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Abstract

This article, based on Doh, Kim, and Schmidt’s “abstract parsing” technique, presents
an abstract interpretation for statically checking the syntax of generated code in two-
staged programs. Abstract parsing is a static analysis technique for checking the syntax
of generated strings. We adopt this technique for two-staged programming languages and
formulate it in the abstract interpretation framework. We parameterize our analysis with
the abstract domain so that one can choose the abstract domain as long as it satisfies
the condition we provide. We also present an instance of the abstract domain, namely an
abstract parse stack and its widening with k-cutting.

1 Introduction

1.1 Motivation

For programs that generate and run programs during execution, statically checking the program
safety is a challenge. We need to check the safety of generated programs as well as that of the
immediate target program. Checking the safety must include checking the programs resulting
from evaluating programs.

The semantic safety of such multi-staged programs can be achieved in part by a static type
system as reported in [4, 15, 18, 25]. A sound static type system assures that program as data
as well as the immediate target program will not have a type error during their executions.

In such a static type system, syntactic errors in the generated code are not an issue. The
considered target language is such that primitive code fragments and their compositions are
always syntactically correct.

In reality though (as in most web-programming or scripting languages such as PHP, Python,
Ruby, Perl, and Javascript), if code is represented as a string and code composition is achieved
by string concatenation, syntactically checking the code string value is the foremost issue in
the static safety check of such multi-staged programs.

Recently, Doh, Kim, and Schmidt reported a powerful technique called “abstract pars-
ing” [16] that statically analyzes the string values from programs. In abstract parsing, to
statically check the generated string is to simulate the parsing actions for possible string val-
ues.

In this paper, we report a formalization of abstract parsing in the abstract interpretation
framework [10, 11, 12] for two-staged programming languages. Our contribution is to lay a
basis to expose the power and, if any, limitation of abstract parsing as static analysis for
multi-staged languages.
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x = ‘a’ X0 = a
l = ‘[’ L = [
r = ‘]’ R = ]
x = l . x X1 = L.X0

Figure 1: Example program (left) and its data-flow equations (right)

1.2 Abstract Parsing

We here review the abstract parsing idea of [16]. Suppose we want to check that strings
generated by the program in Figure 1 conform to the following grammar.

S → a | [ S ]

Abstract parsing derives data-flow equations from the program as in Figure 1. The equation
variables are treated as functions that map an input parse state to an output parse stack. They
are solved using the goto controller of an LR parser for the grammar, shown in Figure 2.

Figure 2: Goto controller of the LR(0) parser for S → a | [S]. (from [16])

Suppose we want to check that X1 will accept strings of the target grammar. The analysis
starts with X1(s0) where s0 is an initial parse state. To solve

X1(s0) = (L.X0)(s0),

the analysis first computes L(s0). With the state s0 and the token “[” the goto controller
returns goto(s0, [) = s1. Having L(s0) = s1, the analysis computes X0(s1). After consuming
the token “a” and moving to the parse state s2, parser reduces with S → a and moves the
parse state back to s1. Then goto(s1,S ) = s3 yields X0(s1) = s3. Therefore we have

X1(s0) = s3s1

and the analysis concludes that X1 has a string unacceptable for the grammar because state
s3 is not the accept state.

1.3 Contribution

• We formulate this abstract parsing idea in the abstract interpretation framework for
two-staged languages with concatenation. By this formulation we can see what approx-
imations are involved in abstract parsing and what limitations (as a static analysis) to
expect from the abstract parsing technique.

Based on the abstract interpretation framework, we present a concise and elegant per-
spective on the core idea of abstract parsing. In the original work [16], code is abstracted
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into the parse stack and the special operator “∗” is needed to handle string concatena-
tion. In our formulation, however, we abstract code into a function which maps an input
parse stack to an output parse stack. Code concatenation is handled simply by function
composition.

• We generalize the abstract-parsing abstract interpretation, as usual, by parameterizing
the abstract domain of parse stacks.

This generalization separates the core idea and its implementation of abstract parsing.
By choosing an appropriate abstract domain, one can control the analysis precision and
cost.

