
Query Result Clustering for Object-level Search∗

Jongwuk Lee, Seung-won Hwang
Pohang University of Science and Technology

Pohang, Republic of Korea
{julee, swhwang}@postech.edu

Zaiqing Nie, Ji-Rong Wen
Microsoft Research Asia

Beijing, P. R. China
{znie, jrwen}@microsoft.com

ABSTRACT
Query result clustering has recently attracted a lot of at-
tention to provide users with a succinct overview of relevant
results. However, little work has been done on organizing the
query results for object-level search. Object-level search re-
sult clustering is challenging because we need to support di-
verse similarity notions over object-specific features (such as
the price and weight of a product) of heterogeneous domains.
To address this challenge, we propose a hybrid subspace clus-
tering algorithm called Hydra. Algorithm Hydra captures the
user perception of diverse similarity notions from millions of
Web pages and disambiguates different senses using feature-
based subspace locality measures. Our proposed solution, by
combining wisdom of crowds and wisdom of data, achieves
robustness and efficiency over existing approaches. We ex-
tensively evaluate our proposed framework and demonstrate
how to enrich user experiences in object-level search using a
real-world product search scenarios.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Clustering;
H.3.4 [Systems and Software]: Performance evaluation

General Terms
Algorithms

Keywords
object-level search, subspace clustering

1. INTRODUCTION
An important goal of Web search engines is to provide

end-users with relevant results. However, as different users
often have different intents on the same query keyword, two
conflicting pillars can be defined to achieve this goal. The

∗This work was done when the first two authors were at
Microsoft Research Asia.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’09, June 28–July 1, 2009, Paris, France.
Copyright 2009 ACM 978-1-60558-495-9/09/06 ...$5.00.

first pillar, personalization, aims at maximizing the satisfac-
tion of a particular user, while the second pillar, diversifica-
tion, aims at minimizing the dissatisfaction risk of varying
user intents. Our goal is thus to pursue both pillars with
complementary strengths, to allow users to not only view
a big picture of result space but also quickly drill-down to
specific results meeting their personalized needs.

Toward this goal, the most relevant research area is query
result organization for document-level search. Specifically,
[9, 25, 22, 26, 7, 13, 11, 20] proposed clustering techniques to
partition a set of result documents into several subsets cov-
ering different topics. Well-known commercial sites include
Vivisimo (www.vivisimo.com), Grokker (www.grokker.com),
iBoogie (www.iboogie.com), and Kartoo (www.kartoo.com),
organizing query result clusters into an expandable topic hi-
erarchy or visualizing query results as interconnected topic
terms on a map. Such interfaces help users see the overview
of the entire data visually then drill-down to the specific cat-
egory of an interest. More recently, [12] studied how such
combination of clustering and ranking can be simultaneously
computed for efficiency.

This paper focuses on query result clustering for object-
level search engines [16, 15, 14] that automatically extract
and integrate the information on Web objects. In particular,
we focus on organizing the query results for Microsoft Live
Product Search1 extracting product information from the
Web document corpus. Unlike a document represented as a
TF-IDF vector where every feature value belongs to a homo-
geneous domain, an object is often represented as numerical
feature values of heterogeneous domains, e.g., sensor size,
price, and weight. As a result, an appropriate similarity for
Web object pairs is highly data- and intent-specific [5], re-
quiring domain expertise to be defined appropriately, while
the similarity notion for documents is rather well-agreed,
which poses an additional challenge to our problem.

To address this challenge, we now allow clusters represent-
ing different search intents to have different salient features,
e.g., sensor size is important when searching for DSLR cam-
eras and weight for compact cameras. As a result, similar-
ity notions also vary significantly in different clusters. This
problem, known as subspace clustering [4, 6, 8, 2, 3, 21, 23,
17], has been actively studied. Specifically, these algorithms
search through possible subspaces, and then determine a
subspace that best presents the “local similarity” of objects,
though search and selection schemes vary over algorithms.
However, these algorithms typically suffer from the following
two major disadvantages:

1http://search.live.com/products

1205

Figure 1: Clustering results for query “canon 5d”

• Complexity: Since the subset generation problem is
inherently intractable, proposed approximate solutions
tend to (1) incur computationally intensive subspace
search or (2) require expensive parameter tuning to
restrict search space.

• Cluster quality: Clustering, being an unsupervised
learning technique, may or may not capture locality
meaningful to users, depending on the quality of sim-
ilarity function and feature selection. To train the
user perception of locality, recent work discusses semi-
supervised clustering, adopting explicit human judge-
ments on cluster boundary [1] or whether to link object
pairs [19], often in a limited amount to reduce user in-
tervention.

In a clear contrast, we propose a novel framework over-
coming these two drawbacks, by adopting large-scale im-
plicit human feedbacks on pairwise similarity of all object
pairs. More specifically, we use co-occurrences of object
pairs appearing in the same Web document together. An
instance of such co-occurrence can be viewed as an implicit
relevance feedback reflecting the document creator’s decision
to see two objects as relevant and display in the same page.
Co-occurrences can be mined from the entire Web corpus to
build “ground-truth” pairwise similarity matrix S where Sij

indicates the co-occurrences of objects oi and oj .
However, such matrix reflecting human perception of sim-

ilarity represents varying notions of local similarity. To il-
lustrate, since the definition of Sij between a camera object
oi and its accessory oj and that of Sik between two cam-
eras oi and ok capture different senses of similarity, clus-
tering these three objects into a cluster should be discour-
aged. To disambiguate these two different senses, we adopt
the intuition of subspace clustering for qualification. That
is, we put objects into the same cluster, only if they share
enough “value locality” in the same feature subspace. Sum-
ming up, our proposed framework combines two notions of
relevance, co-occurrences and feature-based local similarity,
representing wisdom of crowds and wisdom of data respec-
tively, to achieve the robustness and efficiency over existing

approaches:

• Robustness: We use large-scale wisdom of crowds to
train a clustering algorithm to well capture varying
user perceptions of similarity.

