
ROSAEC MEMO

2009-004

August 31, 2009

Deriving Invariants by Algorithmic Learning,

Decision Procedures, and Predicate Abstraction

Yungbum Jung Soonho Kong
Seoul National University Seoul National University

dreameye@ropas.snu.ac.kr soon@ropas.snu.ac.kr

Bow-Yaw Wang Kwangkeun Yi
Academia Sinica Seoul National University

bywang@iis.sinica.edu.tw kwang@ropas.snu.ac.kr

August 28, 2009

Abstract

By combining algorithmic learning, decision procedures, and predicate abstraction,
we present an automated technique for finding loop invariants in propositional formulae.
Given invariant approximations derived from pre- and post-conditions, our new technique
exploits the flexibility in invariants by a simple randomized mechanism. The proposed
technique is able to generate invariants for some Linux device drivers and SPEC2000
benchmarks in our experiments.

1 Introduction

Algorithmic learning has been applied to assumption generation in compositional reasoning [1].
In contrast to traditional techniques, the learning approach does not derive assumptions in an
off-line manner. It instead finds assumptions by interacting with a model checker progressively.
Since assumptions in compositional reasoning are generally not unique, algorithmic learning can
exploit the flexibility in assumptions to attain preferable solutions. Applications in verifying
concurrent systems have been reported [1, 2, 3, 4].

Finding loop invariants follows a similar pattern. Invariants are often not unique. Indeed,
programmers derive invariants incrementally. They usually have their guesses of invariants
in mind, and gradually refine their guesses by observing program behavior more. Since in
practice there are many invariants for given pre- and post-conditions, programmers have more
freedom in deriving invariants. Yet traditional invariant generation techniques do not exploit
the flexibility. They have a similar impediment to traditional assumption generation.

This article reports our first findings in applying algorithmic learning to invariant gener-
ation. We show that the three technologies (algorithmic learning, decision procedures, and
predicate abstraction) can be arranged in concert to derive loop invariants in propositional
(or, quantifier-free) formulae. The new technique is able to generate invariants for some Linux
device drivers and SPEC2000 benchmarks without any help from static or dynamic analyses.

For a while loop, an exact learning algorithm for Boolean formulae searches for invariants
by asking queries. Queries can be resolved (not always, see below) by decision procedures
automatically. Recall that the learning algorithm generates only Boolean formulae but deci-
sion procedures work in propositional formulae. We thus perform predicate abstraction and
concretization to integrate the two components.

In reality, information about loop invariant is incomplete. Queries may not be resolvable
due to insufficient information. One striking feature of our learning approach is to exploit the
flexibility in invariants. When query resolution requires information unavailable to decision
procedures, we simply give a random answer. We surely could use static analysis to com-
pute soundly approximated information other than random answers. Yet there are so many
invariants for the given pre- and post-conditions. A little bit of incorrect information does not
prevent algorithmic learning from inferring correct invariants. Indeed, the learning algorithm
is able to derive invariants in our experiments by coin tossing.

Example

{i = 0} while i < 10 do b := nondet; if b then i := i + 1 end {i = 10 ∧ b}

The while loop assigns a random truth value to the variable b in the beginning of its body.
It increases the variable i by 1 if b is true. Observe that the variable b must be true after
the while loop. We would like to find an invariant which proves the postcondition i = 10 ∧ b.
Heuristically, we choose i = 0 and (i = 10 ∧ b) ∨ i < 10 as under- and over-approximations to
invariants respectively. With the help of a decision procedure, these invariant approximations
are used to resolve queries made by the learning algorithm. After resolving a number of queries,
the learning algorithm asks whether i 6= 0 ∧ i < 10 ∧ ¬b should be included in the invariant.
Note that the query is not stronger than the under-approximation, nor weaker than the over-
approximation. Hence decision procedures cannot resolve it due to lack of information. At
this point, one could apply static analysis and see that it is possible to have this state at the
beginning of the loop. Instead of employing static analysis, we simply give a random answer
to the learning algorithm. For this example, this information is crucial: the learning algorithm
will ask us to give a counterexample to its best guess i = 0 ∨ (i = 10 ∧ b) after it processes
the incorrect answer. Since the guess is not an invariant and flipping coins does not generate
a counterexample, we restart the learning process. If the query i 6= 0∧ i < 10∧¬b is answered
correctly, the learning algorithm infers the invariant (i = 10 ∧ b) ∨ i < 10 with two more
resolvable queries.

