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Abstract

We present a simple algorithmic extension of the classical call-strings approach to
mitigate substantial performance degradation caused by spurious interprocedural cycles.
Spurious interprocedural cycles are, in a realistic setting, key reasons for why approximate
call-return semantics in both context-sensitive and -insensitive static analysis can make
the analysis much slower than expected.

In the traditional call-strings-based context-sensitive static analysis, because the num-
ber of distinguished contexts must be finite, multiple call-contexts are inevitably joined
at the entry of a procedure and the output at the exit is propagated to multiple return-
sites. We found that these multiple returns frequently create a single large cycle (we call
it “butterfly cycle”) covering almost all parts of the program and such a spurious cycle
makes analyses very slow and inaccurate.

Our simple algorithmic technique (within the fixpoint iteration algorithm) identifies
and prunes these spurious interprocedural flows. The technique’s effectiveness is proven by
experiments with a realistic C analyzer to reduce the analysis time by 7%-96%. Since the
technique is algorithmic, it can be easily applicable to existing analyses without changing
the underlying abstract semantics, it is orthogonal to the underlying abstract semantics’
context-sensitivity, and its correctness is obvious.

1 Introduction

In a global semantic-based static analysis, it is inevitable to follow some spurious (unrealizable
or invalid) return paths. Even when the analysis is context-sensitive, because the number
of distinguished contexts must be finite, multiple call-contexts are joined at the entry of a
procedure and the output at the exit are propagated to multiple return-sites. For example, in
a conventional way of avoiding invalid return paths by distinguishing a finite k ≥ 0 call-sites
to each procedure, the analysis is doomed to still follow spurious paths if the input program’s
nested call-depth is larger than the k. Increasing the k to remove more spurious paths quickly
hits a limit in practice because of the increasing analysis cost in memory and time.

In this article we present the following:

• in a realistic setting, these multiple returns often create a single large flow cycle (we call
it “butterfly cycle”) covering almost all parts of the program,

• such a big spurious cycle makes the conventional call-strings method that distinguishes
the last k call-sites [17] very slow and inaccurate,

• this performance problem can be relieved by a simple extension of the call-strings method,

• our extension is an algorithmic technique within the worklist-based fixpoint iteration
routine, without redesigning the underlying abstract semantics part, and

• the algorithmic technique works regardless of the underlying abstract semantics’ context-
sensitivity (the k). The technique consistently saves the analysis time, without sacrificing
(or with even improving) the analysis precision.
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call1 = · · · · · · (1)
entry = call1 t call5 · · · (2)
exit = F̂bodyf

(entry) · · · (3)
return4 = exit · · · (4)
call5 = return4 · · · (5)
return6 = exit · · · (6)

Figure 1: Spurious cycles because of abstract procedure calls and returns. The right-hand side
is a system of equations and the left-hand side shows the dependences between the equations.
Note a dependence cycle (2) → (3) → (4) → (5) → (2) → · · ·

1.1 Problem: Large Performance Degradation By Inevitable, Spuri-
ous Interprocedural Cycles

Static analysis’ inevitable spurious paths make spurious cycles across procedure boundaries
in global analysis. For example, consider the semantic equations in Figure 1 that (context-
insensitively (k = 0)) abstract two consecutive calls to a procedure. The system of equations
says to evaluate equation (4) and (6) for every return-site after analyzing the called procedure
body (equation (3)). Thus, solving the equations follows a cycle: (2) → (3) → (4) → (5) →
(2) → · · · .

Such spurious cycles degrade the analysis performance both in precision and speed. Spuri-
ous cycles exacerbate the analysis imprecision because they model spurious information flow.
Spurious cycles degrade the analysis speed too because solving cyclic equations repeatedly
applies the equations in vain until a fixpoint is reached.

The performance degradation becomes dramatic when the involved interprocedural spurious
cycles cover a large part of the input program. This is indeed the case in reality. In analyzing
real C programs, we observed that the analysis follows (Section 2) a single large cycle that
spans almost all parts of the input program. Such spurious cycles size can also be estimated by
just measuring the strongly connected components (scc) in the “lexical”1 control flow graphs.
Table 1 shows the sizes of the largest scc in some open-source programs.2 In most programs,
such cycles cover most (80-90%) parts of the programs. Hence, globally analyzing a program is
likely to compute a fixpoint of a function that describes almost all parts of the input program.
Even when we do the call-strings-based context-sensitive analysis (k > 0), large spurious cycles
are likely to remain (Section 2).

1.2 Solution: An Algorithmic Mitigation Without Redesigning the
Analysis (Abstract Semantics)

We present a simple algorithmic technique inside a worklist-based fixpoint iteration proce-
dure that, without redesigning the abstract semantics part, can effectively relieve the per-
formance degradation caused by spurious interprocedural cycles in both call-strings-based
context-sensitive (k > 0) and -insensitive (k = 0) analysis. For the moment, we consider
context-insensitive case only. We extend it to context-sensitive analysis in Section 3.

While solving flow equations, the algorithmic technique simply forces procedures to return
to their corresponding called site, in order not to follow the last edge (edge (3) → (4) in Figure
1) of the “butterfly” cycles. In order to enforce this, we control the equation-solving orders so

1One node per lexical entity, ignoring function pointers.
2We measured the sizes of all possible cycles in the flow graphs. Note that interprocedural cycles happen

because of either spurious returns or recursive calls. Because recursive calls in the test C programs are immediate
or spans only a small number of procedures, large interprocedural cycles are likely to be spurious ones.
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Table 1: The sizes of the largest strongly-connected components in the “lexical” control flow
graphs of real C programs. In most cases, most procedures and nodes in program belong to a
single cycle.