• Efficiency: We use wisdom of data to disambiguate
different senses of similarity and achieve efficiency by
restricting the use of feature-based notion only to qual-
ify whether to merge into the same cluster.

Figure 1 shows an example screenshot of our implementa-
tion built on Live Product Search. This illustrates how our
proposed clustering algorithm, capturing both co-occurrence
and feature-based similarity notions, enriches user experi-
ences in product shopping scenarios. In the figure, a user
starts search using her initial interest “Canon 5D”as a query
keyword. Before making a purchase decision, she would
be interested in browsing and comparing with other related
products. In particular, we graphically visualize the related
items with varying degrees of similarity represented as dis-
tances between nodes, captured from co-occurrences, e.g., a
closely displayed pair of “Canon Powershot G6” and “Canon
Powershot A620” is highly related. However, such similarity
between DSLR cameras has a different meaning from the
similarity between compact cameras “Canon EOS 5D” and
“Canon EOS 40D”, which we distinguish as different cluster
locations (and colors) as illustrated in the figure. Such or-
ganization enables customers to browse related items with
varying complementary strengths then drill-down to the cat-
egory of interest to make an informed purchase decision.

To summarize, we believe that this paper has the following
contributions:

• We build an effective tool to visualize both diversified
and personalized search results.

• We propose Algorithm Hydra combining two relevance
notions with complementary strengths to achieve ro-
bustness and efficiency.

• We extensively evaluate Algorithm Hydra and empiri-
cally validate the quality of results.

• We demonstrate Algorithm Hydra developed for a work-
ing real-life product search, and illustrate how such
tool can enrich user experiences in product shopping
scenarios.

The rest of this paper is organized as follows. Section
2 reviews related work to our framework. Section 3 states
basic notions to develop our framework. Section 4 designs
a hybrid clustering algorithm Hydra. Section 5 validates
our proposed framework both using user study on real-life
datasets and a larger-scale synthetic data evaluation. Sec-
tion 6 finally concludes this paper.

2. RELATED WORK
This section overviews the related prior research efforts to

our problem context. We then conclude by stating how our
work distinguishes itself from these efforts.

2.1 Query Result Organization
Query result organization aims at providing a succinct

overview by categorizing the entire results for end-users. As
the pioneering work, [9] proposed Scatter/Gather algorithm

1206

to cluster documents from search results. [25] proposed STC
(Suffix Tree Clustering) algorithm to identify representa-
tive phrases from the snippets, based on which documents
are associated with each cluster. Furthermore, [26] trans-
formed the given problem as a supervised ranking problem
for phrases in order to get meaningful labels and the cor-
responding clusters. Meanwhile, some research efforts have
addressed document clustering based on dimensionality re-
duction techniques such as SVD (Singular Value Decompo-
sition) [13], NMF (Non-negative Matrix Factorization) [22],
and Spectral Analysis [7]. Recently, [12] proposed a spectral
clustering algorithm that simultaneously computes cluster-
ing and ranking.

2.2 Subspace Clustering
Subspace clustering has been studied to address the“curse

of dimensionality” in clustering, i.e., distances between all
object pairs become similar in a high-dimensional space.
Due to this problem, traditional clustering algorithms, using
distance measures over the entire feature space, fail to iden-
tify meaningful clusters. In contrast, subspace clustering
algorithms, by considering distances in all subspaces and se-
lecting only the most meaningful one, generate high-quality
clusters. As the subset generation is intractable, proposed
algorithms approximate the search, which can be categorized
into bottom-up and top-down greedy searches [17].

• Bottom-up approach: The search starts from one
dimensional subspace and expands to combine dense
region units into a cluster in higher-dimensional sub-
spaces, until no more dense region is found. CLIQUE
[4] was the pioneering work, using a grid as a unit of
dense region. ENCLUS [6] then used entropy values as
a measure for identifying a dense region. Meanwhile,
MAFIA [8] enhanced CLIQUE with an“adaptive”grid
to the given data distribution.

• Top-down approach: The search starts from full fea-
ture space then iteratively expands to lower-dimensional
subspaces. PROCLUS [2] started from a set of clusters
in the full feature space, with respect to k randomly
chosen medoids, and iteratively refined the cluster-
ing by considering lower-dimensional subspaces. OR-
CLUS [3] extended PROCLUS to consider non-axis
subspaces. FINDIT [21] proposed a unique distance
measure called dimension-oriented distance (DOD). Re-
cently, HARP [23], a hierarchial agglomerative clus-
tering, was reported to outperform existing top-down
algorithms. We thus adopt HARP as a baseline in this
paper.

2.3 Incorporating Feedbacks
To enhance unsupervised clustering algorithms to better

reflect user- and domain-specific notions of similarity, [19]
proposed semi-supervised k-means clustering adopting feed-
backs such as must-link and cannot-link between objects,
obtained from domain or human knowledge. [1] proposed
a human-computer cooperative subspace clustering frame-
work where users provide feedbacks on cluster boundaries,
based on which the computer iteratively generates satisfac-
tory results. Recent work [24] proposed a semi-supervised
projected clustering algorithm based on feedbacks, such as
membership labels of some objects to specific cluster or the
feature space of some clusters. Similarly, [11] proposed a

semi-supervised document clustering model with predefined
user feedbacks. More recently, [20] used web search logs
to generate more informative document cluster labels, and
exploited such labels to guide clustering.

