are consumed.

Algorithm 3 DPEGeneric (Dependance-Aware Parallel Enumer-
ation)
Input:
• G: a connected query graph with quantifiers q1, · · · , qN

• MEMO: a non-concurrent global MEMO
• memot: a local memo for thread t

Output: an optimal bushy join tree
Variable enumeration buffer B

1: loop
2: e← EnumAndBuildPartialOrder(G, B, MAXENUMCNT);
3: if e = NO_MORE_PAIR then break;
4: for i← 0 to N − 1 /*increase the larger quantifier set size*/
5: for t← 1 to m /*Execute m threads in parallel*/
6: pool.SubmitJob(GenerateQEPs(B[∗,i],memot));
7: pool.Sync();
8: MergeAndPrunePlans(MEMO, {memo1, · · · ,memom});
9: return MEMO[q1 · · · qN ];

Function GenerateQEPs
Input:
• B[∗,i]: a set of enumeration buffers large size is i
• memot: a local memo for thread t

1: j ← 1;
2: repeat
3: loop
4: atomic {(qs1, qs2, e)← Pop (B[j,i]);}
5: if e = NO_MORE_PAIR then break;
6: if qs2 = ∅ then /*qs1 must be a singleton.*/
7: newP lans← CreateTableAccessPlans(qs1 );
8: else
9: newP lans← CreateJoinPlans(MEMO[qs1 ], MEMO[qs2]);

10: PrunePlans(memot [qs1 ∪ qs2], newP lans);
11: j ← j + 1;
12: until j ≤ i and j + i ≤ N

However, other partial orders can easily applied to Algorithm 3.
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Like BPEGeneric, DPEGeneric employs dynamic search space
allocation. That is, in GenerateQEPs, each tread only consumes
one join pair at a time by calling Pop (Line 4). Since the unit of
search space allocation in DPEGeneric is a pair of quantifier sets,
the maximum delay among threads incurred by GenerateQEPs is
the processing time of one pair of quantifier sets, which is negligi-
ble. As opposed to BPEGeneric, DPEGeneric has no GetNextQ-
SPair and CheckDependency conflicts.

Theorem 2. For a given valid sequence of join pairs, DPE-
Generic always generates a valid reordered sequence of the join
pairs.

PROOF: Let the original join sequence generated by the serial join
pair enumerator be S = s1 · · · sn. S must be valid. The main
thread divides S into a series of subsequences by buffering each
subsequence in EnumAndBuildPartialOrder at a time. Here, the
size of each subsequence except the last subsequence is MAX-
ENUMCNT. Thus, it is sufficient to show that DPEGeneric gen-
erates the valid reordered sequence for each subsequence buffered
using Lines 4 - 6 in DPEGeneric. The for loop in Line 4 (cor-
responding to topological sort over SLQSs) and the repeat-until
loop in GenerateQEPs (corresponding to a permutation using mul-
tiple threads) correspond to group topological sort. Due to Theo-
rem 1, DPEGeneric generates a valid reordered sequence for each
buffered subsequence. This completes the proof.

Example 1. Figure 5 depicts how DPEGeneric operates us-
ing an example. Suppose that MAXENUMCNT is set to 15. The
main thread first invokes EnumAndBuildPartialOrder(G, B, 15) in
serial (Line 2). Figure 5(a) shows a snapshot of a set of depen-
dency buffers corresponding to a partial order over SLQSs after
buffering the first 15 entries from the incoming sequence of join
pairs of Figure 1. For each dependency buffer in increasing order
of the larger quantifier set size, each thread concurrently executes
GenerateQEPs using its per-thread MEMO (Lines 4 ∼ 6). That
is, each thread Ta concurrently consumes entries in B[∗,i] using
memoa. After that, the main thread merges all per-thread MEMOs
into the global MEMO. We repeat these above steps until we con-
sume all join entries. That is, the main thread invokes EnumAnd-
BuildPartialOrder(G, B, 15) again (Line 2). Figure 5(b) shows
a snapshot of a set of dependency buffers after the remaining 14
entries are buffered (Line 2).