1.4 Organization

Section 2 introduces the syntax and semantics of our target two-staged language with concate-
nation. Section 3 presents concrete parsing semantics with LR(k) parsing. Section 4 presents
abstract parsing semantics and its parameterized framework. Section 5 presents a concrete
example of the abstract domain which can be used to instantiate the framework. Section 6
reviews related work and Section 7 concludes.

2 Two-staged Language

We consider a two-staged language with concatenation. The language is an imaginary, first-
order language whose only value is code. The language is minimal, so as not to distract our
focus on formalizing the abstract parsing method. For example, loops and conditional jumps
are without the condition expression, for which abstract interpretation anyway considers all
iterations and all branches.

2.1 Syntax and Semantics

A program is an expression e:

e ∈ Exp ::= x | let x e1 e2 | or e1 e2 | re x e1 e2 e3 | ‘f
An expression can contain code fragments f :

f ∈ Frag ::= x | let | or | re | ( | ) | f1.f2 | ,e
Operational semantics of the target language is shown in Figure 3. Expression or e1 e2 is for
branches. It could be the value of e1 or the value of e2. Expression re x e1 e2 e3 is for loops.
Variable x has the value of e1 as its initial value. Loop body e2 is iterated ≥ 0 times. The
result of each iteration e2 will be bound to x in e2 for next iteration or in e3 for the result of
the loop. Backquote form ‘f is for code fragment f . We construct the fragment by using the
following tokens: variables, let, or, re, (, and ). Compound fragment f1.f2 concatenates two
code fragments f1 and f2. Comma fragment ,e first evaluates e then substitutes its result code
value for itself. Note that the meaning of ‘f and ,e is the same as in LISP’s quasi-quotation
system.

2.2 Example Program

In our language, it is possible to write a program generating mal-formed code. For instance,
the following program generates “a b” (after zero iterations), “or a b” (after one iteration),
“or or a b” (after two iterations), and so on.

re x ‘a ‘(or . ,x ) ‘(,x . b)



June 9, 2009 ROSAEC-2009-001 4

σ ∈ Env = Var → Code
v ∈ Code = Token sequence

e ∈ Exp
f ∈ Frag

σ `0 e⇒ v
σ `0 x⇒ σ(x) (variable)

σ `0 e1 ⇒ v σ[x 7→ v] `0 e2 ⇒ v′

σ `0 let x e1 e2 ⇒ v′
(let binding)

σ `0 e1 ⇒ v

σ `0 or e1 e2 ⇒ v

σ `0 e2 ⇒ v

σ `0 or e1 e2 ⇒ v
(branch)

σ `0 e1 ⇒ v σ[x 7→ v] `0 loop x e2 e3 ⇒ v′

σ `0 re x e1 e2 e3 ⇒ v′
(loop)

σ `0 e2 ⇒ v σ[x 7→ v] `0 loop x e2 e3 ⇒ v′

σ `0 loop x e2 e3 ⇒ v′

σ `0 e3 ⇒ v

σ `0 loop x e2 e3 ⇒ v

σ `1 f ⇒ v

σ `0 ‘f ⇒ v
(back quote)

σ `1 f ⇒ v

σ `1 x⇒ x σ `1 let⇒ let
(token)

σ `1 or⇒ or σ `1 re⇒ re

σ `1 (⇒ ( σ `1 )⇒ )

σ `1 f1 ⇒ v1 σ `1 f2 ⇒ v2

σ `1 f1.f2 ⇒ v1v2

(concatenation)

σ `0 e⇒ v

σ `1 ,e⇒ v
(comma)

Figure 3: Operational semantics of the target language.
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Only “or a b” is correct and the rest of them have a syntax error.
However the following program generates “a” (after zero iterations), “or a b” (after one

iteration), “or (or a b) b” (after two iterations), and so on,

re x ‘a ‘(or . ,x . b) x

and all of them are syntactically correct.

2.3 Collecting Semantics and its Abstraction Plan

The collecting semantics of the language is defined as follows. This semantics is the natural
set extension for the sets of environments. The fix operator is the usual least fixpoint operator
to capture all the iteration results from loops.