2.4 Our Work
Our work extends query result organization to object-level

retrieval. To address the challenge of supporting feature
values of heterogeneous domains, we adopt the intuition of
subspace clustering, but ensure the robustness and efficiency
of our proposed solution, by adopting large-scale user feed-
backs and restricting the use of feature-based distance for
qualification. Our work distinguishes itself from existing
work incorporating user feedbacks, typically assuming ex-
plicit and consistent feedbacks, by allowing implicit and in-
consistent user feedbacks then disambiguating them using
feature-based similarity notion.

3. PRELIMINARIES
This section states preliminaries on modeling Web objects

(Section 3.1) and measuring the similarity between Web ob-
jects using co-occurrences (Section 3.2) and feature values
(Section 3.3).

3.1 Web Object Model
Web object is a concise, recognizable search unit extracted

from the Web corpus under object-level search. In general,
Web object is represented both as a term phrase as a unique
identification, e.g., “Canon 5D”, and as a set of specific nu-
meric features describing objective contents, e.g., (0.81kg,
$2,149). (Though the feature extraction process may intro-
duce errors as discussed in [14], such issue is beyond the
scope of this paper.) We formally define Web object as fol-
lows: Given a set of Web documents D = {D1, . . . , D|D|},
a Web object o ∈ O is represented both as a representative
term phrase oT and a feature value vector (o1, . . . , on) on a
domain-specific feature set F = {f1, . . . , fn}.

We then consider object-level search as identifying relevant
Web objects to user-specified query keyword q, which repre-
sents either a specific object or a descriptive general term.
We define initial set Oq as a set of Web objects appeared
together in Web documents where term q appears. Our goal
is thus to organize such initial result set Oq to satisfy both
diverse user intents and specific user needs. Towards this
goal, the next sections will present two different similarity
measures between Web objects.

3.2 Co-occurrence-based Similarity
We first discuss how the similarity of two objects o and o′

can be quantified based on their co-occurrences in document
set D. For such counts, the proximity of oT and o′T in co-
occurring documents should be considered, as illustrated in
one example form:

s(o, o′) = 1− argmin
D∈Dproximity(D, oT , o′T), (1)

where proximity is the minimum number of words between
oT and o′T in D, normalized by the number of words in D.
(Depending on application semantics, argmin and proximity
can be replaced with other more suitable functions, orthog-
onally to our proposed framework.)

s(o, o′) reflects the document creator’s perception of the
relevance inferred from displaying the two objects closely to-

1207

gether in the document. This notion can generalize to quan-
tify cluster similarity S(C, C ′), by averaging distance for all
possible object pairs. We formally define the co-occurrence
score between two clusters S(C, C′) as follows:

S(C, C′) =

∑
o∈C,o′∈C′ s(o, o

′)

|C| ∗ |C′| , (2)

where |C| is the size of clusters.
Clustering challenge: While co-occurrence closely cap-
tures the user perception of similarity, it is hard to judge
whether to merge two highly co-occurred object pairs into
cluster Ci, which is only meaningful when both pairs share
enough value locality in the same feature subset Si.

3.3 Feature-based Similarity
We now discuss how to quantify the degree of “value lo-

cality” of clusters. As the notion “enough locality” is defined
differently over heterogeneous attributes of arbitrary distri-
butions, all proposed measures inevitably depend on data-
and cluster-specific thresholds to distinguish relevant fea-
tures from the rest.

Specifically, relative index notion [23] quantifies the value
locality on fj of cluster Ci as:

Rij = 1− σ2
ij

σ2
j

, (3)

where σij is “local deviation” of fj values within the clus-
ter and σj is “global deviation” of all objects in Oq

2. This
score is close to maximum value 1, when values within the
cluster shares high locality such that local variance is small
compared to the global one, and 0 when local and global
variances are identical. Similar notion, dimension-oriented
distance [21], was studied which quantifies Rij as binary val-
ues 1 and 0 with respect to the given threshold ε. Since the
two metrics share the same intuition and the former gener-
alizes the latter, we focus on relative index notion.

Such locality on fj should be aggregated on all the relevant
feature set Si for the cluster. For selecting Si, data-specific
parameter Rmin is used:

Si = {fj |Rij ≥ Rmin} (4)

Clustering algorithms can then decide whether to merge
Ci1 and Ci2 into Ci, using the following similarity measure
δ(Ci1 , Ci2):

δ(Ci1 , Ci2) =
∑

fj∈Si

Rij . (5)

As a general assumption, all subspace clustering algo-
rithms encourage resulting clusters to share value locality
in as many features as possible, i.e., stronger evidences for
the cluster quality. To reflect this assumption, the following
qualification condition is checked before each merge, which
introduces another data-specific parameter dmin.

Definition 1 (Qualification condition) For the given pa-
rameter dmin and Rmin, any merge of Ci1 and Ci2 into Ci

should satisfy |Si| ≥ dmin.

2We adopt refined Rij in [23] to discourage an extreme case
of merging two distance clusters with large size difference,
i.e., |Ci1 | À |Ci2 |. More details on this refined notion can
be found in [23].

Clustering challenge: While feature-based similarity no-
tion captures different local similarity notions in different
clusters, the quality of similarity depends heavily on dmin

and Rmin, which ideally should be tuned differently for dif-
ferent clusters.

4. ALGORITHM
This section first discusses baseline algorithms in Section

4.1, then proposes our clustering algorithm in Section 4.2.

4.1 Baselines
As a basis for all algorithms, we adopt a bottom-up ag-

glomerative hierarchial clustering method [10], where every
object initially corresponds to a singleton cluster, then itera-
tively merged into k clusters. In particular, we consider two
baseline algorithms, using co-occurrence and feature-based
similarity respectively.

1. Base1: At each iteration, cluster pair (C, C′) with
the highest co-occurrence similarity S(C, C′) is merged
into Cagg, after which the similarities with other clus-
ters need to be updated.

2. Base2: Similarly, we can iteratively merge a pair with
the highest feature similarity δ, if it satisfies the qual-
ification condition (Definition 1).