Program Procedures in the largest cycle Basic-blocks in the largest cycle
spell-1.0 24/31(77%) 751/782(95%)
gzip-1.2.4a 100/135(74%) 5,988/6,271(95%)
sed-4.0.8 230/294(78%) 14,559/14,976(97%)
tar-1.13 205/222(92%) 10,194/10,800(94%)
wget-1.9 346/434(80%) 15,249/16,544(92%)
bison-1.875 410/832(49%) 12,558/18,110(69%)
proftpd-1.3.1 940/1,096(85%) 35,386/41,062(86%)
apache-2.2.2 1,364/2,075(66%) 71,719/95,179(75%)

that each called procedure is analyzed exclusively for its one particular call-site. To be safe,
we apply our algorithm to only non-recursive procedures.

Consider the equation system in Figure 1 again and think of a middle of the analysis
(equation-solving) sequence, · · · → (5) → (2) → (3), which indicates that the analysis of
procedure f is invoked from (5) and is now finished. After the evaluation of (3), a classical
worklist algorithm inserts all the equations, (4) and (6), that depend on (3). But, if we
remember the fact that f has been invoked from (5) and the other call-site (1) has not invoked
the procedure until the analysis of f finishes, we can know that continuing with (4) is useless,
because the current analysis of f is only related to (5), but not to other calls like (1). So, we
process only (6), pruning the spurious sequence (3) → (4) → · · · .

We integrated the algorithm inside an industrialized abstract-interpretation-based C static
analyzer [6, 7, 8] and measured performance gains derived from avoiding spurious cycles. We
have saved 7%-96% of the analysis time for context-insensitive or -sensitive global analysis for
open-source benchmarks.

1.3 Contributions

• We present an extension of the classical call-strings approach, which effectively reduces
the inefficiency caused by large, inevitable, spurious interprocedural cycles.

We prove the effectiveness of the technique by experiments with an industrial-strength
C static analyzer [6, 7, 8] in globally analyzing medium-scale open-source programs.

• The technique is meaningful in three ways.

1. The technique aims to alleviate one major reason (spurious interprocedural cycles)
for substantial inefficiency in global static analysis.

2. It is purely an algorithmic technique inside the worklist-based fixpoint iteration
routine. So, it can be directly applicable without changing the analysis’ underlying
abstract semantics, regardless of whether the semantics is context-sensitive or not.
The technique’s correctness is obvious enough to avoid the burden of a safety proof
that would be needed if we newly designed the abstract semantics.

3. The technique not only reduces the analysis time but also improves the analysis pre-
cision. This is because (1) our technique removes some (worklist-level) computations
that occur along invalid return paths (Section 3.3.1); (2) when the underlying anal-
ysis uses widenings, the technique reduces the number of widening points (Section
3.3.2).
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• We report one key reason (spurious interprocedural cycles) for why less accurate context-
sensitivity actually makes the analyses very slow. Though it is well-known folklore that
less precise analysis does not always have less cost [12, 14, 16], there haven’t been realistic
experiments about the explicit reason.

1.4 Related Work

We compare, on the basis of their applicability to general semantic-based static analyzers3 ,
our method with other approaches that eliminate invalid paths.

The classical call-strings approach that retains the last k call-sites [17, 1, 11, 12] is popular
in practice but its precision is not enough to mitigate large spurious cycles. This k-limiting
method is widely used in practice [1, 11, 12] and actually it is one of very few options available
for semantic-based global static analysis that uses infinite domains and non-distributive flow
functions (e.g., [1, 7]). The k-limiting method induces a large spurious cycle because it permits
multiple returns of procedures. Our algorithm is an extension of the k-limiting method and adds
extra precision that relieves the performance problem from spurious interprocedural cycles.

Another approximate call-strings method that uses full context-sensitivity for non-recursive
procedures and treats recursive call cycles as gotos is practical for points-to analysis [18, 19] but,
the method is too costly for more general semantic-based analysis. Though these approaches
are more precise than k-limiting method, it is unknown whether the BDD-based method [19]
or regular-reachability [18] are also applicable in practice to general semantic-based analyz-
ers rather than pointer analysis. Our algorithm can be useful for analyses for which these
approaches hit a limit in practice and k-limiting is required.

Full call-strings approaches [17, 9, 10] and functional approaches [17] do not suffer from
spurious cycles but are limited to restricted classes of data flow analysis problems. The original
full call-strings method [17] prescribes the domain to be finite and its improved algorithms [9,
10] are also limited to bit-vector problems or finite domains. Khedker et al.’s algorithm [10]
supports infinite domains only for demand-driven analysis. The purely functional approach [17]
requires compact representations of flow functions. The iterative (functional) approach [17]
requires the domain to be finite.

Reps et al.’s algorithms [13, 15] to avoid unrealizable paths are limited to analysis prob-
lems that can be expressed only in their graph reachability framework. Their algorithm cannot
handle prevalent yet non-distributive analyses. For example, our analyzer that uses the in-
terval domain [5] with non-distributive flow functions does not fall into either their IFDS [13]
or IDE [15] problems. Meanwhile, our algorithm is independent of the underlying abstract
semantic functions. The regular-reachability [18], which is a restricted version of Reps et al.’s
algorithm [13], also requires the analysis problem to be expressed in graph reachability problem.

Chambers et al.’s technique [4] is similar to ours but entails a relatively large change to
an existing worklist order. Their technique analyzes each procedure intraprocedurally, and at
call-sites continues the analysis of the callee. It returns to analyze the nodes of the caller only
after finishing the analysis of the callee. Our worklist prioritizes the callee only over the call
nodes that invoke the callee, not the entire caller, which is a relatively smaller change than
Chamber et al.’s. In addition, they assume worst case results for recursive calls, but we do not
degrade the analysis precision for recursive calls.