5. MAXIMIZING PARALLELISM, IN DEPTH
Although DPEGeneric solves fundamental problems of BPE-

Generic (GetNextQSPair and CheckDependency conflicts), two
steps in DPEGeneric still run in serial: 1) join pair generation and
2) the merging of per-thread MEMOs into the global MEMO. The
third problem with DPEGeneric is that the dependency buffers
must be processed in sequence, so buffered join pairs in other de-
pendency buffers may be ready for processing, but the threads can’t
process such pairs in advance of the current dependency buffer.
This is especially problematic when the current dependency buffer
does not have a sufficient number of join pairs for all threads, since
some threads are not fully utilized. In this section, we propose three
optimization techniques resolving all three problems.

5.1 Pipelining of Join Pair Generation and Plan
Generation

Suppose that there are m threads available. In order to utilize
the other m - 1 threads while the main thread generates join pairs,
we leverage pipeline parallelism [13]. To do so, we regard the main

B[1,0]

(q4)
(q3)
(q2)
(q1)

B[1,1]

(q3, q4)
(q2, q4)
(q2, q3)
(q1, q4)
(q1, q3)
(q1, q2)

B[1,2]

(q2, q3q4)
(q4, q2q3)
(q3, q2q4)
(q1, q3q4)
(q1, q2q3)

B[2,2]

B[1,3]

(a) After the first 15 entries are buffered.

B[1,0] B[1,1] B[1,2]

(q1, q2q4)
(q4, q1q2)
(q3, q1q2)
(q4, q1q3)
(q2, q1q3)
(q3, q1q4)
(q2, q1q4)

B[2,2]

(q1q2, q3q4)
(q1q3, q2q4)
(q1q4, q2q3)

B[1,3]

(q1, q2q3q4)
(q4, q1q2q3)
(q3, q1q2q4)
(q2, q1q3q4)

front

(b) After the remaining 14 entries are buffered.

Figure 5: An example of DPEGeneric.

thread generating join pairs as a producer and the other threads gen-
erating QEPs for the join pairs generated as consumers.

More specifically, the main thread first generates and buffers a
fixed number of join pairs. After that, all threads except the main
thread consume the buffered join pairs. At the same time, the main
thread generates a fixed number of join pairs for the next iteration.
Note that the time needed to generate a fixed number of join pairs is
much smaller than the time needed to generate QEPs for those join
pairs generated. After the main thread finishes join pair generation,
together with the other threads, it participates in consuming the
remaining buffered sequence. This way, all m threads are fully
utilized. To avoid synchronization conflicts on dependency buffers,
we use dual buffers for each dependency buffer B[j,i].

5.2 Synchronization-Free Global MEMO
Unlike BPEGeneric, DPEGeneric uses per-thread MEMOs to

avoid synchronization conflicts during plan generation. However,
it needs the additional step of merging per-thread MEMOs to the
global MEMO. Another problem with per-thread MEMOs is that
the total memory footprint size, in the worst case, can grow in pro-
portion to the number of threads. By carefully analyzing opera-
tional semantics for the global MEMO, we develop a synchroni-
zation-free global MEMO resolving these problems. To this end,
we propose two novel concepts: 1) equivalence class grouping and
2) earmark-and-pinning.

Before explaining these concepts in detail, we briefly explain the
structure of the MEMO table. The MEMO table of conventional
optimizers, such as those of DB2 and PostgreSQL [26], is typically
implemented as a chained hash table with the quantifier set as the
key. The MEMO table can be dynamically reconstructed using a
different hash function and a different hash table size, e.g., when
the length of a hash chain is larger than a predefined threshold.
Each hash bucket corresponds to a MEMO entry that contains a
resulting quantifier set and a pointer to the plan chain for the quan-
tifier set. Figure 6 depicts a MEMO table.

As shown in Figure 6, we note that there are two different types
of linked lists in the MEMO table: the hash chain and the plan
chain. Thus, two different types of synchronization conflicts can

51



Hash table

q1q2q3q4

MGJN

HSJN

q1q2

NLJN

q3q4

HSJN

: a MEMO entry

: a QEP node

: a hash chain

: a plan chain

Figure 6: A MEMO table.

occur if threads manipulate these chains concurrently. To remove
synchronization conflicts for the plan chain, we propose the con-
cept of equivalence class grouping. To remove synchronization
conflicts for the hash chain, we propose the concept of earmark-
and-pinning.

Equivalence class grouping: We first define an equivalence class
in Definition 4, and describe how equivalence classes are used to
remove synchronization conflicts for the plan chain.