4.2 Proposed Algorithms
This section discusses how to design a hybrid clustering

algorithm using both co-occurrence and feature-based simi-
larity notions, to address the clustering challenges discussed
in Section 3. We name our algorithm Hydra for HYbriD
pRojected clustering Algorithm.

To motivate our approach, we visualize the two similarity
notions on a real-life dataset for q=“Canon 5D”. More specif-
ically, Figure 2(a) visualizes pairwise co-occurrence similar-
ity using a checkerboard plot where each cell represents ob-
ject pair and its color represents similarity (the darker, the
more similar). For example, the cell in the upper-left corner
represents object pair (o1, o6) with high co-occurrence rep-
resented by a dark cell. Figure 2(b) similarly visualizes pair-
wise feature-based similarity when Rmin = 0.5 and dmin = 3.

These plots illustrate the complementary strengths of the
two notions. Co-occurrence, being parameter independent,
robustly distinguishes the similarity differences, while it is
unclear, from co-occurrence similarity alone, whether the
high co-occurrences of ({o1}, {o2}) and ({o1}, {o6}) can be
explained with the same reason. Meanwhile, feature-based
similarity, as the given parameters are suitable only for some
pairs, tends to over- or under-estimate the distance of the
remaining pairs.

This observation naturally motivates Algorithm Hydra to
use robust and parameter-independent co-occurrence met-
rics to determine the merge order then use feature-based
similarity to qualify each merge decision. Algorithm Hydra
thus accesses pair ({o1}, {o2}) with the highest co-occurrence
first, such as four cells marked by the solid box in the lower-
left corner in Figure 2(a). Before merging this pair, we check
their feature-based similarity, i.e., the matching solid box in
Figure 2(b), which is consistently high. This consistency
supports that this merge is meaningful.

In contrast, consider the next pair ({o1, o2}, {o6}). As
co-occurrences of ({o1}, {o6}) and ({o2}, {o6}) are both

1208

 1 2 3 4 5 6

6

5

4

3

2

1

 1 2 3 4 5 6

6

5

4

3

2

1

 1 2 4 3 5 6

6

5

3

4

2

1

Disqualification

Disqualification

(a) Checkerboard plot of pairwise (b) Checkerboard plot of pairwise (c) Clustering results of Algorithm
co-occurrence matrix feature similarity Hydra combining (a) and (b)

(Darker cells indicate closer pairs.) (When Rmin = 0.5 and dmin = 3)

Figure 2: Illustration of Algorithm Hydra for q=“Canon 5D”

0.947 0.842 0.737 0.632 0.526 0.421 0.316 0.211 0.105 0

19

17

15

13

11

9

7

5

3

1

Rmin

d m
in

Aggressive

Conservative

Starting line for merges

Ending line for merges

HARP

Figure 3: Over varying (Rmin, dmin)

high, as represented by cells in dotted boxes in Figure 2(a),
this merge appears promising from co-occurrence. However,
Figure 2(b) shows clear differences in feature-based similar-
ity between ({o1}, {o2}) and ({o1}, {o6}), which suggests the
reasons for two co-occurrences are different. Merging o1 and
o2 into a single cluster will thus be disqualified by qualifica-
tion condition in Definition 1, as represented by white cells
in the dotted boxes in Figure 2(c).

After iterative qualified merges, Algorithm Hydra renders
the two clearly separated clusters of {o1, o2, o4} and {o3,
o5, o6} as the final results, which corresponds to the clus-
ter of related DSLR cameras {Canon 20D, 30D, 40D} and
that of lower-end DSLR cameras {Canon 350D, 400D, XT}
respectively. Meanwhile, base1, using only co-occurrence,
mixes up two categories by performing the above unqual-
ified merge {o1, o2, o6}, while base2 returns a low quality
cluster {o1, o2, o3, o4, o5} and {o6}, basing merge orderings
on blurred similarity matrix.

4.2.1 Hydra with Linear Tuning
As the notion of feature-based similarity heavily relies on

data-specific parameters dmin and Rmin, tuning determines
the quality of feature-based clustering. Toward the goal,
we first discuss linear tuning developed in [23] for HARP
as preliminaries, based on which we later propose a more
sophisticated tuning approach.

Parameter tuning problem can be abstracted as a mul-

Algorithm 1 Hydra(Oq)

Input
Oq : A set of objects co-occurred with query q.

Output
C : A result set of k clusters

1: C ← {}.
2: L ← {}. // Sorted queue in the descending order of S(C, C′).
3: ∀i(1 ≤ i ≤ m) : C.add(Ci).
4: ∀i, j(1 ≤ i < j ≤ m) : L.add((Ci, Cj)).

5: R̃=EstimateR(Oq)

6: d̃=EstimateD(Oq , R̃)

7: for l ← 0 to d̃− 1 do

8: Rmin ← R̃− l×R̃

d̃−1
.

9: dmin ← d̃− l.
10: while L.movenext() do
11: (C, C′) ← L.current.
12: if (C, C′) satisfies qualification condition in Def 1 then
13: Merge (C, C′) into Cagg and update C and L.
14: if |C| = k then
15: Terminate.
16: end if
17: end if
18: end while
19: L.movefirst()
20: end for

tivariate interpolation problem of finding (Rmin, dmin) for
generating k clusters. Figure 3 illustrates an example search
space, where the darkest cells represent parameter pairs gen-
erating k clusters and white cells represent pairs which can-
not generate any merge. HARP interpolates data points in
the space, by searching diagonal cells starting from Rmin = 1
and dmin = n, i.e., the lower-left corner in Figure 3.