Contribution

• We prove that algorithmic learning, decision procedures, and predicate abstraction in
combination can automatically infer invariants in propositional formulae for programs in
our simple language.

• We demonstrate that the technique works in realistic settings: we are able to generate
invariants for some Linux device drivers and SPEC2000 benchmarks in our experiments.

• The technique can be seen as a framework for invariant generation. Static analyzers can
contribute by providing information to algorithmic learning. Ours is hence orthogonal to
existing techniques.

We organize this paper as follows. After preliminaries (Section 2), we present an overview
of the framework in Section 3. In Section 4, we review the exact learning algorithm introduced
in [5]. Section 5 gives the details of our learning approach. We report experiments in Section 6.
Section 7 briefly discusses our learning approach, future work, and related work. Section 8
concludes our work.

2

2 The Target Language and Notation

The syntax of statements in our simple imperative language is as follows.

Stmt
4
= nop | assume Prop | Stmt; Stmt |

x := Exp | x := nondet | b := Bool | b := nondet |
if Prop then Stmt else Stmt | switch Exp do case Exp : Stmt · · · |
{ Prop } while Prop do Stmt { Prop }

Natural number variables and Boolean variables are allowed. They assign to arbitrary values in
their respective domains by the keyword nondet. Note that while statements are annotated.
Programmers are asked to specify a precondition before a while statement, and a postcondition
after the statement.

An expression Exp is a natural number (n ∈ N), a variable (x), or a summation or the
difference of two expressions.

Exp
4
= n | x | Exp + Exp | Exp− Exp

A propositional formula Prop is either: the falsehood symbol (F), a Boolean variable (b),
the negation of a propositional formula, the conjunction of two propositional formulae, or
comparisons (E0 < E1 or E0 = E1).

Prop
4
= F | b | ¬Prop | Prop ∧ Prop | Exp < Exp | Exp = Exp

Let ρ0 and ρ1 be propositional formulae, π0 and π1 be expressions. We write T for ¬F,
ρ0 ∨ ρ1 for ¬(¬ρ0 ∧ ¬ρ1), ρ0 ⇒ ρ1 for ¬ρ0 ∨ ρ1, ρ0 ⇔ ρ1 for (ρ0 ⇒ ρ1) ∧ (ρ1 ⇒ ρ0), ρ0 ⊕ ρ1

for ¬(ρ0 ⇔ ρ1), π0 ≤ π1 for π0 < π1 ∨ π0 = π1, and π0 6= π1 for ¬(π0 = π1). Propositional
formulae of the forms b, π0 < π1, and π0 = π1 are called atomic propositions. If A is a set of
atomic propositions, PropA denotes the set of propositional formulae generated from A.

A Boolean formula Bool is a restricted propositional formula constructed from truth values
and Boolean variables.

Bool
4
= F | b | ¬Bool | Bool ∧ Bool

A valuation ν is an assignment of natural numbers to variables and truth values to Boolean
variables. A Boolean valuation µ is an assignment of truth values to Boolean variables. If
A is a set of atomic propositions and Var(A) is the set of variables occurred in A, ValVar(A)

denotes the set of valuations for Var(A). Let ρ be a propositional formula. The valuation ν is
a model of ρ (written ν |= ρ) if ρ evaluates to T under the valuation ν. Similarly, the Boolean
valuation µ is a Boolean model of the Boolean formula β (written µ |= β) if β evaluates
to T under µ. If B is a set of Boolean variables, the set of Boolean valuations for B is
denoted by ValB . Given a propositional formula ρ, a satisfiability modulo theories (SMT)
solver returns a model of ρ if it exists (written SMT (ρ) → ν); otherwise, it returns UNSAT
(written SMT (ρ) → UNSAT) [6, 7].

