
IEICE TRANS. FUNDAMENTALS, VOL.E92–A, NO.11 NOVEMBER 2009
2781

PAPER Special Section on Smart Multimedia & Communication Systems

Model Checking of Real-Time Properties of Resource-Bound
Process Algebra

Junkil PARK†, Student Member, Jungjae LEE†, Jin-Young CHOI†a), and Insup LEE††, Nonmembers

SUMMARY The algebra of communicating shared resources (ACSR)
is a timed process algebra which extends classical process algebras with the
notion of a resource. In analyzing ACSR models, the existing techniques
such as bisimulation checking and Hennessy-Milner Logic (HML) model
checking are very important in theory of ACSR, but they are difficult to use
for large complex system models in practice. In this paper, we suggest a
framework to verify ACSR models against their requirements described in
an expressive timed temporal logic. We demonstrate the usefulness of our
approach with a real world case study.
key words: ACSR, model checking, action-based modeling, real-time tem-
poral logic, resource-bound process algebra

1. Introduction

The Algebra of Communicating Shared Resources, ACSR
[1], is a timed process algebra that is based on the premise
that the timed behavior of a real-time system is affected not
only by the time its components take to execute and synchro-
nize, but also by delays introduced due to the scheduling of
actions that compete for shared resources.

The ACSR computation model is based on the view
that the components of a real-time system execute syn-
chronously time-and-resource consuming actions and com-
municate through instantaneous events asynchronously, ex-
cept when two components synchronize through matching
events. To be able to specify real-time systems accurately,
ACSR supports static priorities that can be used to arbi-
trate between actions competing for shared resources and
between events that are ready for synchronization.

ACSR models can be analyzed by bisimulation check-
ing and Hennessy-Milner Logic model checking [2]. The
bisimulation checking approach for verifying ACSR models
is showing that the models are bisimilar to their requirement
specifications. For large and complex systems, it is hard
to model requirement specifications using ACSR because
it usually involves sequentializing the behaviors of paral-
lel processes to inspect that the specification satisfies all re-
quirements of the system, and it doesn’t contain undesirable
behaviors. On the other hand, in the existing model check-
ing approach of ACSR, HML has not enough expressiveness
power and it is too complicated to describe requirements of

Manuscript received April 16, 2009.
Manuscript revised July 3, 2009.
†The authors are with the Department of Computer Science

and Engineering, Korea University, Korea.
††The author is with the Department of Computer and Informa-

tion Science, University of Pennsylvania, U.S.A.
a) E-mail: choi@formal.korea.ac.kr

DOI: 10.1587/transfun.E92.A.2781

real-time systems in practice.
ACSR needs a temporal logic to expressively describe

both untimed and real-time properties; and a method that
can check ACSR models against the properties. We suggest
the method that analyzes ACSR models using model check-
ing technique by (1) translating (abstracting) a Timed LTS
to Abstracted Timed LTS, (2) extending ACTL* to Bounded
ACTL* by adding bounded temporal operators in order to
easily describe timing properties, and (3) using a toolchain
composed by VERSA and CWB-NC [3] that provide effec-
tive ACTL* model checking. As a result, system require-
ments can be easily specified using Bounded ACTL* and
Temporal Specification Pattern, and effectively checked us-
ing existing action-based model checking framework and a
toolchain.

As related works, There are process algebras and their
tools providing model checking frameworks such as CCS
[4] and CWB-NC [3]; CSP [5] and FDR [6]; FSP [7] and
LTSA [7]. They are modeling languages for untimed sys-
tem. However, [8] and [9] include a special action tick to
model time in these languages, and provide timed model
checking framework. There are extensions of temporal logic
that allow one to model timed properties using bounded tem-
poral operators [10], [11].

The rest of this paper is organized as follows. Sec-
tions 2 and 3 describes overviews of ACSR and model
checking respectively. Section 4 explains our approach for
ACSR model checking. Section 5 illustrates model check-
ing of both timed and untimed properties on the Distance
Control Module (DCM) as a case study. Finally, Sect. 6 con-
cludes the paper.

2. Overview of ACSR

ACSR, like other process algebras, consists of (1) a set of
operators and syntactic rules for constructing process; (2) a
semantic mapping which assigns meaning or interpretation
to processes; (3) a notion of equivalence or partial order be-
tween process; and (4) a set of algebraic laws that allows
syntactic manipulation of processes. ACSR uses two dis-
tinct action types to model computation: time and resource-
consuming actions, and instantaneous events.

2.1 The Computation Model

ACSR distinguish two types of actions: those which con-
sume time, and those which are instantaneous. Timed ac-

Copyright c© 2009 The Institute of Electronics, Information and Communication Engineers

2782
IEICE TRANS. FUNDAMENTALS, VOL.E92–A, NO.11 NOVEMBER 2009

tions may require access to system resources, e.g., cpu’s,
memory, batteries, etc. In contrast, instantaneous actions
provide a synchronization mechanism between concurrent
processes.

Timed Actions. A system has a finite set of serially-
reusable resources, R. An action consumes one tick of time
and employs a set of resources, each with an integer priority.
For example, action {(r, p)} denotes the use of some resource
r ∈ R running at priority level p. The action ∅, consuming
no resources, represents idling for one time unit.

Events. Instantaneous actions, or events, provide pro-
cess synchronization in ACSR. An event is denoted by a pair
(α, p), where α is the label of the event, and p is its priority.
Labels represent input and output actions on channels. As
in CCS, the special identity label, τ, arises when two events
with input and output on the same channel synchronize. We
define L as the set of all event labels.

We use DR to denote the domain of timed actions, DE

to denote the domain of events, andD = DR∪DE to denote
the entire domain of actions.

ACSR processes are described by the following gram-
mar, where we assume a set of process constants each with

an associated definition of the kind C
def
= P.