At each interpolation point, HARP performs clustering us-
ing corresponding parameter pairs. For example, for the
initial value of Rmin = 1 and dmin = d, no cluster pair
can be merged, unless two identical singleton clusters exist
in the dataset, which suggests the qualification condition is
too “tight” to generate k clusters. The condition is thus
gradually “loosened”, in particular, by choosing the next
diagonal cell for the next round of HARP clustering, i.e.,
Rmin = 1 − l

n−1
and dmin = n − l after l rounds. Such

rounds continue, as the dotted diagonal arrow in Figure 3
illustrates, until it hits the darkest cell. Algorithm 1 cor-
responds to Hydra when the starting values R̃ and d̃ are
statically set as 1 and n in line 5 and 6.

1209

4.2.2 HydraAdaptive with Adaptive Tuning
However, from the linear tuning, we observe the following

two optimization opportunities.

• Efficiency: At each round, all pairwise cluster sim-
ilarities need to be recomputed, while all such com-
putations are wasted if no merge qualifies, i.e., in all
white cells in Figure 3, which suggests us to restrict
search space to dark cells.

• Quality: By restricting search space, similarity re-
computations can be done at a finer granularity, which
significantly enhances the cluster quality, as Section 5
will empirically validate.

We take these optimization opportunities, by proposing
to prune out white cells from search space. Our goal is to
efficiently identify a tighter bound for d̃. As such parameter
is data-specific, we first develop an adaptive scheme with
correctness guarantee, and then improve it into an efficient
approximation scheme.
Guaranteed bounding: One way to estimate d̃ is to ac-
tually perform HARP with R̃ = 1 then set d̃ large enough to
qualify all the merges performed, i.e., d̃ = argmax

Ci∈C|Si|
when Rmin = 0. As depicted in Figure 3, d̃ monotonically
increases as Rmin decreases.

Since performing HARP is expensive, we show that per-
forming an efficient alternative, i.e., single-linkage cluster-
ing, can also identify d̃ with correctness guarantee. In single-
linkage clustering, R̃ij for merging two clusters is computed
as the distance between the two closest elements o ∈ Ci1

and o′ ∈ Ci2 in the two clusters.

R̃ij = δj(o, o
′) = 1− (oj − o′j)

2

σ2
j

, (6)

By considering only the closest value pair, R̃ij is the upper
bound of the actual feature-based cluster distance:

∀Ci : R̃ij ≥ Rij (7)

Single-linkage clustering is essentially Kruskal’s algorithm
for finding minimum spanning trees, by merging element
pairs in the order of δ, until k spanning trees are generated,
which correspond to k resulting clusters. S̃i of the resulting
cluster Ci can thus be computed as:

{fj |∃δj(o, o
′) ≥ 0} (8)

for every connected pair (o, o′) such that o, o′ ∈ Ci.
It is immediate from the above upper bounding property

that, when Kruskal’s and HARP algorithms return the same
clustering results C = C′, S̃i of every Kruskal cluster sub-
sumes Si of the corresponding HARP cluster:

d̃ = argmax
Ci∈C|S̃i| ≥ argmax

C′i∈C′ |S
′
i|. (9)

We can extend this for the general case when C 6= C′. We
can transform the clustering results of HARP into an equiv-
alent graph of k spanning trees, by generating a local min-
imum spanning tree within each resulting cluster C′i where
the maximum d̃′ for every connected node pair satisfies:

d̃′ ≥ argmax
C′i∈C′ |S̃

′
i|. (10)

Compared to d̃ obtained from the globally minimum span-
ning tree, d̃ ≥ d̃′ holds, which ensures Equation 9 to remain
correct.

Conservative starting point can be thus dmin = d̃ and
R = 1, which is guaranteed to start from a white cell. How-
ever, this scheme still incurs high computational overheads,
i.e., O(m2logm2) for Kruskal’s algorithm. We thus develop
an approximation of the above procedure in O(m2)– With
no correctness guarantee, such approximation may intro-
duce potential mistakes in early merges by loose qualifica-
tion, which we empirically observe not to negatively affect
the quality much. To the contrary, we observe that, by
aggressively reducing the search regions and searching the
focused region more thoroughly, approximation significantly
improves the cluster quality.
Aggressive bounding: We now discuss how we approxi-
mate Kruskal’s algorithm discussed above. Specifically, we
aim at estimating the lower bound R̃j of δj(o, o

′) of all con-
nected object pairs in the resulting spanning trees.

Toward the goal, we pick an estimated value of R̃j from

the list L of δj for all m(m−1)
2

possible pairs. However, the
rank of estimated value in the list can vary significantly,
depending on the topologies of the resulting spanning trees.
To illustrate, consider an extreme case, when k resulting
clusters consist of k−1 singleton clusters and one big cluster
C0. When every object pair in C0 is extremely close, δj(o, o

′)
values of all such pairs are higher than R̃j , which lowers the

estimated rank close to m(m−1)
2

. In another extreme case,
where only connected pairs are close, the estimated rank can
be as high as m−(k−1). As a moderate estimate of the two,

we thus pick the median in L, based on which, d̃ can also be
estimated as the median of |Si| for every singleton cluster
pair. Figure 3 illustrates our aggressive search strategy in
the search space. The next section will empirically show
how this simple adaptive tuning significantly improves both
the effectiveness and efficiency of Hydra.

5. EXPERIMENTS
This section reports our experimental results to validate

the accuracy and efficiency of Algorithm Hydra. Our exper-
iments were carried out on a Intel(R) Core 2 machine with
2.13 GHz processor and 2GB RAM running Windows XP.
All algorithms were implemented in C# language. Our pro-
posed algorithm is compared against two baseline approaches–
Base1 using only co-occurrences which we name HAC and
Base2 implementing Algorithm HARP [23], a subspace clus-
tering algorithm known to have the highest accuracy [18].