Code = Token sequence
σ ∈ Env = Var → Code

[[e]]0 ∈ 2Env → 2Code

[[f ]]1 ∈ 2Env → 2Code

[[x]]0Σ = {σ(x) | σ ∈ Σ}
[[let x e1 e2]]0Σ =

⋃

σ∈Σ

⋃

c∈[[e1]]0{σ}
[[e2]]0{σ[x 7→ c]}

[[or e1 e2]]0Σ = [[e1]]0Σ ∪ [[e2]]0Σ

[[re x e1 e2 e3]]0Σ =
⋃

σ∈Σ

[[e3]]0{σ[x 7→ c] | c ∈

fixλC.[[e1]]0{σ} ∪ [[e2]]0{σ[x 7→ c′] | c′ ∈ C}}
[[‘f ]]0Σ = [[f ]]1Σ

[[x]]1Σ = {x}
[[let]]1Σ = {let}
[[or]]1Σ = {or}
[[re]]1Σ = {re}
[[(]]1Σ = {(}
[[)]]1Σ = {)}

[[f1.f2]]1Σ =
⋃

σ∈Σ

{xy | x ∈ [[f1]]1{σ} ∧ y ∈ [[f2]]1{σ}}

[[,e]]1Σ = [[e]]0Σ

From the collecting semantics above, we derive a series of abstract semantics. From the
collecting semantics’ semantic domain

2Var→Code → 2Code ,

the powerset environment 2Var→Code is abstracted into Var → 2Code , i.e., the semantic domain
becomes

(Var → 2Code)→ 2Code .

Now the abstraction of 2Code becomes the essential part of the abstract interpretation design.
Before we abstract 2Code , we formulate a code fragment as a function that maps a parse stack
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to a parse stack. We call this formulation “concrete parsing” (Section 3). That is, 2Code

becomes 2P→P (where P is the set of parse stacks). Then we abstract 2P→P into 2P → 2P

(Section 4). Lastly, we present an abstract-parsing abstract interpretation that parameterizes
an abstract domain D] of 2P .

In summary, this series of abstraction steps for the value domain in the semantics is:

3 Concrete Parsing

3.1 Analyze-and-parse Strategy

We take the analyze-and-parse strategy in abstract parsing [16] into our semantics. The se-
mantics simulates the parsing operations. It is compared to the analyze-then-parse strategy
which analyzes the program, calculates approximated set of code, then parses them.

Analyze-and-parse strategy is more efficient than analyze-then-parse strategy as reported
in [16]. In analyze-then-parse strategy, code is abstracted into a grammar. Then it checks
whether the abstracted grammar is included in the reference grammar or not. However, gram-
mar inclusion check is more expensive than parsing. In addition, analyze-and-parse directly
computes parsing information without approximating the code into the grammar.

We formulate the analyze-and-parse strategy in our semantics. The parsing domain is
constructed as an abstract domain where code is abstracted into parsing information. We
abstract the parsing domain into an abstract parsing domain to control the precision and cost
of analysis and to make sure the analysis terminates.

Since our semantics uses an LR(k) parser as a component, it is essential to review its key
concepts.

3.2 LR Parsing

The LR(k) parsing technique [1] is an efficient way to determine whether the string conforms
to the given grammar or not. An LR parser is a state machine which consists of a parse stack,
an action table, and a goto table. The set of parse states Σ = {s1, s2, . . . , sn} is defined by
parser generator from the given grammar. Parse stack p ∈ P = Σ+ is a sequence of parse
states which it has been in. Two special parse stacks pinit and pacc are defined. Parsing starts
with the initial parse stack pinit . Successful parsing should stop at the accept parse stack pacc .
Otherwise it indicates that the parsed string does not conform to the given grammar. String
representation “stop . . . sbot” denotes a parse stack whose top state is stop and bottom state
is sbot. The action table decides which operation (shift/reduce) to perform from the current
state and current token. The goto table determines the state to push after we pop states in
the reduce operation.

The process of parsing is a composition of the atomic function parse action : P → Token →
P which is described in Algorithm 1. It returns the parse stack from the given parse stack p
and input token t.