P ::= NIL | (α, n).P | A:P | P + P | P‖P | P\F | [P]I |
P\\I | PΔαt (P, P, P) | C

Steps of ACSR processes are constructed using the two
prefix operators corresponding to the two types of actions.
The process (α, n). P executes the instantaneous event (α, n)
and proceeds to P. The process A:P executes a resource-
consuming action during the first time unit and proceeds to
P. The process P + Q represents nondeterministic choice
and the process P‖Q describes the concurrent composition
of P and Q. The temporal scope construct, PΔαt (Q,R, S), re-
stricts a process P by a time limit (t). If P completes its exe-
cution within this limit an exception, α, is thrown, in which
case an exception handler (Q) is executed. If not, control is
passed to a timeout process (R). In any case, P can be in-
terrupted by a step of an interrupt process (S). Other static
operators of ACSR allow us to hide the identity of certain
resources (P\\I), reserve the use of a resource for a given
process ([P]I), and force synchronization between processes
by restricting certain events (P\F). The executions of a pro-
cess are defined by a timed labeled transition system (timed
LTS). A timed LTS, M, is defined as (P,D,→, P0), where P
is a set of ACSR processes, ranged over by P, Q, D is a set
of actions, and → is a labeled transition relation such that
P

α−→ Q if process P may perform an instantaneous event
or timed action α and then behave as Q. P0 ∈ P represents
the initial state of the system.

The prioritized transition system is based on preemp-
tion, which incorporates our treatment of priority. This is
based on a transitive, irreflexive, binary relation on actions,
≺ called the preemption relation. If α ≺ β, for two actions
α and β, we say that α is preempted by β. Then, in any pro-
cess, if there is a choice between executing either α or β, β

will always be executed. We define the prioritized transition
system “→π”, which simply refines “→” to account for pre-
emption. The labeled transition system “→π” is defined as

follows: P
α−→π P′ if and only if (1) P

α−→ P′ is an unprior-
itized transition, and (2) there is no unprioritized transition

P
β−→ P′′ such that α ≺ β. We refer to [12] for the precise

definition of ≺ and semantics of ACSR operators.

2.2 Analysis of Real-Time Systems in ACSR

ACSR models can be analyzed in several ways. Similar
to other behavioral formalisms, equivalence checking and
model checking are common ways of establishing func-
tional and timing correctness. In the former case, a de-
tailed model is checked for equivalence with a more ab-
stract model that represents system requirements. In the lat-
ter case, system requirements are expressed as formulas in
a temporal logic and a model-checking algorithm is used to
verify that the model satisfies these formulae.

Equivalence between ACSR processes is based on the
concept of bisimulation [4], [13] which compares the com-
putation trees of two processes. Two processes are bisimilar
if, for each step of one, there is a matching, possibly multi-
ple, step of the other, leading to bisimilar states. The formal
definition of bisimulation for ACSR processes such as ∼,
≈, ∼π and ≈π can be found in [12]. Algorithms for check-
ing strong and weak bisimulation for finite-state ACSR pro-
cesses have been implemented in the VERSA toolset [14],
thus allowing the verification of ACSR specifications.

ACSR models can be also checked against Hennessy-
Milner logic(HML) formulas [2]. However, HML is not
enough to describe requirements of a system in practice.
In this paper, we suggest the use of ACTL* for analyzing
ACSR models that will be explained in Sect. 3.

2.3 An Example

We describe an ACSR example, a Robot Control System
(RCS). The RCS system consists of a binary semaphore and
two user processes that run concurrently, and control robot’s
two arms. We assume the system should satisfy a safety
property that the robot’s two arms must not be operated at
the same time in order to avoid power supply problem. Fig-
ure 1 shows expressions of ACSR processes of the system,
and Fig. 2 depicts Timed LTSs corresponding to the ACSR
processes.

We model a binary semaphore as a process Sem that
receives events from user processes. When it receives pend
in free state, it goes to non-free state. When it receives post

Fig. 1 ACSR expressions of RCS.

PARK et al.: MODEL CHECKING OF REAL-TIME PROPERTIES OF RESOURCE-BOUND PROCESS ALGEBRA
2783

Fig. 2 Timed LTSs of RCS.

Spec1
def
= Spec′1 + Spec′′1

Spec′1
def
= (τ, 2).(Rs, 1){(right arm, 1)} : (Re, 1).(τ, 2).Spec1

Spec′′1
def
= (τ, 2).(Ls, 1){(le f t arm, 1)} : (Le, 1).(τ, 2).Spec1

Spec2
def
= Spec′2 + Spec′′2

Spec′2
def
= (Rs, 1){(right arm, 1)} : (Re, 1).Spec2

Spec′′2
def
= (Ls, 1){(le f t arm, 1)} : (Le, 1).Spec2

Fig. 3 Requirements specifications of RCS.

in non-free state, it goes to free state.
We model the user processes as the processes P1 and

P2 that operate robot’s left and right arm respectively. To
satisfy the safety property, the processes P1 and P2 should
arbitrate their execution using the semaphore. P1 and P2
send the event pend to acquire the semaphore, and the event
post to release it. When P1 or P2 starts using left or right
arm, it marks the start of this activity by the event Ls or Rs
respectively. When P1 or P2 stops operating the left or right
arm, it marks the end of this activity by the event Le or Re
respectively.

Figure 3 shows two requirements specifications for the
system. Spec1 describes all possible actions including syn-
chronized events which are represented by the internal event
τ(tau), while Spec2 abstracts out the internal events. In both
requirements, one can see that the two resources left arm
and right arm aren’t used at the same time. We can prove
that

RCS ∼π Spec1 and

RCS ≈π Spec2.

The RCS system can be verified by modeling its re-
quirement specification and equivalence checking. How-
ever, for large and complex systems, it is hard to model
requirement specification using ACSR because it usually in-
volves sequentializing the behaviors of parallel processes to
inspect that the specification satisfies all requirements of the
system, and it doesn’t contain undesirable behaviors. In this
paper, we suggest the use of model checking for verifying

real-time properties of ACSR models.