5.1 Real-life User Study
First, we performed user study over a real-life product

dataset of size 83.9 GBs, including more than 1.1 millions
documents crawled in the September of 2008 for Live Prod-
uct Search (http://search.live.com/products). To obtain co-
occurrence scores, we extracted product co-occurrences from
the product reviews in the dataset. We also extracted fea-
ture values, linearly normalized to [0,1]. We conducted a
real-life user study for 32 people (Microsoft Research Asia
interns and POSTECH students). Due to the expensive na-
ture of user studies, we limit to 6 search tasks for users, in
particular, on the currently most popular cameras and lap-
tops (3 tasks each) in Korea, according to www.danawa.com,
among the products in our dataset.

1210

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

N
or

m
al

iz
ed

 v
ot

es

Hydra
HAC
HARP

The average of
cameras

The average of
laptops

The overall
average

Figure 4: User study results

• Popular cameras: Canon Powershot SD850, Nikon
D80, Nikon D2Xs

• Popular laptops: Lenovo Thinkpad R61, Lenovo
Thinkpad T60, Lenovo Thinkpad T61

For each search task, clustering results from the two al-
gorithms are displayed to users without labels, where one is
ours and the other is a baseline (randomly chosen between
HAC and HARP). Users then blindly vote for the clustering
results with higher quality. Figure 5.2 shows the number of
user votes, normalized by the number of times displayed to
the users. Observe that, both in camera and laptop cate-
gories, our clustering results obtain the highest number of
votes, which suggests that the hybrid approach of combining
two relevance notions improves the user-perceived quality of
clustering.

5.2 Larger-scale Simulated Study
As the scale of user study is inherently limited, we gener-

ate a large-scale synthetic dataset with ground truth clusters
and validate our results over larger and more diverse exper-
imental settings.
Synthetic dataset: We synthetically generate a dataset
with ground truth clusters in mind. For synthetically gen-
erating feature values, we first determine the size of each
cluster, by randomly choosing values in the range of [m

k∗1.5
,

m
k∗0.8

]. To make sure every object belongs to at least one
cluster, we randomly generate the size of the first k−1 clus-
ters in the above range and decide that of the last cluster as
the number of all remaining objects. Once the size of each
cluster is decided, we next randomly choose the dimension-
ality of each cluster, in the range of [Savg−3,Savg +3] based
on the average dimensionality Savg. Once the dimensional-
ity Si of each cluster Ci is determined, we randomly pick Si

relevant features, and then generate values as follows:

• Relevant feature fj ∈ Si: We randomly generate
the local mean µij and local deviation σij to generate
fj , based on which local values generating a cluster
are uniformly distributed in the range of [µij − σij ×
0.01, µij + σij × 0.01].

• Irrelevant feature f ′j /∈ Si: We uniformly generate
values in the entire range [0, 1].

We then synthetically generate co-occurrence scores. While
the co-occurrence score can be arbitrarily generated, it is
non-trivial to decide the ground-truth clusters when feature-
based and co-occurrence similarity scores disagree. Due

Parameter Values

The number of data m 1000, 2500, 5000, 7500
The number of features n 20, 40, 60, 80, 100

Cluster size |Ci| [m
k∗1.5 , m

k∗0.8]
Average feature size Savg 6, . . . , |F| − 5

Local deviation σij [2, 8], [4, 10], [6, 12], [8, 14]
The number of clusters k 5, 10, 15

Sparsity sp% 90, . . . , 50, . . . , 10

Table 1: Parameters of synthetic datasets

to this difficulty, we consider a special scenario, where co-
occurrences are generated based on feature-based similarity.
Specifically, the co-occurrence between objects o and o′ in
cluster C and C′ is represented as

∑
fj∈S∪S ′ (1− |oj − o′j |).

However, as real-life user feedbacks are prone to noises, we
add controlled noises, by choosing only r = 80% of fj from
|S ∩ S ′| then rest from the remaining features, i.e., the
smaller r is, the noisier co-occurrences are.

We stress that this scenario is somewhat unfavorable to
our proposed algorithm (and favorable to HARP), since the
co-occurrence scores, generated from feature-based relevance,
cannot provide any extra information to our hybrid approach.
Our intention of using this scenario is to show that, even in
this unfavorable setting, Algorithm Hydra outperforms base-
lines. Lastly, to reflect the “sparsity” of co-occurrence scores
in real-life data where co-occurrence scores are zero for the
majority of object pairs, we control sparsity sp to generate
sp% of co-occurrences as zero.
Quality metrics: As quality metrics, we adopt three rep-
resentative metrics extensively used from prior works [2, 21]:
Clustering Error (CE), F1-value, and FF1-value.

First, CE [2] is generally used to show the difference be-
tween ground-truth clustering C and our clustering results
C′. This measure is based on |C′| × |C| matrix M , where
Mij is the number of elements shared by clusters Ci and
Cj from C′ and C respectively. Note that we use confu-
sion matrix M ′ [2] maximizing the sum of diagonal elements

D =
∑|C|

i=1 M ′
ii among all possible matrices. In an ideal case

when C = C′, non-diagonal elements of M ′ will be all zero,
and in other cases, the error can be quantified as the differ-
ence between the sum of diagonal elements and the overall
sum, i.e., CE(C, C′) = U−D

U
, where U is the sum of all ele-

ments in the matrix such that
∑|C′|

i=1

∑|C|
j=1 M ′

ij . When the
value of this measure is 0, two clustering results are identical.

Next, F1-value is a harmonic mean of precision and recall,
widely used to measure accuracy in IR literatures. Specifi-
cally, precisionj and recallj are defined as argmaxi{M ′

ji} /∑|C|
i=1 M ′

ji and argmaxi{M ′
ij} /

∑|C|
i=1 M ′

ij respectively. F1-
value is calculated as the average of k clusters, maximized
as 1 when two clustering results are identical.