A precondition Pre(φ, S) for φ ∈ Prop with respect to a statement S is a universally

3

SMT Solver Learning Algorithmqueries

answers

over-approximation

invariant

under-approximation

Figure 1: Overview

quantified formula that guarantees φ after the execution of the statement S.

Pre(φ, nop) = φ
Pre(φ, assume θ) = θ ⇒ φ

Pre(φ, S0; S1) = Pre(Pre(φ, S1), S0)

Pre(φ, x := π) =
{ ∀x.φ if π = nondet

φ[x 7→ π] otherwise

Pre(φ, b := ρ) =
{ ∀b.φ if ρ = nondet

φ[b 7→ ρ] otherwise
Pre(φ, if ρ then S0 else S1) = (ρ ⇒ Pre(φ, S0)) ∧ (¬ρ ⇒ Pre(φ, S1))
Pre(φ, switch π case πi: Si) =

∧
i

(π = πi ⇒ Pre(φ, Si))

Pre(φ, {δ} while ρ do S {ε}) =
{

δ if ε implies φ
F otherwise

Observe that all universal quantifiers occur positively in Pre(φ, S) for any S. They can be
eliminated by Skolem constants [8, 9].

3 Framework Overview

We combine algorithmic learning, decision procedures [6], and predicate abstraction [10] in our
framework. Figure 1 illustrates the relation among these technologies. In the figure, the left
side represents the concrete domain; the right side represents the abstract domain. Assume
there is an invariant for a while statement with respect to the given pre- and post-conditions
in the concrete domain. We would like to apply algorithmic learning to find such an invariant.

To this purpose, we use the CDNF algorithm [5]. The CDNF algorithm is an exact learning
algorithm for Boolean formulae. It is an active learning algorithm that makes queries about an
unknown Boolean formula and outputs a Boolean formula that is equivalent to the unknown
one [11, 5]. We perform predicate abstraction to represent propositional formulae as Boolean
formulae in the abstract domain. Since the CDNF algorithm is able to learn arbitrary Boolean
formulae, our technique can infer arbitrary invariants in propositional formulae by answering
queries.

To realize this idea, we devise a mechanism (a teacher) to resolve queries in the abstract
domain. There are two types of queries: membership queries ask whether a Boolean valuation
is a model of an invariant; equivalence queries ask whether a Boolean formula is an invariant
and demand a counterexample if it is not. It is not difficult to concretize queries in the abstract
domain. Answering queries however requires information about invariants yet to be computed.

Although an invariant is unknown, its approximations can be derived from the pre- and
post-conditions, or computed by static analysis. Hence, we estimate invariant approximations

4

heuristically and adopt decision procedures for query resolution. For a membership query, we
check if its concretization is in the under-approximation or out of the over-approximation by
an SMT solver. If it is in the under-approximation, the answer is affirmative; if it is outside
the over-approximation, the answer is negative. Otherwise, we simply give a random answer.
Equivalence queries are resolved similarly.

4 The CDNF Algorithm

In [5], an exact learning algorithm for Boolean formulae over a finite set B of Boolean variables
is introduced. The CDNF algorithm generates a conjunction of formulae in disjunctive normal
form equivalent to the unknown Boolean formula λ. It assumes a teacher to answer the following
queries:

1. Membership queries. Let µ be a Boolean valuation for B. The membership query
MEM (µ) asks if µ is a model of the unknown Boolean formula λ. If µ |= λ, the teacher an-
swers YES (denoted by MEM (µ) → YES). Otherwise, the teacher answers NO (denoted
by MEM (µ) → NO).