1.5 Organization

Section 2 discusses the performance problem of the traditional call-strings-based context-
sensitive or -insensitive interprocedural analysis. Section 3 presents our solution to mitigate the

3For example, such analyzers include octagon-based analyzers (e.g.,[2]), interval-based analyzers (e.g.,[6,
7, 8]), value set analysis [1], and program analyzer generators (e.g, [11]), which usually use infinite (height)
domains and non-distributive flow functions.
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spell-1.0 (total #procs:31) sed-4.0.8 (total #procs:294)
(2,213 LOC, > 30 repetitions) (26,807 LOC, > 150 repetitions)

Figure 2: Analysis localities. Because of butterfly cycles, during the analysis, similar patterns
are repeated several times and each pattern contains almost all parts of the programs.

problem. We first describe the classical call-strings approach and then present our extension
of the original method. Section 4 presents experimental results that compare the performance
of our algorithm with the traditional algorithm. Section 5 concludes the paper.

2 Performance Problems by Large Spurious Cycles

In this section, we show that large spurious cycles are frequently created during (both context-
insensitive and -sensitive) global static analysis, and that they drastically degrade the analysis
performance. The classical call-strings-based context-sensitive abstract semantics cannot ef-
fectively eliminate such large spurious cycles.

2.1 Interprocedural Spurious Cycles Reach Far In Real C Programs

If a spurious cycle is created by multiple calls to a procedure f , then all the procedures that
are reachable from f or that reach f via the call-graph belong to the cycle because of call
and return flows. For example, consider a call-chain · · · f1 → f2 · · · . If f1 calls f2 multiple
times, creating a spurious butterfly cycle f1 on f2 between them, then fixpoint-solving the cycle
involves all the nodes of procedures that reach f1 or that are reachable from f2. This situation
is common in C programs. For example, in GNU software, the xmalloc procedure, which is
in charge of memory allocation, is called from many other procedures, and hence generates a
butterfly cycle. Then every procedure that reaches xmalloc via the call-graph is trapped into
a fixpoint cycle.

In conventional context-sensitive analysis that distinguishes the last k call-sites [17], if there
are call-chains of length l (> k) in programs, it’s still possible to have a spurious cycle created
during the first l− k calls. This spurious cycle traps the last k procedures into a fixpoint cycle
by the above reason.

One spurious cycle in a real C program can trap as many as 80-90% of basic blocks of the
program into a fixpoint cycle. Figure 2 shows this phenomenon. In the figures, the x-axis
represents the execution time of the analysis and the y-axis represents the procedure name,
which is mapped to unique integers. During the analysis, we draw the graph by plotting
the point (t, f) if the analysis’ worklist algorithm visits a node of procedure f at the time t.
For brevity, the graph for sed-4.0.8 is shown only up to 100,000 iterations among more than
3,000,000 total iterations. From the results, we first observe that similar patterns are repeated
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and each pattern contains almost all procedures in the program. And we find that there are
much more repetitions in the case of a large program (sed-4.0.8, 26,807 LOC) than a small one
(spell-1.0, 2,213 LOC): more than 150 repeated iterations were required to analyze sed-4.0.8
whereas spell-1.0 needed about 30 repetitions.

3 Our Algorithmic Mitigation Technique

In this section, we present our extension of the classical call-strings-based approach, aiming to
mitigate performance problems caused by the large spurious cycles. Our technique is purely
algorithmic: the technique does not depend on the underlying abstract semantics but is a
simple addition to the existing worklist-based fixpoint algorithm.

We first describe the traditional call-strings-based analysis algorithm (section 3.2) as well
as the representation of programs (section 3.1). Then we present our algorithmic extension of
the classical algorithm (section 3.3).

3.1 Graph Representation of Programs

We assume that a program is represented by a supergraph [13]. A supergraph consists of
control flow graphs of procedures with interprocedural edges connecting each call-site to its
callee. Each node n ∈ Node in the graph has one of the five types :

entryf | exitf | callg,r
f | rtnc

f | cmdf

The subscript f of each node represents the procedure name enclosing the node. entryf and
exitf are entry and exit nodes of procedure f . A call-site in a program is represented by a
call node and its corresponding return node. A call node callg,r

f indicates that it invokes a
procedure g and its corresponding return node is r. We assume that function pointers are
resolved (before the analysis). Node rtnc

f represents a return node in f whose corresponding
call node is c. Node cmdf represents a general command statement. Edges are assembled by
a function, succof, which maps each node to its successors. CallNode is the set of call nodes in
a program.

3.2 Normalk: A Normal Call-Strings-Based Analysis Algorithm

Call-strings are sequences of call nodes. To make them finite, we only consider call-strings
of length at most k for some fixed integer k ≥ 0. We write CallNode≤k let= ∆ for the set of
call-strings of length ≤ k. We write [c1, c2, · · · , ci] for a call-string of call sequence c1, c2, · · · , ci.
Given a call-string δ and a call node c, [δ, c] denotes a call-string obtained by appending c to δ.
In the case of context-insensitive analysis (k = 0), we use ∆ = {ε}, where the empty call-string
ε means no context-information.

Figure 3.(a) shows the worklist-based fixpoint iteration algorithm that performs call-strings(∆)-
based context-sensitive (or insensitive, when k = 0) analysis. The algorithm computes a table
T ∈ Node → State which associates each node with its input state State = ∆ → Mem, where
Mem denotes abstract memory, which is a map from program variables to abstract values. That
is, call-strings are tagged to the abstract memories and are used to distinguish the memories
propagated along different interprocedural paths, to a limited extent (the last k call-sites).
The worklist W consists of node and call-string pairs. The algorithm chooses a work-item
(n, δ) ∈ Node×∆ from the worklist and evaluates the node n with the flow function F̂ . Next
work-items to be inserted into the worklist are defined by function N ∈ Node×∆ → 2Node×∆

:

N (n, δ) =




{(r, δ′) | δ = dδ′, callg,r

f ek ∧ δ′ ∈ dom(T (callg,r
f ))} if n = exitg

{(entryg, dδ, nek))} if n = callg,r
f

{(n′, δ) | n′ ∈ succof(n)} otherwise
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where dom(f) denotes the domain of map f and dδ, cek denotes the call-string [δ, c] but possibly
truncated so as to keep at most the last k call-sites.