Definition 4. An equivalence class in the dependency buffer
B[j,i] is a set of join pairs in B[j,i] whose resulting quantifier sets
are the same.

Equivalence class grouping for B[j,i] subgroups join pair entries
in B[j,i] by their equivalence classes. The set of equivalence classes
in B[j,i] defines a partition over the set of join pairs in B[j,i]. To sup-
port equivalence class grouping, each entry inB[j,i] stores an equiv-
alence class, rather than a single join pair. The following lemma
states that, with equivalence class grouping, threads incur no syn-
chronization conflicts for any plan chain in the global MEMO.

Lemma 4. Given dependency buffers B[∗,i] currently being pro-
cessed by threads, if all entries in an equivalence class are con-
sumed by only one thread, there occurs no synchronization conflict
for plan chains.
PROOF: A plan chain is updated only by the subroutine PrunePlans,
where newly created QEPs are added to the plan chain, and expen-
sive QEPs are pruned from the plan chain. Thus, it is clear that,
unless any two threads invoke PrunePlans for the same MEMO en-
try, no synchronization conflict for plan chains occurs. Suppose
that two threads Ta and Tb process two different join pairs (qs1,
qs2) in B[j,i] and (qs′1, qs′2) in B[j′,i] concurrently. When j �= j′,
Ta and Tb invoke PrunePlans for different MEMO entries, since
|qs1 ∪ qs2| �= |qs′1 ∪ qs′2|. Even when j = j′, Ta and Tb invoke
PrunePlans for different MEMO entries, since both join pairs are
from different equivalence classes, i.e., qs1 ∪ qs2 �= qs′1 ∪ qs′2.

We now discuss the ratio of the maximum size of an equivalence
class over the total number of join pairs4 according to the topology
of the query graph. The ratio must be small, since the unit of allo-
cation to threads is an equivalence class. For example, if we have a
clique query5 having 18 quantifiers, the ratio is only 0.023%. Fur-
thermore, since we buffer a fixed number of join pairs at a time,
the size of a buffered equivalence class is much smaller than these
theoretical values.

Earmark-and-Pinning: In order to remove synchronization con-
flicts for the hash chain, the main thread generating join pairs pre-
4The join pairs here include all singleton quantifier sets.
5Each quantifier in a clique query with N quantifiers is connected
to all the other quantifiers using N-1 edges.

allocates a MEMO entry for each equivalence class buffered if such
MEMO entry has not been previously created. This step is called
earmarking. To pin the MEMO entry earmarked, a join pair en-
try in the dependency buffer stores a pointer to it. Thus, to sup-
port earmark-and-pinning, each entry in the dependency buffer is
changed to the form of (m[qs1 ∪ qs2], m[qs1], m[qs2]), where
m[qs] represents the memory address of the MEMO entry corre-
sponding to qs. This way, during plan generation, threads directly
access MEMO entries without accessing any hash chain or hash
array in the MEMO table.

Example 2. Figure 7 depicts a synchronization-free global MEMO
that exploits equivalence grouping and earmark-and-pinning. Re-
call Example 1. Suppose that the main thread invokes EnumAnd-
BuildPartialOrder(G, B, 15) for the second time. As shown in this
figure, each entry in a dependency buffer is an equivalence class.
For example, in B[2,2], the MEMO entry for the equivalence class
q1q2q3q4 has not been created in the previous iteration. The main
thread earmarks a MEMO entry for the equivalence class. During
plan generation, when an equivalence class is popped by Thread
Ta, Ta directly accesses the MEMO entry corresponding to the
equivalence class using m[q1q2q3q4] without accessing any hash
chain or hash array. Note that all the other threads except Ta never
access m[q1q2q3q4] concurrently according to Lemma 4.

Hash table

q1q2q3q4

earmark-and-pinned

q1q2

NLJN

q3q4

HSJN

A synchronization-free
global MEMO B[1,2] (m[q1q2q3], m[q2], m[q1q3])

(m[q1q2q3], m[q3], m[q1q2])

(m[q1q2q4], m[q1], m[q2q4])

(m[q1q2q4], m[q2], m[q1q4])

(m[q1q2q4], m[q4], m[q1q2])

(m[q1q3q4], m[q3], m[q1q2])

(m[q1q3q4], m[q4], m[q1q3])

B[2,2] (m[q1q2q3q4], m[q1q2], m[q3q4])

(m[q1q2q3q4], m[q1q3], m[q2q4])

(m[q1q2q3q4], m[q1q4], m[q2q3])

Figure 7: A synchronization-free global MEMO exploiting
equivalence grouping and earmark-and-pinning.