3. Overview of Model Checking

Model checking is an automated technique for checking
finite-state reactive systems against properties described by
temporal logics [15]. The method has been used to verify
software and hardware designs of complex systems. A sys-
tem is modeled into a system model and requirements of the
system are formalized into a property specification. Model
checking technique can check whether the system model
satisfies the property specification and provides counterex-
ample if it doesn’t satisfy.

3.1 State-Based vs. Action-Based Modeling

A system model can be either state-based, action-based, or
based on their mixture [16], [17]. ACSR models are action-
based. We explain the difference between state-based and
action-based modeling.

In state-based modeling, a state of a system model is a
valuation of variables composing the system model. Kripke
Structures (KSs) are used for representing state-based mod-
els. CTL* [18], [19], CTL [20] and LTL [21] describe prop-
erties of state-based models. Atomic propositions of the
temporal logics are predicates over state variables of the
system model. For example, model description languages
such as SMV Language [22] and Promela [23] are the input
languages of model checkers NuSMV [22] and SPIN [23]
respectably, which are state-based.

In action-based modeling, system models are repre-
sented by Labeled Transition Systems (LTSs) rather than
Kripke Structures. Labels are on states in KSs, but la-
bels are on transitions in LTSs. In LTSs, labels are actions
and the actions are used as atomic propositions in action-
based temporal logics. The temporal logics such as Action
CTL*(ACTL*) [16], Action CTL(ACTL) [16] and Action
LTL(ALTL) are used for describing properties of action-
based models. Atomic propositions of the temporal logics
are predicates over actions of the system model. For exam-
ple, many process algebras including ACSR and CCS inter-
preted by LTSs are action-based modeling languages.

3.2 Action-Based Model Checking

Action-based model checking uses LTSs as system mod-
els and action-based temporal logics for specifying system
properties. We define LTSs and ACTL*.

A Labeled Transition System M is a quadruple
(P,D,→, P0) where

• P is a set of states,
• D is a set of actions,
• →⊆ P ×D × P is a transition relation, and
• P0 ∈ P is an initial state.

An execution χ = (P1, α1, P2)(P2, α2, P3) . . . ∈→ω

2784
IEICE TRANS. FUNDAMENTALS, VOL.E92–A, NO.11 NOVEMBER 2009

from P1 is an infinite sequence of transitions. χ2 is a suf-
fix of χ1, denoted by χ1 ≤ χ2 if there is an execution χ such
that χ1 = χ · χ2 (where the operation ‘·’ is concatenation).
χ2 is a proper suffix of χ1, denoted by χ1 < χ2 if χ1 ≤ χ2

and χ1 � χ2.
We define ACTL*. The set of atomic proposition AP is

the set of actions A. State and path formulas are defined with
path quantifier E; temporal operators X and U as follows:

• If ψ1 and ψ2 are state formulas, then ¬ψ1 and ψ1 ∨ ψ2

are state formulas.
• If φ is a path formula, then Eφ is a state formula.
• If α ∈AP, then α is a path formula.
• If ψ is a state formula, then ψ is also a path formula.
• If φ1 and φ2 are path formulas, then ¬φ1, φ1 ∨ φ2, Xφ1

and φ1Uφ2 are path formulas.

An interpretation for a state formula is a pair of a LTS
M and a state P. An interpretation for a path formula is a
pair of a LTS M and a path χ. The semantics of the temporal
logic formulas is defined as follows:

• M, P |= ¬ψ iff M, P � ψ.
• M, P |= ψ1 ∨ ψ2 iff (M, P |= ψ1) or (M, P |= ψ2).
• M, P |= Eφ iff there is a path χ from P such that M, χ |=
φ.
• M, χ |= ψ iff P is the first state of χ, and M, P |= ψ.
• M, χ |= α iff α is the action of the first transition in χ.
• M, χ |= ¬φ iff M, χ � φ.
• M, χ |= φ1 ∨ φ2 iff (M, χ |= φ1) or (M, χ |= φ2).
• M, χ |= Xφ iff there exists P1, α, P2 and χ′ such that
χ = (P1,α,P2) · χ′ and M, χ′ |= φ.
• M, χ |= φ1Uφ2 iff there exists χ2 ≥ χ such that M, χ2 |=
φ2 and for all χ ≤ χ1 < χ2 : M, χ1 |= φ2.

Auxiliary notations for ACTL* are defined as follows:
true ≡ φ ∨ ¬φ, false ≡ ¬true, φ1 ∧ φ2 ≡ ¬(¬φ1 ∨ ¬φ2),
ψ1 ∧ ψ2 ≡ ¬(¬ψ1 ∨ ¬ψ2), φ1 → φ2 ≡ ¬φ1 ∨ φ2, ψ1 → ψ2 ≡
¬ψ1∨ψ2, F φ ≡ true U φ, G φ ≡ ¬ F ¬φ, and φ1 W φ2 ≡ (φ1

U φ2) ∨ G φ1.
We use this action based model checking framework.

However, it is not suitable for timed model checking. We
extends this framework in the next section.

4. Model Checking of ACSR Models

ACSR models are action-based and represented by TLTSs.
A TLTS can be either unprioritized or prioritized. In model
checking for ACSR, we consider only prioritized TLTSs, so
we refer to ‘prioritized TLSTs’ as just ‘TLTSs’ from now
on. Given a TLTS M and an ACTL* formula ψ, ACSR
model checking problem can be defined as to check whether
M |= ψ (iff M, P0 |= ψ).