The algorithm can follow spurious return paths if the input program’s nested call-depth is
larger than the k. The mapping δ′ to dδ′, callg,r

f ek is not one-to-one and N possibly returns
many work-items at an exit node. The following example illustrates this situation.

Example 1 Let k = 2 and suppose call-strings [c1, c3] and [c2, c3] are tagged to a call node
callg,r

f . Suppose callg,r
f calls g under the call-string [c1, c3]. By the definition of N , the call-

string at entryg is dc1, c3, callg,r
f e2 = [c3, callg,r

f ]. After the analysis of g, the call-string at exitg
is also [c3, callg,r

f ]. When g returns, since the call-string at exitg equals to both dc1, c3, callg,r
f e2

and dc2, c3, callg,r
f e2, N returns two work-items (r, [c1, c3]) and (r, [c2, c3]). The return to

(r, [c2, c3]) is spurious because g was called under the context [c1, c3]. ¤

We call the above analysis algorithm Normalk(k = 0, 1, 2, . . . ). Normal0 performs context-
insensitive analysis, Normal1 performs context-sensitive analysis that distinguishes the last 1
call-site, and so on.

3.3 Normalk/RSS: Our Algorithm

Before discussing our technique, we define the call-context that will be used throughout this
section.

Definition 1 When a procedure g is called from a call node callg,r
f under context δ, we say

that (callg,r
f , δ) is the call-context for that procedure call. Since each call node callg,r

f has a
unique return node, we interchangeably write (r, δ) and (callg,r

f , δ) for the same call-context.

Our return-site-sensitive (RSS) technique is simple. When calling a procedure at a call-site,
the call-context for that call is remembered until the procedure returns. The bookkeeping cost
is limited to only one memory entry per procedure. This is possible by the following strategies:

1. Single return: Whenever the analysis of a procedure g is started from a call node
callg,r

f in f under call-string δ, the algorithm remembers its call-context (r, δ), consisting
of the corresponding return node r and the call-string δ. And upon finishing analyzing
g’s body, after evaluating exitg, the algorithm inserts only the remembered return node
and its call-string (r, δ) into the worklist. Multiple returns are avoided. For correctness,
this single return should be allowed only when the other call nodes that call g are not
analyzed until the analysis of g from (callg,r

f , δ) completes.

Example 2 Consider the situation of Example 1 again. When g is called from callg,r
f

under the context [c1, c3], our algorithm remembers g’s call-context (r, [c1, c3]). And at
exitg, under its context [c3, callg,r

f ], our algorithm inserts only the remembered (r, [c1, c3])
into the worklist. The spurious return to (r, [c2, c3]) is avoided. ¤

2. One call per procedure, exclusively: We implement the single return policy by using
one memory entry per procedure to remember the call-context. This is possible if we can
analyze each called procedure exclusively for its one particular call-context. If a procedure
is being analyzed from a call node c with a call-string δ, processings of other call-sites
that call the same procedure should wait until the analysis of the procedure from (c, δ)
is completely finished. This one-exclusive-call-per-procedure policy is enforced by not
selecting from the worklist call nodes that (directly or transitively) call the procedures
that are currently being analyzed.
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Example 3 Suppose procedure g was called from callg,r
f under the context [c1, c3] and our

algorithm has remembered the call-context (r, [c1, c3]). Suppose also the current worklist
W = {(callg,r

f , [c2, c3]), · · · } which contains a call-site that invokes g. In this situation,
our algorithm does not select (callg,r

f , [c2, c3]) as a next work-item unless the analysis of
g is completely finished.

¤

3. Recursion handling: The algorithm gives up the single return policy for recursive
procedures. This is because we cannot finish analyzing a recursive procedure’s body
without considering another call (recursive call) in it. Recursive procedures are handled
in the same way as the normal worklist algorithm.

The algorithm does not follow spurious return paths regardless of the program’s nested
call-depth. While Normalk starts losing its power when a call chain’s length is larger than
k, Normalk/RSS does not. The following example shows this difference between Normalk and
Normalk/RSS.

Example 4 Consider a program that has the following call-chain (where f1
c1,c2→ f2 denotes

that f1 calls f2 at call-sites c1 and c2) and suppose k = 1:

f1
c1,c2→ f2

c3,c4→ f3

• Normal1: The analysis results for f2 are distinguished by [c1] and [c2] hence no butterfly
cycle happens between f1 and f2. Now, when f3 is called from f2 at c3, we have two call-
contexts (c3, [c1]) and (c3, [c2]) but analyzing f3 proceeds with context [c3] (because k = 1).
That is, Normalk forgets the call-context for procedure f3. Thus the result of analyzing
f3 must flow back to all call-contexts with return site c3, i.e., to both the call-contexts
(c3, [c1]) and (c3, [c2]).

• Normal1/RSS: The results for f2 and f3 are distinguished in the same way as Normal1.
But, Normal1/RSS additionally remembers the call-contexts for every procedure call. If
f3 was called from c3 under context [c1], our algorithmic technique forces Normalk to
remember the call-context (c3, [c1]) for that procedure call. And finishing analyzing f3’s
body, f3 returns only to the remembered call-context (c3, [c1]). This is possible by the
one-exclusive-call-per-procedure policy.

¤

We ensure the one-exclusive-call-per-procedure policy by prioritizing a callee over call-sites
that (directly or transitively) invoke the callee. The algorithm always analyzes the nodes of
the callee g first prior to any other call nodes that invoke g: before selecting a work-item as a
next job, we exclude from the worklist every call node callg,r

f to g if the worklist contains any
node of procedure h that can be reached from g along some call-chain g → · · · → h, including
the case of g = h. After excluding such call nodes, the algorithm chooses a work-item in the
same way as a normal worklist algorithm, i.e., after the exclusion, our algorithm relies on the
existing worklist ordering strategy in selecting the next work-item.