5.3 Threading Across Dependencies
When there is an insufficient number of join pairs at the current

level to fully utilize all threads, the threading across dependencies
technique enables threads to process dependency buffers in upper
levels without waiting. More specifically, when a thread processes
entries in B[∗,i], the other threads can process an entry e in B[∗,k]

(k > i) without waiting whenever all entries upon which e depends
are already consumed either in the current or previous iterations.
Such entries are called dependency-free entries.

In order to determine which join entry is dependency-free, each
MEMO entry e has an additional field named numEntry that stores
the number of buffered join entries for e. Given a join entry (m[qs1∪
qs2], m[qs1], m[qs2]) in a dependency buffer, if the values of the
numEntry fields of both m[qs1] and m[qs2] are 0, this join entry is
dependency-free.

To maintain the correct number of buffered join entries in each
MEMO entry, we perform the following operations. Before the
main thread pushes an entry (m[qs1 ∪ qs2], m[qs1], m[qs2]) to a
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dependency buffer, it increases the numEntry field of the MEMO
entry m[qs1 ∪ qs2] by one, using a hardware atomic instruction.
For example, in Figure 7, the MEMO entry for q1q2q3q4 has three
buffered entries inB[2,2]. The MEMO entry for q1q2 has no buffered
entries. During plan generation, after a thread consumes an entry
(m[qs′1 ∪ qs′2], m[qs′1], m[qs′2]) in a dependency buffer, the thread
decreases the numEntry field of the MEMO entry m[qs′1 ∪ qs′2] by
one, also using a hardware atomic instruction. In this way, each
MEMO entry maintains the correct number of remaining buffered
entries.

During plan generation, when a thread consumes a join entry
(m[qs1 ∪ qs2], m[qs1], m[qs2]) in the dependency buffer, it first
checks, using hardware atomic instructions, whether both this en-
try is dependency-free. If not, the thread must wait until the entry
has no dependency. To minimize such wait time due to thread-
ing across dependencies, we move dependency-free entries to the
front of each dependency buffer during join pair generation. Thus,
when some threads start to process dependency buffers in upper
levels during plan generation, they access dependency-free entries
first. With equivalence grouping, an entry in B[∗,i] is an equiva-
lence class which has a set of join pairs whose resulting quantifier
sets are the same. Thus, if all join pairs in the equivalence class are
dependency-free, we move the equivalence class to the front of the
dependency buffer.

Example 3. Figure 8 depicts an example of how the thread-
ing across dependencies technique operates. Buffers on the left-
hand side show a snapshot of dependency buffers before applying
the technique. The right-hand side shows dependency buffers af-
ter dependency-free entries are moved to the front. With threading
across dependencies, thread Tb can concurrently consume dependency-
free entries fromB[∗,i+1] without any synchronization conflict while
Ta processes entries from B[∗,i].

B[∗,i]

front

B[∗,i+1] B[∗,i+2]

Threading
Across De-
pendencies

B[∗,i]

Ta

B[∗,i+1]

Tb

B[∗,i+2]

: dependency-free entries

Figure 8: An example of threading across dependencies.

Theoretically, with threading across dependencies, threads can
process entries of dependency buffers in many different levels, and
thus, the threads may access the plan chain of the same MEMO en-
try concurrently. Thus, to guarantee the correctness of the threading
across dependencies technique, we need synchronization when we
access the plan chain. However, in reality, synchronization con-
flicts on the same plan chain due to threading across dependencies
rarely occur. Through extensive experiments in Section 6, the ratio
of the number of synchronization conflicts over the total number of
join pairs is only 0% ∼ 0.00064%, depending on query topolo-
gies. We will empirically show in Section 6 that the wait time due
to synchronization overhead of the threading across dependencies
technique is negligible.

6. PERFORMANCE EVALUATION
The goals of our experiments are as follows:

• To determine how much the three optimization techniques
proposed in Section 5 contribute to maximize the parallelism
of DPEGeneric (in Section 6.1)

• To show that our parallel algorithm supports any type of bot-
tom up enumeration, achieving linear speedup for each type
(in Section 6.2).