2. Equivalence queries. Let β ∈ BoolB . The equivalence query EQ(β) asks if β is equivalent
to the unknown Boolean formula λ. If so, the teacher answers YES (denoted by EQ(β) →
YES). Otherwise, the teacher returns a Boolean valuation µ for B such that µ |= β ⊕ λ
as a counterexample (denoted by EQ(β) → µ).

(* B = {b1, b2, . . . , bm}: a finite set of Boolean variables *)
Input: A teacher answers membership and equivalence queries for an unknown Boolean

formula λ
Output: A Boolean formula equivalent to λ
t := 0;
if EQ(T) → YES then return T;
let µ be such that EQ(T) → µ;

0 t := t + 1; (Ht, St, at) := (F, ∅, µ);

1 if EQ(
t∧

i=1

Hi) → YES then return
t∧

i=1

Hi;

let µ be such that EQ(
t∧

i=1

Hi) → µ;

I := {i : µ 6|= Hi};
2 if I = ∅ then goto 0;

foreach i ∈ I do
µi := µ;
walk from µi towards ai while keeping µi |= λ;
Si := Si ∪ {µi ⊕ ai};

end
Hi := MDNF (Si)[B 7→ B ⊕ ai] for i = 1, . . . , t;

3 goto 1;
Algorithm 1: The CDNF Algorithm [5]

Let µ and a be Boolean valuations for B. The Boolean valuation µ ⊕ a is defined by
(µ⊕a)(bi) = µ(bi)⊕a(bi) for bi ∈ B. For any Boolean formula β, β[B 7→ B⊕a] is the Boolean
formula obtained from β by replacing bi ∈ B with ¬bi if a(bi) = T. For a set S of Boolean
valuations for B, define

MDNF (µ) =
∧

µ(bi)=T

bi and MDNF (S) =
∨

µ∈S

MDNF (µ).

5

For the degenerate cases, MDNF (µ) = T when µ ≡ F and MDNF (∅) = F. Algorithm 1 shows
the CDNF algorithm [5]. In the algorithm, the step “walk from µ towards a while keeping
µ |= λ” takes two Boolean valuations µ and a. It flips the assignments in µ different from those
of a and maintains µ |= λ. Algorithm 2 implements the walking step by membership queries.

(* B = {b1, b2, . . . , bm}: a finite set of Boolean variables *)
Input: valuations µ and a for B
Output: a model µ of λ by walking towards a
i := 1;
while i ≤ m do

if µ(bi) 6= a(bi) then
µ(bi) := ¬µ(bi);
if MEM (µ) → YES then i := 0 else µ(bi) := ¬µ(bi);

end
i := i + 1;

end
return µ

Algorithm 2: Walking towards a

Intuitively, the CDNF algorithm computes the conjunction of approximations to the un-
known Boolean formula. In Algorithm 1, Hi records the approximation generated from the
set Si of Boolean valuations with respect to the Boolean valuation ai. The algorithm checks
if the conjunction of approximations Hi’s is the unknown Boolean formula (line 1). If it is,
we are done. Otherwise, the algorithm tries to refine Hi by expanding Si. If none of Hi’s can
be refined (line 2), another approximation is added (line 0). The algorithm reiterates after
refining the approximations Hi’s (line 3). Let λ be a Boolean formula, |λ|DNF and |λ|CNF

denote the minimum sizes of λ in disjunctive and conjunctive normal forms respectively. The
CDNF algorithm learns any Boolean formula λ with a polynomial number of queries in |λ|DNF ,
|λ|CNF , and the number of Boolean variables [5]. Appendix A gives a sample run of the CDNF
algorithm.

5 Learning Invariants

Consider the while statement
{δ} while ρ do S {ε}.

The propositional formula ρ is called the guard of the while statement; the statement S is
called the body of the while statement. The annotation is intended to denote that if the
precondition δ holds, then the postcondition ε must hold after the execution of the while
statement. The invariant generation problem is to compute an invariant to justify the pre- and
post-conditions.