The parsing process parse : P → Token sequence → P is a composition of the parse action.

parse(p, t1 . . . tn)
= parse action(. . . (parse action(p, t1)), . . . , tn)

A parser gets the input code c and returns the parse stack parse(pinit , c).
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Algorithm 1 parse action algorithm
1: procedure parse action(p, t)
2: stop ← the state on top of stack p
3: if ACTION [stop, t] = shift s then
4: push s onto the stack p
5: return p
6: else if ACTION [stop, t] = reduce A→ β then
7: pop |β| symbol off the stack p
8: stop ← the state on top of stack p
9: push GOTO [stop, A] onto the stack p

10: return parse action(p, t)
11: end if
12: end procedure

3.3 Concrete Parsing Domain : Value VP = 2P→P

We define the concrete parsing domain. It is “concrete” in that we use the same parse stack
defined in LR(k) parsing.

Because LR(k) parsing computes a parse stack, it is tempting to choose the parse stack
parse(pinit , c) as an abstraction of the code c. However this setting causes a problem when we
handle the concatenation x.y. Let px = parse(pinit , x) and py = parse(pinit , y) be the resulting
parse stacks for the code fragments x and y. The parse stack p for the concatenation x.y is
computed as

p = parse(pinit , x.y)
= parse(parse(pinit , x), y)
= parse(px, y).

However, what we have is py = parse(pinit , y) not parse(px, y). The parse(pinit , y) is the parse
stack after parsing y from the initial stack not from the px stack. We cannot directly compute
p from px and py.

Abstracting the code c into the parse stack transition function λp.parse(p, c) solves the
above concatenation problem elegantly. Let fx and fy be the parse stack transition functions
for code fragments x and y respectively. Then we have

fx = λp.parse(p, x)
fy = λp.parse(p, y).

With the two parse stack transition functions fx and fy, we construct the parse stack transition
function fx.y as follows.

fx.y = λp.parse(p, x.y)
= λp.parse(parse(p, x), y)
= (λp.parse(p, y)) ◦ (λp.parse(p, x))
= fy ◦ fx

3.4 Concrete Parsing Semantics

Using the abstraction from Code to P → P , the Galois connection 2Code −→←−α
γ

VP = 2P→P is
established as follows.

α = λC.{λp.parse(p, c) | c ∈ C}
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γ = λF.
⋃

f∈F

{c | ∀p ∈ P.parse(p, c) = f(p)}

Concrete parsing semantics is derived from the collecting semantics as follows.

P = the set of parse stacks

VP = 2P→P

σ ∈ EnvP = Var → VP

[[e]]0P ∈ EnvP → VP

[[f ]]1P ∈ EnvP → VP

[[x]]0P σ = σ(x)

[[let x e1 e2]]0P σ = [[e2]]0P (σ[x 7→ [[e1]]0P σ])

[[or e1 e2]]0P σ = [[e1]]0P σ ∪ [[e2]]0P σ

[[re x e1 e2 e3]]0P σ = [[e3]]0P (σ[x 7→
fix λk.[[e1]]0P σ ∪ [[e2]]0P (σ[x 7→ k])])

[[‘f ]]0P σ = [[f ]]1P σ

[[t]]1P σ = {λp.parse action(p, t)}
[[f1.f2]]1P σ = {p2 ◦ p1 | p1 ∈ [[f1]]1P σ ∧ p2 ∈ [[f2]]1P σ}

[[,e]]1P σ = [[e]]0P σ

4 Abstract Parsing

4.1 First Step Abstraction : Value VP̂ = 2P → 2P

First, we abstract the concrete parsing domain VP = 2P→P to VP̂ = 2P → 2P by establishing
the Galois connection VP −→←−α

γ
VP̂ where

α =λF.λP.
⋃

p∈P

{f(p) | f ∈ F}

γ = λF.
⋃
{S | α(S) ⊆ f}.

Then we derive the abstract semantics for this domain as follows.