• To show that our parallel algorithm is even better than the
state of the art parallel optimizer tailored to size-driven enu-
meration, PDPsva (in Section 6.3).

• To show that our parallel algorithm is much more robust than
PDPsva with respect to search space allocation, especially
when a core is heavily loaded, (in Section 6.4)

We evaluated the same four representative query topologies as
[14]: linear, cycle, star, and clique. In order to ensure that our
solution never slows down optimization, our parallel optimizer is
invoked only when the number of join pairs buffered exceeds a cer-
tain threshold, i.e., when there is a sufficient number of joins pairs
to fully utilize multiple threads.

All the experiments were conducted on a PC with two Intel Xeon
Quad Core E5310 1.6GHz CPUs (=8 cores) and 8 GB RAM, run-
ning Windows Vista. Each CPU has two 4Mbyte L2 caches, each
of which is shared by two cores. We implemented all algorithms in
PostgreSQL 8.3 [26] to see the performance trends in a full-fledged
DBMS. Since the optimization component in PostgreSQL was not
thread safe, we modified it significantly in order to be thread-safe.
Furthermore, there were many places in the original code where
memory was not released during query optimization. We also fixed
all such problems by calling memory deallocation functions ef-
ficiently. Since fixed-sized structures (such as list cells) are ex-
tensively used, we used two types of memory managers to mini-
mize the total memory allocation size, one for variable-sized struc-
tures and the other for fixed-sized structures. Unlike a commer-
cial DBMS, during plan pruning, PostgreSQL uses a fuzzy cost-
ing comparison function that considers both the total cost and the
startup cost of a plan, which tends to accumulate unnecessary plans
in the plan chain. However, this costing mechanism is only useful
for top-k plans having the LIMIT clause. Since we focus on non-
top-k plans, we only exploited the total cost of a plan during plan
pruning.

The performance metrics are the speed-up and the elapsed time,
where the speedup is defined as the ratio of the elapsed time of the
serial algorithm over that of its parallel counterpart. Table 1 sum-
marizes the experimental parameters and their values. Note that we
used the same parameter values as [14]. We omit all experimen-
tal results for linear and cycle queries, because the total number
of join pairs are generally too small to benefit from paralleliza-
tion. Our main focus is to reduce compilation times for large data
warehouse OLAP queries which are typically star-shaped. OLTP
queries are not our focus, since they can be optimized very fast. An
experimental study on a real DB2 query workload [18] verified that
compilation time is dominated by the number of join re-orderings.
Thus, we believe that star queries (for varying the number of joins)
indeed model representative real data warehouse queries and are
sufficient to show our claim. For the same reason as [14, 21, 22],
we used large clique queries to show the worst case scenario, which
we believe is theoretically meaningful.
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Table 1: Experimental parameters and their values.
Parameter Default Range

join pair enumerator DPcpp DPcpp, DPhyp, DPsva

query topology star, clique star, clique
# of quantifiers 20, 18 10, 12, 14, 16, 18, 20
# of threads 8 1 ∼ 8

6.1 Impact of the Three Optimization Tech-
niques

We are interested in learning the impact of the three optimiza-
tion techniques (in Section 5) on DPEGeneric, with respect to
query topologies and the number of threads. The three optimiza-
tion techniques are called P, S, and T. P stands for the pipelining
of join pair generation and plan generation; S for synchronization-
free global MEMO; and T for threading across dependencies. For
example, DPEGeneric-PST denotes the DPEGeneric algorithm
with the three optimization techniques.

Figure 9 shows the experimental results for varying the number
of quantifiers for star and clique queries using 8 threads. The results
are presented using the speedup between the serial DPcpp algo-
rithm and the DPEGeneric algorithm with the specified optimiza-
tion technique(s). For star queries, only DPEGeneric-PST, which
exploits the three optimization techniques, achieves linear speedup
when the number of quantifiers is 20. This is because the number of
join pairs is large enough to exploit 8 parallel threads, and the three
optimization techniques maximize parallelism. DPEGeneric-PS
achieves 7.1 times speedup, and DPEGeneric-P achieves 3.9 times
speedup, while DPEGeneric alone achieves 3.3 times speedup.
Clique queries achieve higher overall speedups than comparable
star queries having the same number of quantifiers, because the
number of join pairs in clique queries are much larger than those in
equally-sized star queries. For clique queries, DPEGeneric-PST
also achieves linear speedup due to the sophisticated optimization
techniques. Note that the threading across dependency technique
is more effective in star queries than in clique queries, since join
entries buffered in star queries are spread across many dependency
buffers, and thus, there exist dependency buffers that have insuffi-
cient number of pairs to fully utilize all threads.
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Figure 9: Effect of three optimization techniques by varying
the number of quantifiers (8 threads).