Definition Let {δ} while ρ do S {ε} be a while statement. An invariant ι is a propositional
formula such that

(a) δ ∧ ρ ⇒ ι (b) ρ ∧ ι ⇒ Pre(ι, S) (c) ¬ρ ∧ ι ⇒ ε.

An invariant allows us to prove that the while statement fulfills the annotated requirements.
Observe that Definition 5 (c) is equivalent to ι ⇒ ε ∨ ρ. Along with Definition 5 (a), we see
that any invariant must be weaker than δ ∧ ρ but stronger than ε ∨ ρ. Hence δ ∧ ρ and ε ∨ ρ
are called the strongest and weakest approximations to invariants for {δ} while ρ do S {ε}
respectively.

Our goal is to apply the CDNF algorithm (Algorithm 1) to “learn” an invariant for an
annotated while statement. To achieve this goal, we first lift the invariant generation problem

6

to the abstract domain by predicate abstraction. Moreover, we need to devise a mechanism to
answer queries from the learning algorithm in the abstract domain. In the following, we show
how to answer queries by an SMT solver and invariant approximations.

5.1 Predicate Abstraction to Connect Algorithmic Learning and SMT
Solvers

Domains for an SMT solver and algorithmic learning are adjoined via the predicate abstrac-
tion [10]. The α, α∗, γ, and γ∗ are the abstraction (α, α∗) and concretization (γ, γ∗) maps
between the two domains. SMT solvers work in propositional formulae. Algorithmic learning
works in Boolean formulae.

PropA BoolB(A)

γ∗

γ

α∗

α

ValB(A)ValVar(A)

Let A be a fixed set of atomic propositions. For each atomic proposition p ∈ A, we use a
Boolean variable bp to represent p. Let B(A) = {bp : p ∈ A} be the set of Boolean variables
corresponding to the atomic propositions in A. Consider the concrete domain PropA and the
abstract domain BoolB(A). A Boolean formula β ∈ BoolB(A) is called a canonical monomial if
it is a conjunction of literals such that each Boolean variable in B(A) appears exactly once.
Define the mappings γ : BoolB(A) → PropA and α : PropA → BoolB(A):

γ(β) = β[bp 7→ p]; and
α(θ) =

∨{β ∈ BoolB(A) : β is a canonical monomial and θ ∧ γ(β) is satisfiable}.

where bp and p are the Boolean variables in B(A) and their corresponding atomic propositions
respectively.

The following lemmas are useful in proving our technical results:

Lemma 5.1 Let A be a set of atomic propositions, θ, ρ ∈ PropA. Then

θ ⇒ ρ implies α(θ) ⇒ α(ρ).

Proof Let α(θ) =
∨
i

βi where βi is a canonical monomial and θ ∧ γ(βi) is satisfiable. By

Lemma 5.2, γ(βi) ⇒ θ. Hence γ(βi) ⇒ ρ and ρ ∧ γ(βi) is satisfiable.

Lemma 5.2 Let A be a set of atomic propositions, θ ∈ PropA, and β a canonical monomial
in BoolB(A). Then θ ∧ γ(β) is satisfiable if and only if γ(β) ⇒ θ.

Proof Let θ′ =
∨
i

θi ∈ PropA be a propositional formula in disjunctive normal form such that

θ′ is equivalent to θ.
Assume θ ∧ γ(β) is satisfiable. Then θ′ ∧ γ(β) is satisfiable and θi ∧ γ(β) is satisfiable for

some i. Since β is canonical, each atomic propositions in A appears in γ(β). Hence θi ∧ γ(β)
is satisfiable implies γ(β) → θi. We have γ(β) ⇒ θ.

The other direction is trivial.