Example 5 Consider a worklist {(callg,r1
f , δ1), (callh,r2

j , δ2), (nh, δ3), (calli,r4
h , δ4)} and assume

there is a path f → g → h in the call graph. When choosing a work-item from the worklist, our
algorithm first excludes all the call nodes that invoke procedures now being analyzed: callh,r2

j

is excluded because h’s node nh is in the worklist. Similarly, callg,r1
f is excluded because there

is a call-chain g → h in the call graph and h’s node nh exists. So, the algorithm chooses a
work-item from {(nh, δ3), (calli,r4

h , δ4)}. The excluded work-items (callg,r1
f , δ1) and (callh,r2

j , δ2)
will not be selected unless there are no nodes of h in the worklist. ¤
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(01) : δ ∈ Context = ∆ (01) : δ ∈ Context = ∆
(02) : w ∈ Work = Node×∆ (02) : w ∈ Work = Node×∆

(03) : W ∈ Worklist = 2Work (03) : W ∈ Worklist = 2Work

(04) : N ∈ Node×∆ → 2Node×∆ (04) : N ∈ Node×∆ → 2Node×∆

(05) : State = ∆ → Mem (05) : State = ∆ → Mem
(06) : T ∈ Table = Node → State (06) : T ∈ Table = Node → State

(07) : F̂ ∈ Node → Mem → Mem (07) : F̂ ∈ Node → Mem → Mem

(08) : ReturnSite ∈ ProcName → Work

(09) : FixpointIterate (W, T ) = (09) : FixpointIterate (W, T ) =

(10) : ReturnSite := ∅
(11) : repeat (11) : repeat

(12) : S := {(callg, , ) ∈ W | (nh, ) ∈ W ∧ reach(g, h) ∧ ¬recursive(g)}
(13) : (n, δ) := choose(W) (13) : (n, δ) := choose( W \ S )

(14) : m := F̂ n (T (n)(δ)) (14) : m := F̂ n (T (n)(δ))

(15) : if n = callg,r
f ∧ ¬recursive(g) then

(16) : ReturnSite(g) := (r, δ)

(17) : if n = exitg ∧ ¬recursive(g) then

(18) : (r, δr) := ReturnSite(g)

(19) : if m 6v T (r)(δr)

(20) : W := W ∪ {(r, δr)}
(21) : T (r)(δr) := T (r)(δr) tm

(22) : else

(23) : for all (n′, δ′) ∈ N (n, δ) do (23) : for all (n′, δ′) ∈ N (n, δ) do
(24) : if m 6v T (n′)(δ′) (24) : if m 6v T (n′)(δ′)
(25) : W := W ∪ {(n′, δ′)} (25) : W := W ∪ {(n′, δ′)}
(26) : T (n′)(δ′) := T (n′)(δ′) tm (26) : T (n′)(δ′) := T (n′)(δ′) tm
(27) : until W = ∅ (27) : until W = ∅

(a) a normal worklist algorithm Normalk (b) our algorithm Normalk/RSS

Figure 3: A normal context-sensitive worklist algorithm Normalk and its RSS modification
Normalk/RSS. The left-hand side shows a worklist algorithm for call-strings based context-
sensitive analysis. The right-hand side shows the RSS algorithm for the same analysis. These
two algorithms are the same except for shaded regions. For brevity, we omit the usual definition
of F̂ , which updates the worklist in addition to computing the flow equation’s body.

Figure 3(b) shows our algorithmic technique that is applied to the normal worklist algorithm
of Figure 3(a). To transform Normalk into Normalk/RSS, only shaded lines are inserted; other
parts remain the same. ReturnSite is a map to record a single return site information (return
node and context pair) per procedure. Lines 15-16 are for remembering a single return when
encountering a call-site. The algorithm checks if the current node is a call-node and its target
procedure is non-recursive (the recursive predicate decides whether the procedure is recursive
or not), and if so, it remembers its single return-site information for the callee. Lines 17-21
handle procedure returns. If the current node is an exit of a non-recursive procedure, only
the remembered return for that procedure is used as a next work-item, instead of all possible
next (successor, context) pairs (line 23). Prioritizing callee over call nodes is implemented by
delaying call nodes to procedures now being analyzed. To do this, in line 12-13, the algorithm
excludes the call nodes {(callg, , ) ∈ W | (nh, ) ∈ W ∧ reach(g, h)∧¬recursive(g)} that invoke
non-recursive procedures whose nodes are already contained in the current worklist. reach(g, h)
is true if there is a path in the call graph from g to h.

Example 6 Analyzing the program in the left-hand side of Figure 4 proceeds as shown in the
right-hand side table. (Assume that k = 0, the choose function in Figure 3 arbitrarily chooses
an element from the given worklist, and the initial worklist is {1, 4}). For each iteration of



September 16, 2009 ROSAEC-2009-002 10

Iters W S W \ S ReturnSite updated W
1 {1, 4} {} {1̄} {f 7→ 4} {2, 4}
2 {2, 4} {} {2, 4̄} {f 7→ 4} {2, 5}
3 {2, 5} {5} {2̄} {f 7→ 4} {3, 5}
4 {3, 5} {5} {3̄} {f 7→ 4} {4, 5}

Figure 4: A running example of our algorithm (Figure 3).

the algorithm, the table shows the contents of the current worklist (W), call nodes that are
excluded at this iteration (S), return site information (ReturnSite), and the updated worklist
(W). n̄ represents the chosen node for each iteration. When the algorithm processes call
node 1 at the first iteration, f remembers its corresponding return-site 4. At the 3rd and 4th
iterations, node 5 was excluded, because it is another call to f and the worklist contains the
nodes of f at both iterations. At the exit of f (when processing node 3 at the 4th iteration),
only ReturnSite(f) = 4 is inserted into the worklist instead of succof(f) = {4, 6}. ¤

3.3.1 Correctness & Precision

One noticeable thing of Normalk/RSS is that the result is not a fixpoint of the given flow equa-
tion system, but still a sound approximation of the program semantics. Since the algorithm
prunes some computation steps during worklist algorithm (at exit nodes of non-recursive pro-
cedures), the result of the algorithm may not be a fixpoint of the original equation system.
However, because the algorithm prunes only spurious returns that definitely do not happen in
the real executions of the program, our algorithm does not miss any information flow of real
executions.