Formulas of the logic will be interpreted over TLTSs
generated by ACSR processes. Formulas, therefore, will re-
fer to the labels of the transition systems, that is, instanta-
neous events and timed actions. However, events and ac-
tions carry with them the values of their dynamic attributes,
which are not meaningful in the logical context. In our

model checking framework, we focus on temporal proper-
ties in terms of occurrence of observable events and passage
of time rather than usage of resources. We abstract every
timed action to the special action tick. Therefore, primi-
tive constructs used in the logical formulas are event labels,
and tick, as action labels. Given an event e = (a, p), we
write abs(e) = a and, given a timed action A, we write
abs(A) = tick. We useA to denote the domain of abstracted
action such that A = L ∪ {tick}. For model checking of
ACSR models, we use A as the set of atomic propositions
of ACTL*. We refer to ‘ACTL* overA’ simply as ‘ACTL*’
from now on.

ACSR model checking problem is to check whether
M |= ψ where M is a prioritized TLTS, and ψ is an ACTL*
formula over A. The semantics of ACTL* interpreted by a
TLTS M are almost same with those in Sect. 3.2 except:

• M, χ |= a iff for some p, the action of the first transition
in χ is (a, p) where a ∈ L.
• M, χ |= tick iff the action of the first transition in χ

ranges overDR.

For example, there is a requirement for the RCS system
in Sect. 2.3, that is, “Every task that involves using the one
of the arms should end at some time.” This is a non real-
time property and can be specified as AG(Ls → F Le) and
AG(Rs→ F Re).

To provide timed model checking for ACSR, we, there-
fore, (1) translate TLTSs into Abstracted TLTSs where re-
sources of timed actions and priorities of instantaneous ac-
tions are abstracted and removed while preserving satis-
fiability for ACTL*, and (2) extend ACTL* to Bounded
ACTL* by adding bounded temporal operators in order to
easily describe properties with respect to time.

To easily specify requirements on a system, we use
Temporal Specification Pattern [24], [25] that provide the
category of specification formulas which frequently used
in practice. To realize ACSR model checking, we use the
toolchain composed by (1) VERSA that can generate state
space of ACSR models (TLTSs), abstract them into ATLTS,
and translate Bounded ACTL* and specification patterns to
ACTL*; and (2) CWB-NC that can check ATLTSs against
ACTL* formulas.

4.1 Translating TLTSs to Abstracted TLTSs

We define Abstracted TLTSs (ATLTS) as LTSs with the do-
main of abstracted actions A. A TLTS M = (P,D,→, P0)
is translated to an ATLTS M = (P′,A,→′, P′0) where

• P′ = P
• →′= {(P, abs(α), P′)|(P, α, P′) ∈→}
• A = {abs(α)|α ∈ D}
• P′0 = P0

This translation preserves satisfiability for ACTL*. We
can prove that for all ψ, M |= ψ iff M′ |= ψ where M is
a TLTS and M is translated to a ATLTS M′. This can be
proved by contradiction. If there exists ψ such that M �

PARK et al.: MODEL CHECKING OF REAL-TIME PROPERTIES OF RESOURCE-BOUND PROCESS ALGEBRA
2785

Fig. 4 ATLTS of RCS.

ψ and M′ |= ψ, then the counterexample of M can easily
produce an execution of M′ which falsifies M′ |= ψ, and
viceversa.

ACSR are used for modeling real-time systems, so it
needs timed model checking to verify the timed systems.
TLTSs have two types of actions. One is the type of in-
stantaneous actions and another is the type of timed actions.
We abstract timed actions of TLTSs into the tick action of
ATLTS. By translating TLTS to ATLTS, time-consuming is
limited to only on tick actions; it makes timed model check-
ing for ACSR simple. Without this abstraction, specifying
passage of time units in ACTL* becomes very difficult be-
cause it involves referring all timed actions for describing
passage of one time unit. An ATLTS is an resource- and
priority-abstraction of an TLTS, and ATLTS are still models
of discrete timed system. The time of the ATLTS in a given
state is counted by the number of tick actions that have oc-
curred since the beginning of the execution.

When timed actions are translated to tick actions, in-
formation on resources and priorities are removed. This in-
formation is essential for the semantics of ACSR operators,
such as parallel composition and prioritization. We, how-
ever, model check the final ACSR model where all parallel
compositions and prioritization has finished. We analyze
a sequence of observable instantaneous actions (events) of
ACSR models rather than resources or priorities. Therefore,
information on resources and priorities can be removed. Pri-
orities on instantaneous actions are abstracted and removed
for the same reason.

For example, Fig. 4 shows the ATLTS translated from
the TLTS RCS depicted in Fig. 2.

4.2 Extending ACTL* to Bounded ACTL*

ACTL* is not suitable for describing timed properties. In
order to specify requirements on timed model, we extend
ACTL* to Bounded ACTL* by adding bounded temporal
operators. Bounded temporal operators come from Metric
Temporal Logic [26]. We add bounded path formulas which
composed by bounded temporal operators as follows:

• If φ1 and φ2 are path formulas, then (F∼dφ1), (G∼dφ1)
and (φ1U∼dφ2) are path formulas where ∼ ∈ { <, >, ≤,
≥ } and d is a natural number.

Bounded path formulas can assert properties of system
models with respect to time. For example, F≤d is a bounded
temporal operator which is extended from the unbounded
temporal operator F. F≤dφ means φ holds at some future
time within the next d time units. In terms of the action tick,
The meaning of F≤dφ is that φ holds in the future before next

d + 1 tick actions occur.
The semantics of the bounded path formulas is defined

over the temporal distance function dist as follows:

• M, χ |= G∼dφ iff M, χ1 |= φ for all χ1 ≥ χ and dist(χ,
χ1) ∼ d.
• M, χ |= F∼dφ iff M, χ1 |= φ for some χ1 ≥ χ and dist(χ,
χ1) ∼ d.
• M, χ |= φ1U∼dφ2 iff M, χ1 |= φ2 for some χ1 ≥ χ and

dist(χ, χ1) ∼ d and M, χ2 |= φ1 for all χ2 such that
χ ≤ χ2 < χ1

where dist(χ1, χ2) is the number of path χ such that χ1 ≤
χ < χ2 and the first action of χ is tick.