Recall that a teacher for the CDNF algorithm answers queries in the abstract domain, and
an SMT solver computes models in the concrete domain. In order to let an SMT solver play

7

the role of a teacher, more transformations are needed. A valuation induces a natural Boolean
valuation. Precisely, define the Boolean valuation α∗(ν) for the valuation ν as follows.

(α∗(ν))(bp) =
{

T if ν |= p
F otherwise

Lemma 5.3 Let A be a set of atomic propositions and θ ∈ PropA. Then θ ↔ γ(α(θ)).

Proof Let θ′ =
∧
i

θi be a quantified-free formula in disjunctive normal form such that θ′ ↔ θ.

Let µ ∈ BoolB(A). Define

χ(µ) =
∧

({bp : µ(bp) = T} ∪ {¬bp : µ(bp) = F}).

Note that χ(µ) is a canonical monomial and µ |= χ(µ).
Assume ν |= θ. Then ν |= θi for some i. Consider the canonical monomial χ(α∗(ν)). Note

that ν |= γ(χ(α∗(ν))). Thus χ(α∗(ν)) is a disjunct in α(θ). We have ν |= γ(α(θ)).
Conversely, assume ν |= γ(α(θ)). Then ν |= γ(β) for some canonical monomial β and

γ(β) ∧ θ is satisfiable. By Lemma 5.2, γ(β) → θ. Hence ν |= θ.

Lemma 5.4 Let A be a set of atomic propositions, θ ∈ PropA, β ∈ BoolB(A), and ν a valuation
for Var(A). Then

1. ν |= θ if and only if α∗(ν) |= α(θ); and

2. ν |= γ(β) if and only if α∗(ν) |= β.

Proof 1. Assume ν |= θ. χ(α∗(ν)) is a canonical monomial. Observe that ν |= γ(χ(α∗(ν))).
Hence γ(χ(α∗(ν)))∧ θ is satisfiable. By the definition of α(θ) and χ(α∗(ν)) is canonical,
χ(α∗(ν)) → α(θ). α∗(ν) |= α(θ) follows from α∗(ν) |= χ(α∗(ν)).

Conversely, assume α∗(ν) |= α(θ). Then α∗(ν) |= β where β is a canonical monomial
and γ(β) ∧ θ is satisfiable. By the definition of α∗(ν), ν |= γ(β). Moreover, γ(β) → θ by
Lemma 5.2. Hence ν |= θ.

2. Assume ν |= γ(β). By Lemma 5.4 1, α∗(ν) |= α(γ(β)). Note that β = α(γ(β)). Thus
α∗(ν) |= β.

A Boolean valuation on the other hand induces a propositional formula. Define the proposi-
tional formula γ∗(µ) for the Boolean valuation µ as follows.

γ∗(µ) =
∧

p∈A

{p : µ(bp) = T} ∧
∧

p∈A

{¬p : µ(bp) = F}

Lemma 5.5 Let A be a set of atomic propositions, θ ∈ PropA, and µ a Boolean valuation for
B(A). Then γ∗(µ) ⇒ θ if and only if µ |= α(θ).

Proof Assume γ∗(µ) → θ. By Lemma 5.1, α(γ∗(µ)) → α(θ). Note that γ∗(µ) = γ(χ(µ)). By
Lemma 5.3, χ(µ) → α(θ). Since µ |= χ(µ), we have µ |= α(θ).

Conversely, assume µ |= α(θ). We have χ(µ) → α(θ) by the definition of χ(µ). Let
ν |= γ∗(µ), that is, ν |= γ(χ(µ)). By Lemma 5.4 2, α∗(ν) |= χ(µ). Since χ(µ) → α(θ),
α∗(ν) |= α(θ). By Lemma 5.4 1, ν |= θ. Therefore, γ∗(µ) → θ.