Figure 10(a) shows the impact of the three optimization tech-
niques on DPEGeneric for varying the number of threads over
the serial DPcpp for star queries; Figure 10(b) shows the same for
clique queries. Regardless of query topologies, DPEGeneric-PST
achieves linear speedup as the number of threads increases. The
speedup rates for DPEGeneric and DPEGeneric-P diminish as
the number of threads increases. This is because, as the per-thread
MEMOs increase, the cost of merging them into the global MEMO
also increases. In some cases, we notice that slightly superlinear

speedups happen. Note that this can often happen in multi-core ap-
plications due to cache sharing. That is, threads in different cores
can access shared data structures, such as the MEMO table, catalog
structures, and enumeration codes, in 4 Mbytes L2 cache shared by
two cores.
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Figure 10: Effect of three optimization techniques by varying
the number of threads.

In the following experiments, we apply all three optimization
techniques to DPEGeneric.

6.2 Generality of Our Framework
The generality experiment is to show that our parallel algorithm

supports any type of bottom up enumeration, achieving linear speedup
for each type. To this end, we use the three state of the art serial
bottom-up enumerators: DPcpp; DPhyp; and the size-driven enu-
merator using the skip vector array called DPsva. Note that DPsva

is the fastest size-driven enumerator which avoids generating infea-
sible join pairs using the skip vector array [14].

We first perform experiments using the three serial enumera-
tors before showing speedup using their parallel counterparts, since
there have been no experimental comparisons reported of DPcpp,
DPhyp, and DPsva. Figure 11 shows experimental results for vary-
ing the number of quantifiers for star and clique queries. As shown
in this figure, the elapsed time for all three enumerators is nearly
the same, although DPcpp and DPhyp that generate join pairs by di-
rectly traversing a query graph are marginally faster than DPsva for
clique queries having 16 and 18 quantifiers (about 6%).
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Figure 11: Experimental results of DPcpp, DPhyp, and DPsva by
varying the number of quantifiers.

Figure 12 shows the generality of our framework. As we see
here, DPEGeneric supports all three state of the art enumerators.
We achieve perfect linear speedup for DPcpp, and nearly linear
speedups for DPhyp and DPsva.

Figure 13 shows the generality of our framework by varying the
number of threads. Again, DPEGeneric achieves (nearly) linear
speedup for all three enumerators.

54



DPEGeneric-DPsvaDPEGeneric-DPhypDPEGeneric-DPccp DPEGeneric-DPsvaDPEGeneric-DPhypDPEGeneric-DPccp

 0
 1
 2
 3
 4
 5
 6
 7
 8

 10  12  14  16  18  20

sp
ee

du
p

# of quantifiers

(a) Star queries.

 1

 2

 3

 4

 5

 6

 7

 8

 10  12  14  16  18

sp
ee

du
p

# of quantifiers

(b) Clique queries.

Figure 12: Effect of various enumerator by varying the number
of quantifiers (8 threads).
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Figure 13: Effect of various enumerator by varying the number
of threads.

6.3 Comparison with Direct Competitors
This experiment provides comparison of DPEGeneric with BPE-

Generic (in Section 3) and PDPsva (the state of the art parallel
enumerator for DPsva). The three state of the art serial enumerators
are applied to DPEGeneric.

Figure 14 shows experimental results for varying the number
of quantifiers for star and clique queries. BPEGeneric performs
the worst due to serious synchronization overhead. DPEGeneric
achieves linear speedup, while PDPsva only achieves up to 6.1
speedup for star queries using 8 threads. That is, 23% of the to-
tal cores are not utilized! For clique queries, the overall trend is
similar.
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Figure 14: Experimental results for speed-up by varying the
number of quantifiers (8 threads).

Note that DPEGeneric-DPsva and PDPsva use the same enu-
merator, but DPEGeneric-DPsva consistently outperforms PDPsva

due to the three sophisticated optimization techniques. Thus, in
spite of being a generic solution, DPEGeneric is highly effective.