σ ∈ Env P̂ = Var → VP̂

[[e]]0
P̂
∈ Env P̂ → VP̂

[[f ]]1
P̂
∈ Env P̂ → VP̂

[[x]]0
P̂

= σ(x)

[[let x e1 e2]]0P̂ σ = [[e2]]0P̂ (σ[x 7→ [[e1]]0P̂ σ])

[[or e1 e2]]0P̂ σ = [[e1]]0P̂ σ ∪ [[e2]]0P̂ σ

[[re x e1 e2 e3]]0P̂ σ = [[e3]]0P̂ (σ[x 7→
fix λk.[[e1]]0P̂ σ ∪ [[e2]]0P̂ (σ[x 7→ k])])

[[‘f ]]0
P̂

σ = [[f ]]1
P̂

σ
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[[t]]1
P̂

σ = λP.Parse action(P, t)

[[f1.f2]]1P̂ σ = [[f2]]1P̂ σ ◦ [[f1]]1P̂ σ

[[,e]]1
P̂

σ = [[e]]0
P̂

σ

where Parse action : 2P → Token → 2P is the natural set extension of parse action:

Parse action = λP.λt.{parse action(p, t) | p ∈ P}.

The abstract semantic function [[·]]0
P̂

is used to check whether generated code conforms to
the grammar. For the given program e, we compute

S = [[e]]0
P̂

σ0{pinit} : 2P

where σ0 ∈ Env P̂ is an empty environment. Then we compare S with {pacc}. If they are
equal, we conclude that the generated code in the given program conforms to the grammar.
Otherwise, the analysis concludes that the program may generate syntactically incorrect code.

4.2 Parameterized Framework

We generalize the analysis by parameterizing abstract domain. Instead of abstracting 2P (the
powerset domain of parse stacks) into a particular domain, we provide conditions which the
abstract domain for 2P should satisfy. Then we define the semantic function on the abstract
parsing domain.

Definition 1 (Abstract Parsing Domain). V ] = D] → D] is an abstract parsing domain if an
abstract domain D] satisfies the following conditions [10, 11, 12].

1. 〈D],v,t,⊥D]〉 is a CPO (Complete Partial Order).

2. Powerset domain of concrete parse stack 2P and its abstract domain D]are Galois con-
nected via α2P→D] and γD]→2P .

3. Parse action] : D] → Token → D] is a sound approximation of Parse action. That is,
we have

∀P ∈ 2P .∀t ∈ Token.

α2P→D](Parse action(P, t)) v Parse action](α2P→D](P ), t)

The partial order vV ] and join operator tV ] are defined pointwisely.

Definition 2. Semantic function [[·]]D] on the abstract parsing domain V ] is defined as follows.

σ ∈ EnvD] = Var → V ]

[[e]]0D] ∈ EnvD] → V ]

[[f ]]1D] ∈ EnvD] → V ]

[[x]]0D]σ = σ(x)

[[let x e1 e2]]0D]σ = [[e2]]0D](σ[x 7→ [[e1]]0D]σ])

[[or e1 e2]]0D]σ = [[e1]]0D]σ t [[e2]]0D]σ

[[re x e1 e2 e3]]0D]σ = [[e3]]0D](σ[x 7→
fix λk.[[e1]]0D]σ t [[e2]]0D](σ[x 7→ k])])
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[[‘f ]]0D]σ = [[f ]]1D]σ

[[t]]1D]σ = λD.Parse action](D, t)

[[f1.f2]]1D]σ = [[f2]]1D]σ ◦ [[f1]]1D]σ

[[,e]]1D]σ = [[e]]0D]σ

Theorem 1 shows that [[·]]D] is a sound approximation of [[·]]P̂ .

Theorem 1. Semantic function [[·]]D] on the abstract parsing domain V ] is a sound approxi-
mation of [[·]]P̂ . That is, we have

∀e ∈ Exp.∀σ ∈ Env P̂ .

αVP̂→V ]([[e]]P̂ σ) v [[e]]D](αEnv P̂→Env
D]

(σ))

where

αVP̂→V ] = λF.λD.α2P→D](F (γD]→2P (D)))

αEnv P̂→Env
D]

= λσ.λx.αVP̂→V ](σ(x)).

Proof. By structural induction on e with the conditions that the abstract parsing domain D]

should satisfy.

5 Instantiation : Powerset Domain of Abstract Parse
Stack P̂ with k-cutting

In this section, we introduce an instance of an abstract domain D], which is D̂, a powerset
domain of abstract parse stack P̂ and its widening with k-cutting. Thus the abstract parsing
domain is

V̂ = D̂ → D̂.