It is possible to translate bounded path formulas to un-
bounded path formula with their semantics preserved. The
translation function tr that comes from [9] is defined as fol-
lows:

• tr(G<dφ) = φ W (tick ∧ φ), if d = 1;
φ W (tick ∧ φ ∧ tr(G<d−1φ)), if d > 1.

• tr(G≤dφ) = tr(G<d+1φ)
• tr(F<dφ) = ¬tick W φ, if d = 1;

(¬tick ∨ X tr(F<d−1 φ)) W φ, if d > 1.
• tr(F≤dφ) = tr(F<d+1φ).
• tr(G≥dφ) = G φ, if d = 0;

¬tick W G φ, if d = 1;
¬tick W X tr(G≥d−1 φ), if d > 1.

• tr(G>dφ) = tr(G≥d+1φ).
• tr(F≥dφ) = F φ, if d = 0;

F (tick ∧ F φ), if d = 1;
F (tick ∧ X tr(F≥d−1 φ)), if d > 1.

• tr(F>dφ) = tr(F≥d+1φ).
• tr(φ1U∼dφ2) = tr(F∼dφ2) ∧ (φ1Wφ2)

where W is the unbounded weak-until operator introduced
in Sect. 3.2.

For example, there is a real-time requirement for the
RCS system, that is, “Every task that involves using the one
of the arms should end at some future time within one time
unit.” This real-time property can be specified as AG(Ls →
F≤1 Le) and AG(Rs→ F≤1 Re).

4.3 Temporal Specification Pattern

Temporal specification pattern is a general reusable solu-
tion to a occurring problem in specifying a system’s require-
ments using temporal logics. [24] provides untimed tempo-
ral specification patterns and [25] provides more patterns for
real-time system. We apply the patterns to our case study in
Sect. 5.

For example, in the RCS system robot should not start
moving left arm when it is moving the right arm. In other
words, the event Le ‘never’ occur ‘between’ the events Rs
and Re. This requirement of natural language is translated
to ACTL* formula using Absence(Never) and Between pat-
terns [24] as:

2786
IEICE TRANS. FUNDAMENTALS, VOL.E92–A, NO.11 NOVEMBER 2009

Fig. 5 Tool chain.

AG(Rs→ (¬Ls U Re))

[25] provides real-time specification patterns that could
be used to specify requirements of ACSR models. Some
examples of this are presented in Sect. 5.

4.4 Tool Chain

VERSA [14] is a tool for ACSR. VERSA can verify, execute
and rewrite ACSR processes. CWB-NC [3] is a verification
environment for process algebras including CCS. CWB-NC
takes a LTS as an input, and supports model checking of the
LTS against ACTL* formulas.

We use a toolchain composed by VERSA and CWB-
NC. Figure 5 shows the architecture of our toolchain.
VERSA generate a state space for an given ACSR specifica-
tion and translate it to an ATLTS. Properties for ACSR mod-
els are described by Bounded ACTL* and Temporal Spec-
ification Patterns. The temporal properties are translated to
unbounded ACTL* by VERSA. Given an ATLTS and an
ACTL* property, CWB-NC check the models against the
property.

5. Case Study

We applied ACSR model checking to an example from in-
dustry. In this paper, we present Distance Control Mod-
ule (DCM), a subsystem of a new railroad signaling system
that is under research in Korea Railroad Research Institute
(KRRI).

5.1 DCM System Description

The Distance Control Module (DCM) system is a subsys-
tem of a railroad block signaling system which has a con-
cept of both fixed and moving block interlocking. The DCM
system manages ‘running trains’ by calculating and sending
permission for the trains to enter the next blocks and limit-
ing temporary speed of the trains, so that the trains can keep
a safe distance to obstacles and other trains ahead. The per-
mission is called Permissive Movement Authority (PMA). A
PMA can be Green, Yellow, or Red that represents the level
of warning for obstacles ahead. Trains have to manage their
speeds according to the color of PMA that they receive.

The functions of the DCM system are (1) controlling
distance between a train and an obstacle ahead, (2) train po-
sitioning, (3) monitoring train direction, (4) limiting tempo-
rary train speed, and (5) opening and closing blocks. In this

TP ready
def
= (dispatch TP, 1).TP running + ∅ : TP ready

TP wait
def
= (timeTick, 2).TP ready + ∅ : TP wait

TP running
def
= (TPs, 1).{(cpu, 1)} : ({(cpu, 1)} : TP running′+

(ActUP, 1).{(cpu, 1)} : (post, 1).TP running′)
TP running′ def

= (TPe, 1).(schdl, 1).TP wait

UP ready
def
= (dispatch UP, 1).UP running + ∅ : UP ready

UP wait
def
= (pend, 1).UP ready + ∅ : UP wait

UP running
def
= (UPs, 1).{(cpu, 1)}2 :

({(cpu, 1)} : UP running′ + {(cpu, 1)}2 : UP running′)
UP running′ def

= (UPe, 1).(schdl, 1).UP wait

SP ready
def
= (dispatch SP, 1).SP running + ∅ : SP ready

SP wait
def
= (timeTick, 1).SP ready + ∅ : SP wait

SP running
def
= (SPs, 1).({(cpu, 1)} : SP running′ + {(cpu, 1)}2 : SP running′)

SP running′ def
= (SPe, 1).(schdl, 1).SP wait

Sem f ree
def
= (pend, 1).Sem non f ree + ∅ : Sem f ree

Sem non f ree
def
= (post, 1).Sem f ree + ∅ : Sem non f ree

Timer
def
= ∅10 : (TimeTick, 1).(timeTick, 1).(timeTick, 1).Timer

Scheduler
def
= (dispatch TP, 2).Scheduler′ + (dispatch UP, 3).Scheduler′+

(dispatch SP, 1).Scheduler′ + ∅ : Scheduler

Scheduler′ def
= (schdl, 1).Scheduler + ∅ : Scheduler′

DCM
def
= (TP ready‖UP wait‖SP ready‖Sem non f ree‖Timer‖Scheduler)\
{timeTick, pend, post, dispatch TP, dispatch UP, dispatch SP, schdl}

Fig. 6 ACSR models of DCM.

paper, we present ACSR models of an abstracted subset of
DCM to demonstrate the usefulness of ACSR model check-
ing.