Similarly, FF1-value [21] is an extension of F1-value to
quantify the overlap in feature space of two clustering re-
sults. The overlapped elements are used from F1 values.
FF -precisionj and FF -recallj are defined as |Sj ∩ Sj

ideal|
/ |Sj | and |Sj ∩ Sj

ideal| / |Sj
ideal|, where Sj

ideal and Sj are

relevant feature sets at jth cluster in C and C′, respectively.
Experimental results: We present experimental results
with synthetic datasets for various parameter settings in Ta-
ble 1. Each data point reports the average of 50 runs with
50 different datasets.

First, Figure 5 reports the accuracy using three metrics
over varying average number of features of clusters. Note
that, FF1-metrics does not apply to HAC which does not

1211

6 7 8 9 10 11 12 13 14 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Averge feature size Savg

C
lu

st
er

in
g

er
ro

r

HAC
HARP
Hydra
HydraAdaptive

6 7 8 9 10 11 12 13 14 15
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Averge feature size Savg

F 1−v
al

ue

HAC
HARP
Hydra
HydraAdaptive

6 7 8 9 10 11 12 13 14 15
0.7

0.75

0.8

0.85

0.9

0.95

1

Averge feature size Savg

FF
1−v

al
ue

HARP
Hydra
HydraAdaptive

(a) Clustering Error (b) F1-value (c) FF1-value

Figure 5: Over varying Savg

[2, 8] [4, 10] [6, 12] [8, 14]
0.1

0.2

0.3

0.4

0.5

0.6

0.7

Local deviation σij

C
lu

st
er

in
g

er
ro

r

HAC
HARP
Hydra
HydraAdaptive

[2, 8] [4, 10] [6, 12] [8, 14]
0.5

0.6

0.7

0.8

0.9

1

Local deviation σij

F 1−v
al

ue

HAC
HARP
Hydra
HydraAdaptive

[2, 8] [4, 10] [6, 12] [8, 14]

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Local deviation σij

FF
1−v

al
ue

HARP
Hydra
HydraAdaptive

(a) Clustering Error (b) F1-value (c) FF1-value

Figure 6: Over varying σij

identify relevant feature sets. Observe that in all three met-
rics, all algorithms were highly accurate when Savg is high.
An interesting difference from user study results in Figure
is HAC performs worse in synthetic evaluations, which can
be explained by the noises introduced to co-occurrences that
negatively affect the accuracy of HAC depending solely on
co-occurrences. In particular, for low Savg the accuracy gaps
are apparent. The problem of HARP in such scenario is that,
by starting the parameter tuning from the most conservative
bound dmin = d, all similarity score refinements from early
rounds are simply wasted, which limits refinement opportu-
nities in the valid range and also affects the quality of merges
performed on poorly estimated scores. In a clear contrast,
Algorithm Hydra, by using a more robust co-occurrence or-
dering, shows higher accuracy in all Savg, which is further
enhanced by Algorithm HydraAdaptive, searching a focused
space at a finer granularity.

Second, Figure 6 reports the accuracy using three metrics
over varying local deviation. Observe that, in all three met-
rics, Algorithm Hydra generates significantly better cluster-
ing results than Algorithm HARP and HAC, especially when
the local deviation is high. As the ideal Rmin values for
clusters are lowered, HARP searching for the ideal parameter
from R = 1 wastes refinement efforts in early rounds. In con-
trast, Algorithm HydraAdaptive, by exploiting co-occurrence
ordering and finer-grained parameter tuning on lower Rmin

search region, reduces the CE error of HARP by 1
2

when
σij = [8, 14].

Third, Figure 7 reports the accuracy using three metrics
over varying number of clusters. Observe that, in all three
metrics, the accuracy of all algorithms deteriorates as k in-
creases, as a single mistake in merging severely affects the
datasets with smaller and many clusters, while such sensi-
tivity is significantly low for Algorithm HydraAdaptive. To
illustrate, when k = 15, the CE result shows that Algorithm
HydraAdaptive shows 3.34, 2.55 and 2.35 times higher accu-
racy than Algorithm HAC, HARP, and Hydra respectively.

Fourth, Figure 8 reports the accuracy using three metrics
for co-occurrence data with varying sparsity. In particu-
lar, we vary sparsity sp for Algorithm HydraAdaptive. As
references, we plot the accuracy of HARP (as lower bound
accuracy) and that of Hydra using perfect co-occurrence data
without sparsity (as theoretical upper bound accuracy), both
of which are not affected by sp and thus stay constant. Ob-
serve that, Algorithm HydraAdaptive, even at the presence
of severe sparsity, e.g., sp = 90%, is significantly more ac-
curate than the lower bound and closely approximates the
theoretical upper bound. For lower sparsity, e.g., sp < 70%,
the accuracy of Algorithm HydraAdaptive converges to the
theoretical upper bound.

Lastly, we empirically study the scalability of Algorithm
Hydra over varying data size m and feature size n. For
varying n, we also vary Savg, to avoid cases only n′ ¿
n features are relevant to clusters, in particular, by vary-
ing Savg = bn/3c as well. Figure 9 shows that Algorithm
HydraAdaptive significantly outperforms Algorithm HARP in
all settings and scales more gracefully, by using adaptive
loosening which enables fast convergence and thus reduces
computational overhead.