First, we define abstract parse stack P̂ which is an abstraction of concrete parse stack P . The
abstract domain D̂ is constructed with abstract parse stack P̂ . By establishing the Galois
connection between 2P and D̂ and defining Parsê action, we show that D̂ is an instance of
D]. Finally, a widening operator is defined using k-cutting to guarantee the termination of
analysis.

5.1 Abstract Parse Stack P̂

Cut parse stack P̄ is introduced to represent a parse stack which has been cut and only
maintains top n states. Special state ‘–’ 6∈ Σ at the bottom of cut parse stack p̄ indicates that
it has been cut.

P̄ = {p · – | p ∈ Σ∗}
Abstract parse stack P̂ is defined as a union of concrete parse stack P and cut parse stack P̄ .

P̂ = P ∪ P̄

Given an abstract parse stack ρ, the function prefix : P̂ → Σ∗ yields the longest prefix of ρ
which does not contain special state ‘–’.

prefix (ρ) =





ρ if ρ ∈ P

s1 . . . sn if ρ = s1 . . . sn–
ε (empty string) ρ = –

Then we define partial order v on P̂ as follows.

ρ1 vP̂ ρ2
def= prefix (ρ1) starts with prefix (ρ2)
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5.2 Abstract Domain : D̂

Abstract domain D̂ with its partial order v and join t is defined as follows.

D̂ = {norm(d̂) | d̂ ∈ 2P̂ }
d̂1 v d̂2

def= ∀ρ1 ∈ d̂1.∃ρ2 ∈ d̂2.ρ1 vP̂ ρ2

d̂1 t d̂2
def= norm(d̂1 ∪ d̂2)

Normalization function norm is defined by

norm(d̂) = {ρ ∈ d̂ | ∀ρ′ ∈ d̂.ρ 6@P̂ ρ′}

to ensure that elements in norm(d̂) are the maximal elements of d̂. It is necessary to eliminate
non-maximal elements for binary relation v to be anti-symmetric and to be a partial order.
For instance, {–, s1s0–} contains non-maximal element {s1s0–} since we have s1s0– v –. If we
allow {s1s0–, –} in D̂ without normalizing it into {–}, we have

({s1s0–, –} v {–}) ∧ ({–} v {s1s0–, –})
6⇒ {s1s0–, –} = {–}.

Then partial order v on D̂ becomes preorder since v is not anti-symmetric anymore.

5.3 Abstract Domain D̂ as an Instance of D]

Abstract domain D̂ is an instance of D]. To verify this, we need to show that D̂ satisfies the
conditions in Definition 1.

1. 〈D̂,v,t, φ〉 is a CPO by definition of D̂.

2. To establish a Galois connection between 2P and D̂, we first define the function expand :
P̂ → 2P as follows.

expand(ρ) =

{
{ρ} if ρ ∈ P

{prefix (ρ) · p | p ∈ P} if ρ ∈ P̄

It expands an abstract parse stack ρ to all the concrete parse stacks which ρ can represent.
For instance, expand(s1–) = {s1s0, s1s2, . . . }. Note that we have ∀p ∈ expand(ρ).p vP̂ ρ
and therefore we get expand(ρ) vD̂ {ρ}.
The function Expand : D̂ → 2P is also defined as the natural set extension of expand
function by

Expand(d̂) =
⋃

ρ∈d̂

expand(ρ).

From the property of expand , it is clear that Expand(d̂) vD̂ d̂.

Using the Expand function, we define the Galois connection 2P −→←−α
γ

D̂ where

α = id

γ = λd̂.Expand(d̂)

Proof. To prove α and γ constitute a Galois connection, it is sufficient to show that the
following properties hold.
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(a) Trivially, α = id is monotone.

(b) Monotonicity of γ is immediate from the monotonicity of expand .

(c) We show that ∀d̂ ∈ D̂.α ◦ γ(d̂) v d̂.

α ◦ γ(d̂) = γ(d̂)

= Expand(d̂)

v d̂

(d) We show that ∀P ∈ 2P .P ⊆ γ ◦ α(P ).