Figure 15 shows experimental results for varying the number of
threads. Again, DPEGeneric achieves linear speedup as the num-

ber of threads increases, consistently outperforming PDPsva and
BPEGeneric. The performance curve of BPEGeneric increases
very slowly as the number of threads increases, due to substantial
synchronization overhead.
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Figure 15: Experimental results for speed-up by varying the
number of threads.

6.4 Robustness
This experiment demonstrates the robustness of our parallel al-

gorithm in a controlled setting, with respect to search space alloca-
tion. For this, we place a CPU-intensive process on a specific core.
This process loops infinitely, executing two steps in each loop: the
first step executes 100,000 floating-point operations and the second
sleeps for 1 millisecond. To increase loads on a specific core, we
increase the number of floating-point operations accordingly. We
use two thread scheduling policies. One policy, called static place-
ment denoted as SP, places thread i to core i. The other policy
relies on the underlying operating system thread scheduling policy
denoted as OS.

Figure 16 shows experimental results for varying loads on a core
for a star query and a clique query. As the number of floating-
point operations increases, the elapsed time for PDPsva using SP
increases sharply, meaning that the real workload is highly unbal-
anced. PDPsva using OS performs much better than PDPsva using
SP, indicating that the OS thread scheduling policy in Windows
Vista is much better for PDPsva. PDPsva using OS achieves 4.1
∼ 6.1 speedups, while DPEGeneric achieves 7.2 ∼ 8.0 speedups.
Note that both level off after reaching 400,000 floating point oper-
ations (i.e., one core is heavily loaded). This phenomenon can be
analyzed as follows. Suppose that the total elapsed time for a serial
algorithm is t, and there are m cores available. Assume that there
is no load on any core, and the parallel counterpart achieves linear
speedup. Then the ideal elapsed time for each thread of the parallel
algorithm is t

m
. Since one core is heavily overloaded, the worst

scenario is that, after m − 1 threads finish running their jobs con-
currently, (i.e., the elapsed time becomes t

m
, the last thread then

executes its job (i.e., the elapsed time for this thread is t
m

.). Thus,
the total elapsed time is 2t

m
(= t

m
+ t

m
), and the speedup is m

2
.

Therefore, the speedup of PDPsva converges to 4. However, due
to dynamic search space allocation, DPEGeneric achieves m − 1
speedup when one core is heavily loaded. Therefore, its speedup
converges to 7, which is ideal.

6.5 Summary and Discussion
In a series of tests, we have shown how DPEGeneric performs

with different numbers of threads and quantifiers. By using depen-
dency-aware reordering along with sophisticated optimization tech-
niques, we have achieved linear speedup. That is, the tangled de-
pendencies in the original sequence are unraveled by dependency-
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Figure 16: Experimental results for varying loads on a core.

aware reordering. Moreover, by using sophisticated optimization
techniques, discussed in Section 5, the wait time caused by the syn-
chronization required in DPEGeneric proved to be immaterial for
the different parameters we tested. Due to the synchronization-free
global MEMO, other than the dependency buffers, DPEGeneric
has no more memory overhead than the serial optimizer. Note
that the maximum size of all dependency buffers we tested is only
34Mbytes.

We have also shown that DPEGeneric supports all three state of
the art serial enumerators, and achieves linear speedup for each one.
Due to the sophisticated optimization techniques, DPEGeneric
consistently outperforms PDPsva for all parameter values we tested.
Experimental results also show that DPEGeneric is much more
robust than PDPsva with respect to search space allocation. Given
m cores in a CPU, when one core is heavily loaded, PDPsva only
achieves m

2
speedup, while DPEGeneric achieves m−1 speedup.

One interesting question is “Given a fixed optimization budget,
how much larger of a query can we handle using parallelism?” This
question is related to how many cores are available in the machine.
Suppose that the optimization budget is the elapsed time of the se-
rial DPcpp (the best serial enumerator) for a star query having 14
quantifiers. Then, according to our estimation, we need 122 cores
to handle a star query having up to 20 quantifiers with the same
budget. As additional cores are placed in a chip, it becomes more
interesting for future work to perform experiments using even more
cores.