1000 2500 5000 7500
0

500

1000

1500

2000

2500

3000

data m

R
es

po
ns

e
tim

e
(s

ec
)

HARP
HydraAdaptive

20 40 60 80 100
0

100

200

300

400

500

600

700

800

features n

R
es

po
ns

e
tim

e
(s

ec
)

HARP
HydraAdaptive

(a) varying m (b) varying n

Figure 9: Efficiency between Algorithm HARP and
Algorithm Hydra

6. CONCLUSION
This paper studied query result organization to provide

1212

5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

clusters k

C
lu

st
er

in
g

er
ro

r

HAC
HARP
Hydra
HydraAdaptive

5 10 15
0.5

0.6

0.7

0.8

0.9

1

clusters k

F 1−v
al

ue

HAC
HARP
Hydra
HydraAdaptive

5 10 15
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

clusters k

FF
1−v

al
ue

HARP
Hydra
HydraAdaptive

(a) Clustering Error (b) F1-value (c) FF1-value

Figure 7: Over varying k

90 80 70 60 50 40 30 20 10
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Sparicity sp (%)

C
lu

st
er

in
g

er
ro

r

HARP
HydraAdaptive(sp = 0%)
HydraAdaptive

90 80 70 60 50 40 30 20 10
0.975

0.98

0.985

0.99

0.995

1

Sparcity sp (%)

F 1−v
al

ue

HARP
HydraAdaptive(sp = 0%)
HydraAdaptive

90 80 70 60 50 40 30 20 10
0.88

0.9

0.92

0.94

0.96

0.98

1

Sparcity sp (%)

FF
1−v

al
ue

HARP
HydraAdaptive(sp = 0%)
HydraAdaptive

(a) Clustering Error (b) F1-value (c) FF1-value

Figure 8: Over varying sp

highly relevant results that both cover diverse intents and
address the user-specific intent. In particular, we focus on
object-level search, which poses a new challenge of combin-
ing co-occurrence and feature-based similarity notions with
complementary strengths. To address this challenge, we pro-
posed a hybrid clustering algorithm Hydra using large-scale
implicit user feedbacks as similarity metrics representing di-
verse intents, disambiguated by feature-based subspace lo-
cality. We extensively validated Algorithm Hydra using both
real-life user study and large-scale synthetic datasets.

ACKNOWLEDGEMENT
The first two authors were supported by Microsoft Research
Asia (internet service theme) and Engineering Research Cen-
ter of Excellence Program of Korea Ministry of Education,
Science and Technology (MEST) / Korea Science and Engi-
neering Foundation (KOSEF), grant number R11-2008-007-
03003-0.

7. REFERENCES
[1] C. C. Aggarwal. A human-computer cooperative system for

effective high dimensional clustering. In KDD, 2001.

[2] C. C. Aggarwal, J. L. Wolf, P. S. Yu, C. Procopiuc, and J. S.
Park. Fast algorithms for projected clustering. In SIGMOD,
1999.

[3] C. C. Aggarwal and P. S. Yu. Finding generalized projected
clusters in high dimensional spaces. In SIGMOD, 2000.

[4] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan.
Automatic subspace clustering of high-dimensional data for a
data mining applications. In SIGMOD, 1998.

[5] M. Bilenko, S. Basu, and M. Sahami. Adaptive product
normalization: Using online learning for recored linkage in
comparison shopping. In ICDM, 2005.

[6] C.-H. Cheng, A. W. Fu, and Y. Zhang. Entropy-based subspace
clustering for mining numerical data. In KDD, 1999.

[7] D. Cheng, R. Kannan, S. Vempala, and G. Wang. A
divide-merge methodology for clustering. TODS, 2005.

[8] S. Goil, H. Nagesh, and A. Choudhary. Mafia: efficient and
scalable subspace clustering for very large data sets. In
Technical Report, Northwesthen University, 1999.

[9] M. A. Hearst and J. O. Pedersen. Re-examining the cluster
hypothesis: Scatter/gather on retrieval results. In SIGIR, 1996.

[10] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: a
review. ACM Computing Surveys, 1999.

[11] X. Ji, W. Xu, and S. Zhu. Document clustering with prior
knowledge. In SIGIR, 2006.

[12] Y. Liu, W. Li, Y. Lin, and L. Jing. Spectral geometry for
simultaneously clustering and ranking query search results. In
SIGIR, 2008.

[13] G. Mecca, S. Raunich, and A. Pappalardo. A new algorithm for
clustering search results. Data and Knowledge Engineering,
2006.

[14] Z. Nie, Y. Ma, S. Shi, J.-R. Wen, and W.-Y. Ma. Web object
retrieval. In WWW, 2007.

[15] Z. Nie, J.-R. Wen, and W.-Y. Ma. Object-level vertical search.
In CIDR, 2007.

[16] Z. Nie, Y. Zhang, J.-R. Wen, and W.-Y. Ma. Object-level
ranking: bringing order to web objects. In WWW, 2005.

[17] L. Parsons, E. Haque, and H. Liu. Subspace clustering for high
dimensional data: a review. SIGKDD Newsletter, 2004.

[18] A. Patrikainen and M. Melia. Comparing subspace clusterings.
TKDE, 2006.

[19] K. Wagstaff, C. Cardie, S. Rogers, and S. Schroedl.
Conttrainted k-means clustering with background knowledge.
In ICML, 2001.

[20] X. Wang and C. Zhai. Learn from web search logs to organize
search results. In SIGIR, 2007.

[21] K.-G. Woo, J.-H. Lee, M.-H. Kim, and Y.-J. Lee. FINDIT: a
fast intelligent subspace clusteing algorithm using diemsnion
voting. Information and Sofeware Technology, 2004.

[22] W. Xu, X. Liu, and Y. Gong. Document clustering based on
non-negative matrix factorization. In SIGIR, 2003.

[23] K. Y. Yip, D. W. Cheung, and M. K. Ng. HARP: A practical
projected clustering algorithm. TKDE, 2004.

[24] K. Y. Yip, D. W. Cheung, and M. K. Ng. On discovery of
extremely low-dimensional clusters using semi-supervised
projected clustering. ICDE, 2005.

[25] O. Zamir and O. Etzioni. Web document clustering: A
feasibility demonstration. In SIGIR, 1998.

[26] H.-J. Zeng, Q.-C. He, Z. Chen, W.-Y. Ma, and J. Ma. Learning
to cluster web search results. In SIGIR, 2004.

1213