For any f and any arbitrary call-context (callf,r
g , δ), the single return to (r, δ) after analyzing

f is correct if the state from (callf,r
g , δ) is implied by the input state used in the analysis of f

and its result is guaranteed to be returned to (r, δ). The state from every call-context flows into
f (abstract semantics). Our single-return policy does not miss returning f ’s analysis result to
its corresponding call-context4 because (1) we remember the context at each call; (2) for every
different call, modulo the underlying context-sensitivity, we exclusively analyze f . Because we
cannot enforce this exclusivity for recursive calls, we do not apply the algorithm to recursive
procedures.

Normalk/RSS is always at least as precise as Normalk. Because Normalk/RSS prunes some
(worklist-level) computations that occur along invalid return paths, it is likely to have an effect
of avoiding propagations of information along invalid return paths. Hence, Normalk/RSS gives
more precise (or at least the same) results than Normalk. The actual precision of Normalk/RSS
varies depending on the existing worklist order of Normalk.

Example 7 Consider the program in Figure 4 again, and suppose the current worklist is {1, 5}.
When analyzing the program with Normal0, the fixpoint-solving follows both spurious return
paths, regardless of the worklist order,

1 → 2 → 3 → 6 (1)
5 → 2 → 3 → 4 (2)

4Here, we ignore the cases where the callee never returns (e.g., it calls exit()). However, even though that
happens, we can enforce the return of callee by always inserting the exit node of a procedure when inserting
the entry node of the procedure into the worklist.
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because of multiple returns from node 3. When analyzing with Normal0/RSS, there are two
possibilities, depending on the worklist order:

1. When Normal0/RSS selects node 1 first: Then the fixpoint iteration sequence may be
1; 2; 3; 4; 5; 2; 3; 6. This sequence involves the spurious path (1) (because the second visit
to node 2 uses the information from node 1 as well as from node 5), but not (2).
Normal0/RSS is more precise than Normal0.

2. When Normal0/RSS selects node 5 first: Then the fixpoint iteration sequence may be
5; 2; 3; 6; 1; 2; 3; 4; 5; 2; 3; 6. This computation involves both spurious paths (1) and (2).
With this iteration order, Normal0 and Normal0/RSS have the same precision.

¤

3.3.2 Less Widening Points

Our technique reduces cycles, hence obviously reduces the number of widening points. For
analyses with infinite or very large height domains such as lattice of intervals, the widening
technique [5] is used to guarantee or accelerate the analysis’ termination. Because applying
widening means losing analysis precision, the widening operation should be carefully applied
to as small as possible subset of the entire program points. A common way of selecting
such widening points is to apply widening to every heads of loops in program [3], including
ones that are interprocedurally created by calling a procedure multiple times. Normalk/RSS
can reduce the number of widening points more. Normalk/RSS need not apply widenings at
interproceudral loop-heads that are created by non-recursive procedure calls. This is because
Normalk/RSS does not follow such interprocedural cycles. For example, consider the following
code and interval-domain-based analysis of the code.

int g = 0;
int f() { g++; }
int main() {

f();
f();

}

Since procedure f is called twice from procedure main, a spurious interprocedural cycle (5) →
(2) → (3) → (4) → (5) · · · will be created during the analysis. Iterating through the cycle
continually increases the value of the global variable g: [0, 0] → [0, 1] → [0, 2] → · · · . In order
to terminate the analysis, a widening should be applied at the entry of procedure f. Hence,
Normalk computes g = [0, +∞] at the end of procedure main. However, Normalk/RSS does not
apply the widening at the entry of procedure f (since f is non-recurisve and Normalk/RSS does
not follow the spurious return paths (5) → (2) → (3) → (4)), computing g = [0, 2] at the end
of procedure main.

4 Experiments

We implemented our algorithm inside a realistic C analyzer [6, 7, 8]. Experiments with open-
source programs show that Normalk/RSS for any k is very likely faster than Normalk, and that
even Normalk+1/RSS can be faster than Normalk.
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Table 2: Benchmark programs and their raw analysis results when using RevTop worklist
order. Lines of code (LOC) are given before preprocessing. The number of nodes in the
supergraph(#nodes) is given after preprocessing. k denotes the size of call-strings used for
the analysis. Entries with ∞ means missing data because of our analysis running out of
memory.

Program LOC #nodes k-call- #iterations time
strings Normal Normal/RSS Normal Normal/RSS

spell-1.0 2,213 782 0 33,864 5,800 60.98 8.49
1 31,933 10,109 55.02 13.35
2 57,083 15,226 102.28 19.04

barcode-0.96 4,460 2,634 0 22,040 19,556 93.22 84.44
1 33,808 30,311 144.37 134.57
2 40,176 36,058 183.49 169.08

httptunnel-3.3 6,174 2,757 0 442,159 48,292 2020.10 191.53
1 267,291 116,666 1525.26 502.59
2 609,623 251,575 5983.27 1234.75

gzip-1.2.4a 7,327 6,271 0 653,063 88,359 4601.23 621.52
1 991,135 165,892 10281.94 1217.58
2 1,174,632 150,391 18263.58 1116.25

jwhois-3.0.1 9,344 5,147 0 417,529 134,389 4284.21 1273.49
1 272,377 138,077 2445.56 1222.07
2 594,090 180,080 8448.36 1631.07