γ ◦ α(P ) = γ(P )
= Expand(P )

=
⋃

p∈P

expand(p)

=
⋃

p∈P

p

= P

3. We first define parsê action : P̂ → Token → P̂ as in Algorithm 2. It is a modified version
of the parse action algorithm. The only modifications are adding lines 2 – 4 and lines
12 – 14 to handle p̄ ∈ P̄ because the action and goto tables do not have an entry for the
special state ‘–’. Note that ∀p ∈ P.∀t ∈ Token.parse action(p, t) = parsê action(p, t).

Algorithm 2 parsê action algorithm
1: procedure parsê action(ρ, t)
2: if ρ = – then
3: return ρ
4: end if
5: stop ← the state on top of stack ρ
6: if ACTION [stop, t] = shift s then
7: push s onto the stack ρ
8: return ρ
9: else if ACTION [stop, t] = reduce A→ β then

10: pop |β| symbol off the stack ρ
11: stop ← the state on top of stack ρ
12: if stop = – then
13: return ρ
14: end if
15: push GOTO [stop, A] onto the stack ρ
16: return parsê action(ρ, t)
17: end if
18: end procedure

Parsê action : D̂ → Token → D̂ is defined as the natural set extension of parsê action
as follows.

Parsê action = λd̂.λt.{parsê action(ρ, t) | ρ ∈ d̂}
Parsê action is a sound approximation of Parse action.
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Proof. For all P ∈ 2P and t ∈ Token, we have

α2P→D̂(Parse action(P, t)) = Parse action(P, t)
= {parse action(p, t) | p ∈ P}
= {parsê action(p, t) | p ∈ P}
= Parsê action(P, t)
= Parsê action(α2P→D̂(P ), t).

5.4 Widening Operator on D̂

The termination of the analysis parameterized with D̂ is not guaranteed because D̂ has infinite
height. Instead of limiting the height of the domain, we use the widening method to achieve
termination.

We define an operator
`

D̂ : D̂ × D̂ → D̂ such that

A
`

D̂ B = {norm(cutk(ρ)) | ρ ∈ A ∪B}
where cutk is defined by

cutk(ρ) =

{
ρ if |ρ| ≤ k

s1 . . . sk−1– if ρ = s1 . . . sk−1sk . . . sn.

Theorem 2 shows that
`

D̂ is a widening operator on D̂.

Theorem 2.
`

D̂ : D̂ × D̂ → D̂ is a widening operator.

Proof. We have to check if
`

D̂ operator satisfies the widening conditions [10, 11, 12]:

(i) ∀x, y ∈ D̂.(x v x
`

D̂ y) ∧ (y v x
`

D̂ y).

(ii) for all increasing chains x0 v x1 . . . , the increasing chain defined by y0 = x0, . . . , yi+1 =
yi

`
D̂ xi+1, . . . is not strictly increasing.

To prove (i), we observe that ρ vP̂ cutk(ρ) by definition of vP̂ and cutk. Using this we get

x = {ρ | ρ ∈ x}
v {cutk(p) | p ∈ x}
v {cutk(p) | p ∈ x ∪ y}
= x

`
D̂y.

Proof for y v x
`

D̂ y is analogous.
To prove (ii), we observe that the range of

`
D̂ operator is the finite set P̂ ′ = {ρ ∈ P̂ | |ρ| ≤

k}. For all i ≥ 1, we have yi ∈ P̂ ′. Therefore the increasing chain y0, . . . , yn, . . . is not strictly
increasing.

Using the widening operator
`

D̂, we define a widening operator for V̂ = D̂ → D̂, such that

f
`

V̂ g = λd̂.