5.2 ACSR Models of DCM

DCM is a real-time system based on a real-time operating
system. We model some components of a real-time oper-
ating system (RTOS) such as Semaphore (Sem), Timer, and
Scheduler in Fig. 6. We model user tasks that perform the
DCM functions as ACSR processes Train Positioning (TP),
Updating PMAs (UP) and Sending PMAs (SP). TP receives
positions, directions and speeds of trains periodically. TP
activates UP if a calculation for updating PMAs is needed.
UP recalculates PMAs. SP sends PMAs to the trains peri-
odically. This model is verified against real-time properties
with respect to schedulerability issues by model checking.

In our RTOS model, a task state can be ready, wait, or
running. The tasks TP and SP are periodic tasks, which are
executed in each scheduling period. The length of schedul-
ing period is 10 time units. The execution time of TP is 2
time units. The execution time of SP is 2 or 3 time units.
UP is an aperiodic task awaken by TP through semaphore
mechanism. TP is modeled, for every scheduling period, to
decide whether or not to awake UP in wait state nondeter-
ministically. TPs, UPs and SPs are observable events for
marking the start of execution of a task. TPe, UPe and SPe
are observable events for marking the end of execution of a
task. In Fig. 7 shows possible execution order of tasks. For
each scheduling period, TP is executed firstly, and SP is ex-
ecuted lastly. If TP activates UP, UP is executed between

PARK et al.: MODEL CHECKING OF REAL-TIME PROPERTIES OF RESOURCE-BOUND PROCESS ALGEBRA
2787

Fig. 7 Architecture of the miniature model.

TP and SP.
In our model, we use a semaphore for synchronizing

TP and UP. The semaphore state is either free or nonfree.
When it receives pend in free state, it goes to non-free state.
When it receives post in nonfree state, it goes to free state.

Timer is used for periodical scheduling. Every 10 time
units, Timer make TimeTick occur which indicates the be-
ginning of a new scheduling period, and also make timeTick
occur to awake the tasks TP and SP.

Scheduler dispatches one of the tasks in ready state
which has the highest priority. The priorities of tasks TP,
UP, and SP are 2, 3, and 1, respectively. For each schedul-
ing period, TP is executed firstly, and SP is executed lastly.

5.3 Model Checking of DCM

The DCM system has requirements in natural language as
follows:

R1 TP is executed every scheduling period (TPs action oc-
curs between two consecutive TimeTick actions).

R2 SP is executed every scheduling period (SPs action oc-
curs between two consecutive TimeTick action).

R3 TP finish its execution after at most 2 time units from
the beginning of every scheduling period (If TimeTick
occurs, then TPe occurs after at most 2 time units).

R4 SP is the last task executed for every scheduling pe-
riod (There is no TPs nor UPs action between SPe and
TimeTick events).

R5 The CPU utilization is no greater than 70% (i.e., SP fin-
ish its execution after at most 7 time units from the be-
ginning of every scheduling period) (If TimeTick oc-
curs, then SPe occurs after at most 7 time units).

R6 There can be a period such that the total execution time
is 3 in it (The earliest end time of SP in some period is
3).

R7 When TP finish its execution, if TP decides to activate
UP, then UP will starts its execution with no time delay
(If ActUP occurs, then UPs occurs with no time delay).

We formulate the requirements in bounded ACTL*.
The requirements above can be translated to temporal logic
formulas in terms of observable events.

R1 AG(TimeTick→ X (¬TimeTick W TPs))
R2 AG(TimeTick→ X (¬TimeTick W SPs))
R3 AG(TimeTick→ F≤2TPe)
R4 AG(SPe→ (¬(TPs ∨ UPs) W TimeTick)
R5 AG(TimeTick→ F≤7SPe)
R6 EF(TimeTick ∧ F≤3SPe)
R7 AG(ActUP→ F≤0UPs)

Table 1 Comparative result of the case study.

Analysis
Method

Expressi-
veness

Clearness Available
Pattern

Tool
Support

Time

Bounded
ACTL*

O O O VERSA -
CWB tool
chain

< 2 sec

HMLu O X X None N.A.
Bisimula-
tion

X N.A. X VERSA N.A

While the requirements R1, R2 and R4 are un-
timed, the requirements R3, R5, R6 and R7 are timed
properties specified as bounded temporal formulas. The
bounded formulas R3, R5, R6 and R7 are translated to un-
bounded formulas. For example, R3 is translated to the un-
bounded formula, AG(TimeTick → ((¬tick ∨ X ((¬tick ∨
X (¬tick W TPe)) W TPe)) W TPe)).

We use untimed patterns of [24] and timed pat-
terns of [25]. For untimed properties, we apply the
Existence/Between pattern to R1 and R2, and the Ab-
sence/Between pattern to R4. The timed properties R3, R5,
R6 and R7 are specified using the Bounded Response pat-
tern.

All properties are checked against the DCM model by
the toolchain of VERSA and CWB-NC. VERSA translates
the DCM model to a TLTS, and abstracts the TLTS into an
ATLTS. Each of the TLTS and ATLTS has 55 states and
62 transitions. The bounded formulas are translated to un-
bounded ones by VERSA. It takes less than two seconds for
checking all the properties in CWB-NC.

5.4 Discussion

Table 1 shows comparative results of the case study among
the analysis methods of ACSR such as (1) bounded ACTL*
model checking that we suggest in this paper, (2) Extended
HML with Until (HMLu) model checking [2], and (3) bisim-
ulation checking.