parser 10,900 9,298 0 3,452,248 230,309 61316.91 3270.40
1 ∞ ∞ ∞ ∞

bc-1.06 13,093 4,924 0 1,964,396 412,549 23515.27 3644.13
1 3,038,986 1,477,120 44859.16 12557.88
2 ∞ ∞ ∞ ∞

less-290 18,449 7,754 0 3,149,284 1,420,432 46274.67 20196.69
1 ∞ ∞ ∞ ∞

twolf 19,700 14,610 0 3,028,814 139,082 33293.96 1395.32
1 ∞ ∞ ∞ ∞

tar-1.13 20,258 10,800 0 4,748,749 700,474 75013.88 9973.40
1 ∞ ∞ ∞ ∞

make-3.76.1 27,304 11,061 0 4,613,382 2,511,582 88221.06 44853.49
1 ∞ ∞ ∞ ∞

4.1 Setting Up

Normalk is our underlying worklist algorithm, on top of which our industrialized static ana-
lyzer [6, 7, 8] for C is installed. The analyzer is an interval-domain-based abstract interpreter.
The analyzer performs by default flow-sensitive and call-strings-based context-sensitive global
analysis on the supergraph of the input program: it computes T = Node → State where
State = ∆ → Mem. Mem denotes abstract memory Mem = Addr → Val where Addr denotes
abstract locations that are either program variables or allocation sites, and Val denotes ab-
stract values including Ẑ (interval domain), 2Addr (points-to set), and 2AllocSite×Ẑ×Ẑ (array
block, consisting of base address, offset, and size [7]).

We evaluated our algorithm in two ways. First, we measured the net effects of avoiding
spurious interprocedural cycles. Since our algorithmic technique changes the existing worklist
order, performance differences between Normalk and Normalk/RSS could be attributed not only
to avoiding spurious cycles but also to the changed worklist order. In order to measure the
net effects of avoiding spurious cycles, we applied the same worklist order to both Normalk and
Normalk/RSS. To be specific, the order (between nodes) that we used is a reverse topological
order between procedures on the call graph: a node n of a procedure f precedes a node m of
a procedure g if f precedes g in the reverse topological order in the call graph. If f and g are
the same procedure, the order between the nodes are defined by the weak topological order [3]
on the control flow graph of the procedure. We call the order RevTop order. Note that this
ordering itself contains the “prioritize callees over call-sites” feature and we don’t explicitly
need the delaying call technique (lines 12-13 in Figure 3.(b)) in Normalk/RSS. Hence the
worklist order for Normalk and Normalk/RSS are the same.5 For this evaluation, we compare

5In fact, the order described here is the one our analyzer uses by default, which consistently shows better
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analysis time and precision between Normalk and Normalk/RSS.
We also evaluated our algorithm when our technique interferes with the existing worklist

order. Because our technique interferes with (i.e., changes) the existing worklist order of
Normalk, it is necessary to check whether our technique works well regardless of the existing
worklist order strategies or not. To see what happens in this case, we applied our technique
to Normalk that uses the following worklist order, called Arbitrary; the order between nodes in
different procedures is determined by a random order that is fixed before the analysis and the
order between nodes in the same procedure is defined by the weak topological order. Note that
the worklist order does not contain the “prioritize callees over call-sites” because the order
randomly chooses a procedure regardless of call relationship.

We have analyzed 11 open-source and SPEC2000 software packages. Table 2 shows our
benchmark programs. All experiments were done on a Linux 2.6 system running on a Pentium4
3.2GHz box with 4GB of main memory. parser and twolf are from SPEC2000 benchmarks
and the others are open-source software.

We use two performance measures: (1) #iterations is the total number of iterations during
the worklist algorithm. The number directly indicates the amount of computation; (2) time is
the CPU time spent during the analysis. Though time is roughly proportional to #iterations,
it is subject to change because of different implementations and test environments.

4.2 The Net Effects of Avoiding Spurious Cycles

4.2.1 Reduced Analysis Time

Figure 5.(a) compares #iterations between Normalk/RSS and Normalk for k = 0, 1, 2 using
RevTop worklist order, which shows the net effects of avoiding spurious cycles. In this compar-
ison, Normalk/RSS reduces the number of iterations of Normalk by on average 72%.

• When k = 0 (context-insensitive) : Normal0/RSS has reduced #iterations by, on average,
about 72% against Normal0. For most programs, the analysis time has been reduced by
more than 50%. There is one exception: barcode. The amount of computation has been
reduced by 11%. This is because barcode has unusual call structures: it does not call a
procedure many times, but calls many different procedures one by one. So, the program
contains few butterfly cycles.

• When k = 1: Normal1/RSS has reduced #iterations by, on average, about 53% against
Normal1. Compared to the context-insensitive case (k = 0), for all programs, cost reduc-
tion ratios have been slightly decreased. As an example, for spell, the reduction ratio
when k = 0 is 83% and the ratio when k = 1 is 68%. This is mainly because, in our anal-
ysis, Normal0 costs more than Normal1 for most programs (spell, httptunnel, jwhois).
For httptunnel, in Table 2, the analysis time (2020.10 s) for k = 1 is less than the time
(1525.26 s) for k = 0. This means that performance problems by butterfly cycles is much
more severe when k = 0 than that of k = 1, because by increasing context-sensitivity
some spurious paths can be removed. However, by using our algorithm, we can still
reduce the cost of Normal1 by 53%.

• When k = 2: Normal2/RSS has reduced #iterations by, on average, 60% against Normal2.
Compared to the case of k = 1, the cost reduction ratio has been slightly increased for
most programs. For example, the ratio for spell has changed from 68% to 73%. In the
analysis of Normal2, since the equation system is much larger than that of Normal1, our
conjecture is that the size of butterfly cycles is likely to get larger. Since larger butterfly
cycles causes more serious problems (Section 2), our RSS algorithm is likely to greater
reduce useless computation.

performance than naive worklist management scheme (BFS/DFS) or simple “wait-at-join” techniques (e.g., [7]).
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Figure 5: Net effects of avoiding spurious cycles
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Table 3: Comparison of precision between Normal0 and Normal0/RSS.