7. RELATED WORK
There has been a lot of work on “parallel query” optimization,

which generates QEPs for parallel execution [7, 10, 16, 29, 20].
Commercial shared-nothing and shared-everything DBMSs also sup-
port such parallel query optimization, so that QEPs optimized by a
serial optimizer can be executed in many nodes in parallel. Most
recently, Han et el. [14] proposed the first framework to parallelize
the size-based serial enumeration in a multi-core architecture.

Extensive work has been done on heuristic or randomized query
optimization to reduce query optimization time for large join queries
[4, 19, 23, 31, 32]. PostgreSQL uses a thresholding logic—if the
number of the quantifiers in an input query is less than or equal to
twelve, it uses DP optimization; otherwise, it uses a genetic algo-
rithm [26]. Although such heuristic or randomized query optimiza-
tion reduces the query optimization time by not fully exploring the
entire search space, this can result in slower sub-optimal plans by
up to several orders of magnitude.

The dynamic programming used in bottom-up join enumeration
belongs to the non-serial polyadic class, which is known to be very
difficult to parallelize [14]. Furthermore, sub-problems in join enu-

meration depend on all preceding levels, whereas sub-problems in
other applications of DP depend on only a fixed number of preced-
ing levels (usually, two). Thus, existing parallel DP algorithms [3,
9, 17, 33, 34] cannot be readily applied to DP query optimization
to achieve linear speedup. Loop partitioning techniques in compil-
ers [1, 27], which partition iterations in nested loops of DP, can
be applied to DP query optimization. However, this can result
in seriously unbalanced workloads, since the cost of each itera-
tion can significantly differ, depending on whether CreateJoinPlans
is invoked. To overcome this problem, reference [14] proposed
round-robin inner static allocation along with the skip vector array.
However, the round-robin inner static allocation in turn works only
when all cores are evenly loaded. If not, the slowest thread holds up
all the other, faster threads, still resulting in seriously unbalanced
workloads anyway. In contrast to static allocation, we employ dy-
namic allocation to cope with cases where some cores are heavily
overloaded. With our sophisticated performance optimization tech-
niques along with dynamic partitioning, we show that our generic
solution is much more robust than that of [14] tailored to size-based
enumeration.

Our approach is related to work on job and DAG scheduling [2,
5, 6]. Although the basic idea of dependency-aware execution and
communication of results shares some similarity, our work is sig-
nificantly different from this work in that we generate a DAG on-
the-fly from the algebraic structure of the search space while the
DAG of [2, 5, 6] is given as input to a DAG scheduler. We also pro-
vided the formal foundation and several sophisticated tuning tech-
niques specific to parallelization of query optimization.

8. CONCLUSIONS
Recently, [14] proposed a novel framework for parallelizing the

process of optimizing queries. The parallel framework outperforms
the conventional serial generate-and-filter DP algorithm optimizer
by up to two orders of magnitude using 8 threads due to linear
speedup using parallelism, and an order of magnitude performance
improvement using the skip vector array-based enumeration [14].
However, the framework has three limitations: 1) supporting only
the size-driven DP enumerator, 2) statically allocating search space,
and 3) not fully exploiting parallelism.

In this paper, we proposed the first generic solution for par-
allelizing any type of bottom-up optimizer, including the graph-
traversal driven type, and for supporting dynamic search alloca-
tion and full parallelism. Specifically, by viewing a serial bottom-
up optimizer as one which generates a totally ordered sequence
of pairs of quantifier sets in a streaming fashion, we developed a
novel concept of dependency-aware reordering, which minimizes
waiting time caused by dependencies of pairs of quantifier sets.
By exploiting dependency-aware reordering and dynamic search
space allocation, we devised a scalable parallel enumeration algo-
rithm called DPEGeneric. To maximize parallelism, we proposed
a series of optimization techniques that can be applied to DPE-
Generic: 1) pipelining of join pair generation and plan genera-
tion; 2) the synchronization-free global MEMO; and 3) threading
across dependencies. Through extensive experiments with various
query topologies, we have shown that our solution supports any
type of bottom up optimization, achieving linear speedup for each
type. Despite the fact that our solution is generic, due to sophis-
ticated optimization techniques, our parallel optimizer using the
size-driven DP enumerator outperforms the state of the art paral-
lel optimizer tailored to size-driven enumeration. Experimental re-
sults also showed that our algorithm is much more robust than the
state of the art algorithm with respect to search space allocation.
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Overall, we believe the proposed concepts and solutions provide
comprehensive insight and a substantial framework for future re-
search.
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