In bounded ACTL* model checking, bounded ACTL*
is so expressive that all the requirements are specified as
ACTL* formulas in Sect. 5.3. The formulas are clear to read
so that one can investigate whether they really reflect the
natural language requirements. In addition, temporal spec-
ification patterns are available for bounded ACTL* so that
one can reduce mistakes in writing specifications. All the
requirements are checked within two seconds by support of
the toolchain composed by VERSA and CWB-NC.

The requirements in the case study can be specified us-
ing HMLu with difficulty. HMLu is less expressive than
bounded ACTL*. The HMLu formulas are too complicated
to read and write in practice. For example, the HMLu for-
mula corresponding to R1 is ¬(((tt < TimeTick > tt) ∧
(¬tt < A > ((tt < TimeTick > tt) < A∗ > ¬(tt < T Ps >
tt)))) < A∗ > tt) where A is the domain of abstracted ac-
tions. The temporal specification patterns are unavailable
for HMLu. In addition, there is no efficient algorithm and
tool support for HMLu model checking.

2788
IEICE TRANS. FUNDAMENTALS, VOL.E92–A, NO.11 NOVEMBER 2009

To analyze ACSR models using bisimulation checking,
specifications of the models should be specified as ACSR
processes. It is almost impossible that each requirement
from R1 to R7 is separately represented by an ACSR pro-
cess. It is also unmanageable to write specification models
having all the behaviors the requirements demand and the
other desirable behaviors. Moreover, there is no available
pattern to write specifications for bisimulation checking.

Bounded ACTL* model checking is an useful approach
to analyze ACSR models. ACSR can be used as a funda-
mental theory giving formal semantics to higher-level de-
sign or specification languages [27], [28]. A sample ap-
plication domain of ACSR is analysis of scheduling prob-
lems in resource-bound real-time embedded system devel-
opment [29], [30]. The other domains are protocol analysis
and rapid prototyping. Bounded ACTL* model checking
will play an important role in analyzing ACSR models in
the domains.

6. Conclusion and Future Work

We presented an framework to provide timed model check-
ing for models of concurrent real-time system expressed
in ACSR. The framework works by translating a TLTS to
ATLTS, extending ACTL* to Bounded ACTL*, and using
a toolchain composed by VERSA and CWB-NC. We also
presented analysis of the DCM system within the proposed
ACSR model checking framework. As a result, system re-
quirements could be easily specified using Bounded ACTL*
and temporal specification patterns, and effectively checked
using our toolchain.

Future work is to extend this framework to allow one
to specify and verify resource related requirements using
ACSR and model checking technique. ACSR employs re-
sources as a basic primitive. A real-time system depends
not only on delays due to process synchronization, but also
on the availability of shared resources. Model checking of
resource related properties in ACSR is the subject for a fu-
ture study.

Acknowledgements

This research was partially supported by Engineering Re-
search Center of Excellence Program of Korea Ministry
of Education, Science and Technology (MEST)/Korea Sci-
ence and Engineering Foundation(KOSEF), grant number
R11-2008-007-03002-0, and Korea SW Industry Promotion
Agency (KIPA) under the program of Software Engineering
Technologies Development and Experts Education.

References

[1] I. Lee and R. Gerber, “A process algebraic approach to the specifica-
tion and analysis of resource-bound real-time systems,” Proc. IEEE
on Real-Time Systems, pp.158–171, 1994.

[2] I. Lee, A. Philippou, and O. Sokolsky, “Resources in process alge-
bra,” J. Logic and Algebraic Programming, vol.72, no.1, pp.98–122,
2007. Algebraic Process Calculi: The First Twenty Five Years and

Beyond. II.
[3] R. Cleaveland, J. Parrow, and B. Steffen, “The concurrency work-

bench: A semantics-based tool for the verification of concurrent
systems,” ACM Trans. Program. Lang. Syst., vol.15, no.1, pp.36–
72, 1993.

[4] R. Milner, Communication and concurrency, Prentice-Hall, Upper
Saddle River, NJ, USA, 1989.

[5] C.A.R. Hoare, Communicating Sequential Processes, Prentice Hall
International, 1985.

[6] A.W. Roscoe, C.A.R. Hoare, and R. Bird, The Theory and Practice
of Concurrency, Prentice Hall PTR, Upper Saddle River, NJ, USA,
1997.

[7] J. Magee and J. Kramer, Concurrency: State Models & Java Pro-
grams, John Wiley & Sons, New York, NY, USA, 1999.

[8] M.J. Morley, “Safety-level communication in railway interlockings,”
Sci. Comput. Program., vol.29, no.1-2, pp.147–170, 1997.

[9] E. Letier, J. Kramer, J. Magee, and S. Uchitel, “Fluent temporal
logic for discrete-time event-based models,” SIGSOFT Softw. Eng.
Notes, vol.30, no.5, pp.70–79, 2005.

[10] R. Koymans, Specifying message passing and time-critical sys-
tems with temporal logic, Springer-Verlag New York, Secaucus, NJ,
USA, 1992.

[11] T.A. Henzinger, “It’s about time: Real-time logics reviewed,” Proc.
9th International Conference on Concurrency Theory, pp.439–454,
1998.

[12] P. Brémond-Grégoire, J.Y. Choi, and I. Lee, “A complete axiomati-
zation of finite-state ACSR processes,” Inf. Comput., vol.138, no.2,
pp.124–159, 1997.

[13] D. Park, “Concurrency and automata on infinite sequences,” Proc.
5th GI-Conference on Theoretical Computer Science, pp.167–183,
Springer-Verlag, London, UK, 1981.

[14] D. Clarke, I. Lee, and H.L. Xie, “Versa: A tool for the specification
and analysis of resource-bound real-time systems,” J. Comput. Soft.
Eng., vol.3, no.2, pp.189–215, 1995.

[15] E.M. Clarke, Jr., O. Grumberg, and D.A. Peled, Model Checking,
MIT Press, Cambridge, MA, USA, 1999.