{
f(d̂)

`
D̂ g(d̂) if ∀ρ ∈ d̂.|ρ| ≤ l

{–} otherwise.

where l is a constant to bound the set of meaningful entries finitely fixed in the resulting func-
tion. For those finite meaningful entries, we widen their images using the widening

`
D̂. This`

V̂ operator is a widening operator and the analysis using this widening always terminates.
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The analysis using the widening gives better precision than the one using the domain with
finite height, for instance, D̂′ = {d̂ ∈ D̂ | |d̂| ≤ k}. The widening approach only restricts the
length of the parse stack at the loop head. In the loop body, it allows arbitrary length of parse
stacks. Let’s consider the following program.

re x ‘y
‘(let . z . ,x

. or . z . z)
x

Using widening approach, it is sufficient to have cut threshold k = 2 to analyze the program
without precision loss. In the loop body, the length of parse stack increases from one to seven.
At the end of the loop body, however, the parser reduces the parse stack and its length becomes
two. Since the maximum length of the parse stack at the loop head is two and the widening
only occurs at the loop head, cut threshold k = 2 is enough.

However if we restrict the domain and use D̂ with k = 2, we will lose precision while
analyzing the loop body. A parse stack with special state ‘–’ at the bottom will be introduced.
To be as precise as the one using the widening approach, we need to increase k to seven.

6 Related Work

In this section, we discuss several areas of related work: multi-staged languages, string analysis,
string verification, and code generation.

Multi-staged Languages According to Sheard [24], there are three representations for code
in multi-staged languages – quasi-quote, algebraic data type, and strings.

Quasi-quote and algebraic data type representation preserve internal structure of the code
and syntactic safety can be guaranteed.

Regarding semantic safety check, various static type systems for multi-staged languages are
reported [2, 4, 5, 6, 13, 14, 15, 21, 22, 23, 25]. The static type system has been matured [18]
to support almost all of the Lisp-like multi-staged programming practices.

However, using a string representation loses track of internal structure of the code and
opens the syntactic safety problem. Even if string representation is strongly discouraged in the
research community [24], it is used in most web-programming or scripting languages such as
PHP, Python, Ruby, Perl, and Javascript.

String Analysis Before Doh, Kim, and Schmidt’s abstract parsing technique [16], string
analysis works [8, 19, 7] were all “analyze-then-parse” techniques.

Christensen et al. [8] presents an approach which abstracts the set of generated strings in a
program into a regular grammar and performs a grammar inclusion check between the regular
grammar and the reference grammar, which is a context-free grammar (CFG). Precision loss
occurs when the generated strings are abstracted into the regular grammar.

Minamide [19] takes a slightly different approach. The context-free reference grammar is
abstracted into a regular grammar by restricting the nesting depth of generated strings. The set
of generated strings is abstracted into a context-free grammar. Then a grammar inclusion check
is performed between the regular grammar and the context-free grammar. This approach is
practical for HTML/XML document analysis because their nesting depth is usually restricted.
However, it is not applicable in general.

Choi et al. [7] presents abstract interpretation based string analysis which uses a heuris-
tic widening method and overcomes the difficulties of handling heap variables and context
sensitivity. However, using a regular grammar as an abstraction results in precision loss.
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String Verification String analysis techniques are used as a basis in string verification.
Christodorescu et al. [9] and Wassermann et al. [26] present string verifiers based on the
Christensen et al.’s string analysis [8]. Wassermann and Su [27] and Minamide and Tozawa [20]
present string verifiers based on the Minamide’s string analysis [19].

Code Generation There are many researches to achieve syntax safety of generated code
other than multi-staged languages area.

Repleo [3] shows a template engine which generates syntax safe code. Having the grammar
for the template, it statically checks the template and its sub-templates to detect possible
syntactic errors in the generated code. However, it still requires evaluating the template with
the model to guarantee the generated code is syntax safe.

Engler et al. presents ‘C [17], an extension of ANSI C which allows dynamic code generation.
They employ a version of quasi-quote system and type annotation to achieve a type safety in
the generated code. This setting does not allow the generated code to have a syntactic error.

7 Conclusion

We have presented a static analysis technique for checking the syntax of generated code in
two-staged languages with concatenation. Formulating abstract parsing in the abstract inter-
pretation framework, we derive abstract semantics which is composed by atomic parse stack
transition functions defined in LR(k) parser. This formulation not only gives us a more concise
and elegant explanation of the original idea but also decouples the core idea of abstract parsing
from its implementation. The provided framework allows us to choose the abstract domain of
abstract parsing and control the precision and cost of analysis.
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