Program Analysis #const #finite #open #top

spell-1.0 Normal0 345 88 33 143
Normal0/RSS 345 89 35 140

barcode-0.96 Normal0 2136 588 240 527
Normal0/RSS 2136 589 240 526

httptunnel-3.3 Normal0 1337 342 120 481
Normal0/RSS 1345 342 120 473

gzip-1.2.4a Normal0 1995 714 255 1214
Normal0/RSS 1995 716 255 1212

jwhois-3.0.1 Normal0 2740 415 961 1036
Normal0/RSS 2740 415 961 1036

Figure 5.(b) compares the performance of Normalk+1/RSS against Normalk for k = 0, 1.
The result shows that, for all programs except barcode, even Normalk+1/RSS is faster than
Normalk. Since Normalk+1/RSS can be even faster than Normalk, if memory cost permits, we
can consider using Normalk+1/RSS instead of Normalk.

4.2.2 Increased Analysis Precision

Table 3 compares the precision between Normal0 and Normal0/RSS.6 In order to measure the
increased precision, we first joined all the memories associated with each program point (Node).
Then we counted the number of constant intervals (#const, e.g., [1, 1]), finite intervals (#finite,
e.g., [1, 5]), intervals with one infinity (#open, e.g., [−1, +∞) or (−∞, 1]), and intervals with
two infinity (#top, (−∞,+∞)) from interval values (Ẑ) and array blocks (2AllocSite×Ẑ×Ẑ)
contained in the joined memory. The constant interval and top interval indicate the most
precise and imprecise values, respectively. The results show that Normal0/RSS is more precise
(spell, barcode, httptunnel, gzip) than Normal0 or the precision is the same (jwhois).

4.3 Speed Up When Interfering the Existing Worklist Order

Figure 6.(a) compares #iterations between Normalk and Normalk/RSS for k = 0 using Arbi-
trary worklist order. In the comparison, Normalk/RSS reduces the computation cost of Normalk
by on average 53%. From this results, we can find that the interference does not significantly
affect the overall performance differences: the reduction ratio has been decreased by 19% from
the case of net effects of avoiding spurious cycles (72%). Hence, the technique is likely to relieve
the problems of spurious cycles regardless of the existing worklist ordering strategies.

5 Conclusion

We have presented a simple algorithmic extension of the classical call-strings approach to
alleviate substantial inefficiency caused by large spurious interprocedural cycles. Such cycles
are identified as a major reason for the folklore problem in static analysis that less precise
analyses sometimes are slower. Although this inefficiency might not come to the fore when
analyzing small programs, globally analyzing medium or large programs makes it outstanding.
The proposed algorithmic technique reduces the analysis time by 7%-96% for open-source
benchmarks.

6We compared the precision for the case of k = 0 and for the first five programs in Table 2 because we need
more memory to do the precision comparison (we should keep two analysis results of Normal0 and Normal0/RSS
at the same time).
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(a) Comparison of of #iterations between Normal0 and Normal0/RSS, for k = 0.

Program #iterations time
Normal Normal/RSS Normal Normal/RSS

spell-1.0 36,272 20,377 99.19 43.66
barcode-0.96 71,342 29,574 534.9 154.36
httptunnel-3.3 591,030 132,668 4132.21 730.95
gzip-1.2.4a 804,240 204,553 6844.31 1299.36
jwhois-3.0.1 777,867 761,117 5518.04 4664.2
parser 3,500,035 1,095,194 70248.32 24249.95
bc-1.06 2,231,064 1,138,847 23136.25 14240.14
less-290 3,118,068 2,613,384 53152.72 66329.59
twolf 3,347,610 645,922 52372.78 7179.93
tar-1.13 5,310,745 2,334,886 92637.58 78013.96
make-3.76.1 4,415,305 2,110,272 70553.14 43381.18

(b) Benchmark programs and their raw analysis results.

Figure 6: The analysis results when using Arbitrary worklist order.
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Our technique is orthogonally applicable to context-sensitive analysis. It is a simple tech-
nique inside the worklist-based fixpoint iteration routine. It is directly applicable without
changing the analysis’ underlying abstract semantics, regardless of whether the semantics is
context-sensitive or not.

Our technique suggests the following implementation guideline in tuning a global semantic
analysis. Suppose we develop an analyzer that uses call-strings of size k for context-sensitivity
with the Normalk algorithm. Suppose further that we cannot increase the call-strings size more
than k because of either the time or memory cost. In this situation, our algorithmic technique
has the following usages.

• When Normalk hits the memory cost limit: then use Normalk/RSS instead. This is because
(1) Normalk/RSS is empirically faster than Normalk (Section 4.1 and Figure 5.(a),6); (2)
Normalk/RSS is in principle more accurate or at least does not sacrifice the precision of
Normalk (Section 3.3.1, 3.3.2 and Table 3); (3) Normalk/RSS requires in extra just as
many memory entities as the number of procedures.

• When Normalk hits the time cost limit: then, if memory permits, consider using Normalk+1/RSS
instead. This is because (1) Normalk+1/RSS can be even faster than Normalk (Section
4.1 and Figure 5.(b)); (2) it requires in extra just as many entities as the number of
procedures.

Though tuning the accuracy of static analysis can in principle be controlled solely by re-
designing the underlying abstract semantics, our algorithmic technique is a simple and or-
thogonal leverage to effectively shift the analysis cost/accuracy balance for the better. The
technique’s correctness is obvious enough to avoid the burden of safety proof of otherwise a
newly designed abstract semantics.
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