[16] R. De Nicola and F. Vaandrager, “Action versus state based logics for
transition systems,” Proc. LITP Spring School on Theoretical Com-
puter Science on Semantics of Systems of Concurrent Processes,
pp.407–419, Springer-Verlag New York, New York, NY, USA, 1990.

[17] S. Chaki, E.M. Clarke, N. Sharygina, and N. Sinha, “State/event-
based software model checking,” in In Integrated Formal Methods,
pp.128–147, Springer-Verlag, 2004.

[18] E.M. Clarke and E.A. Emerson, “Design and synthesis of synchro-
nization skeletons using branching-time temporal logic,” Proc. IBM
Workshop on Logic of Programs, pp.52–71, 1982.

[19] L. Lamport, ““Sometime” is sometimes “not never”: On the tempo-
ral logic of programs,” Proc. 7th ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages (POPL’80), pp.174–
185, 1980.

[20] E. Clarke, E. Emerson, and A. Sistla, “Automatic verification of
finite-state concurrent systems using temporal logic specifications,”
ACM Trans. Program. Lang. Syst., vol.8, no.2, pp.244–263, 1986.

[21] Z. Manna and A. Pnueli, The Temporal Logic of Reactive and Con-
current Systems, Springer-Verlag New York, New York, NY, USA,
1992.

[22] A. Cimatti, E.M. Clarke, F. Giunchiglia, and M. Roveri, “Nusmv:
A new symbolic model verifier,” CAV’99: Proc. 11th International
Conference on Computer Aided Verification, pp.495–499, Springer-
Verlag, London, UK, 1999.

[23] G. Holzmann, “The model checker spin,” IEEE Trans. Softw. Eng.,
vol.23, no.5, pp.279–295, May 1997.

[24] M.B. Dwyer, G.S. Avrunin, and J.C. Corbett, “Patterns in prop-
erty specifications for finite-state verification,” ICSE’99: Proc. 21st
International Conference on Software Engineering, pp.411–420,
ACM, New York, NY, USA, 1999.

[25] S. Konrad and B.H. Cheng, “Real-time specification patterns,”

PARK et al.: MODEL CHECKING OF REAL-TIME PROPERTIES OF RESOURCE-BOUND PROCESS ALGEBRA
2789

ICSE’05: Proc. 27th International Conference on Software Engi-
neering, pp.372–381, ACM, New York, NY, USA, 2005.

[26] R. Alur and T.A. Henzinger, “Real-time logics: Complexity and ex-
pressiveness,” Inf. Comput., vol.104, no.1, pp.35–77, 1993.

[27] O. Sokolsky, I. Lee, and D. Clarke, “Schedulability analysis of
aadl models,” 20th International Parallel and Distributed Processing
Symposium, IPDPS 2006, p.8, April 2006.

[28] S. Fischmeister, O. Sokolsky, and I. Lee, “Network-code machine:
Programmable real-time communication schedules,” IEEE Real-
Time and Embedded Technology and Applications Symposium,
pp.311–324, 2006.

[29] I. Lee, A. Philippou, and O. Sokolsky, “A general resource frame-
work for real-time systems,” in Radical Innovations of Software
and Systems Engineering in the Future, ScholarlyCommons@Penn,
2002.

[30] O. Sokolsky, “Resource modeling for embedded systems design,”
IEEE Workshop on Software Technologies for Future Embedded
and Ubiquitous Systems, p.99, 2004.

Junkil Park received the B.S. degree in
Computer Science and Engineering from Korea
University, Seoul, Korea in 2005. He is now a
Ph.D. student in the Department of Computer
Science and Engineering at Korea University.
His research interests include formal methods,
model checking and process algebras.

Jungjae Lee received the B.S. degree in
Computer Science and Engineering from Korea
University, Seoul, Korea in 2007. Currently, he
is working toward the Ph.D. degree in the De-
partment of Computer Science and Engineering
at Korea University. His research interests in-
clude formal methods, model checking and pro-
cess algebras.

Jin-Young Choi received the M.S. de-
gree from Drexel University in 1986, and the
Ph.D. degree from University of Pennsylvania,
in 1993. He is currently a professor of Com-
puter Science and Engineering Department, Ko-
rea University, Seoul, Korea. His current re-
search interests are in real-time computing, for-
mal methods, programming languages, process
algebras, security, software engineering, and
protocol engineering.

Insup Lee received the B.S. degree in
mathematics from the University of North Car-
olina, Chapel Hill, in 1977, and the Ph.D. de-
gree in computer science from the University of
Wisconsin, Madison, in 1983. He is the Ce-
cilia Fitler Moore Professor of Computer and
Information Science at the University of Penn-
sylvania. His research interests include real-
time systems, embedded and hybrid systems,
formal methods and tools, medical device sys-
tems, cyber-physical systems, and software en-

gineering. He was Chair of IEEE Computer Society Technical Commit-
tee on Real-Time Systems (2003–2004) and an IEEE CS Distinguished
Visitor Speaker (2004–2006). He has served on many program commit-
tees and chaired several international conferences and workshops, includ-
ing IEEE RTSS, IEEE RTCSA, IEEE ISORC, CONCUR, ACM EMSOFT,
and HCMDSS/MD PnP. He has also served on various steering and advi-
sory committees of technical societies, including Steering Committee on
ACM SIGED, CPS Week, Embedded Systems Week, and Runtime Verifi-
cation. He has served on the editorial boards on the several scientific jour-
nals, including IEEE Transactions on Computers, Formal Methods in Sys-
tem Design, and Real-Time Systems Journal. He is a co-Editor-in-Chief of
KIISE Journal of Computing Science and Engineering since Sept 2007. He
is IEEE Fellow and was a member of Technical Advisory Group (TAG) of
President’s Council of Advisors on Science and Technology (PCAST) Net-
working and Information Technology (NIT). He received IEEE TC-RTS
Technical Achievement Award in 2008.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