8

5.2 Answering Queries from Algorithmic Learning

Suppose ι ∈ PropA is an invariant for the statement {δ} while ρ do S {ε}. Let ι, ι ∈ PropA.
We say ι is an under-approximation to an invariant ι if δ ∧ ρ ⇒ ι and ι ⇒ ι. Similarly, ι is
an over-approximation to an invariant ι if ι ⇒ ι and ι ⇒ ε ∨ ρ. The strongest and weakest
approximations are trivial under- and over-approximations to any invariant respectively.

Recall that the CDNF algorithm makes the following queries: (1) Membership queries
MEM (µ) where µ ∈ ValB(A), and (2) equivalence queries EQ(β) where β ∈ BoolB(A). In the
following, we show how to resolve these queries by means of an SMT solver and the invariant
approximations (ι and ι).

5.2.1 Membership Queries

In the membership query MEM (µ), the teacher is required to answer whether µ |= α(ι).
We concretize the Boolean valuation µ and check it against the approximations. If the con-
cretizationl γ∗(µ) is inconsistent (that is, γ∗(µ) is unsatisfiable), we simply answer NO for the
membership query. Otherwise, there are three cases:

1. γ∗(µ) ⇒ ι. Thus µ |= α(ι) (Lemma 5.5). And µ |= α(ι) by Lemma 5.1.

2. γ∗(µ) ; ι. Thus µ 6|= α(ι) (Lemma 5.5). That is, µ |= ¬α(ι). Since ι → ι, we have
µ 6|= α(ι) by Lemma 5.1.

3. Otherwise, we cannot determine whether µ |= α(ι) by the approximations.

(* ι: an under-approximation; ι: an over-approximation *)
Input: a valuation µ for B(A)
θ := γ∗(µ);
if SMT (θ) → UNSAT then return NO ;
if SMT (θ ∧ ¬ι) → UNSAT then return YES ;
if SMT (θ ∧ ¬ι) → ν then return NO ;
abort with θ;

Algorithm 3: Resolving Membership Queries

Algorithm 3 shows our membership query resolution algorithm. Note that when a membership
query cannot be resolved by an SMT solver given invariant approximations, one can use better
approximations from static analyzers. Our framework is therefore orthogonal to existing static
analysis techniques.

5.2.2 Equivalence Queries

To answer the equivalence query EQ(β), we concretize the Boolean formula β and check if
γ(β) is indeed an invariant of the while statement for the given pre- and post-conditions. If
it is, we are done. Otherwise, we use an SMT solver to find a witness to α(ι) ⊕ β. There are
three cases:

1. There is a ν such that ν |= ¬(ι ⇒ γ(β)). Then ν |= ι ∧ ¬γ(β). By Lemma 5.4 and 5.1,
we have α∗(ν) |= α(ι) and α∗(ν) |= ¬β. Thus, α∗(ν) |= α(ι) ∧ ¬β.

2. There is a ν such that ν |= ¬(γ(β) ⇒ ι). Then ν |= γ(β)∧¬ι. By Lemma 5.4, α∗(ν) |= β.
α∗(ν) |= ¬α(ι) by Lemma 5.4 and 5.1. Hence α∗(ν) |= β ∧ ¬α(ι).

3. Otherwise, we cannot find a witness to α(ι)⊕ β by the approximations.

9

(* {δ} while ρ do S {ε} *)
(* ι: an under-approximation; ι: an over-approximation *)
Input: β ∈ BoolB(A)

θ := γ(β);
if SMT (ι ∧ ¬θ) → UNSAT and SMT (θ ∧ ¬ι) → UNSAT and
SMT (ρ ∧ θ ∧ ¬Pre(θ, S)) → UNSAT then

return YES ;
if SMT (ι ∧ ¬θ) → ν then return α∗(ν);
if SMT (θ ∧ ¬ι) → ν then return α∗(ν);
abort with θ;

Algorithm 4: Resolving Equivalence Queries

Algorithm 4 shows our equivalence query resolution algorithm. Note that Algorithm 4 returns
YES only if an invariant is found.

Similar to membership query resolution, one can refine approximations by static analysis
when an equivalence query is not resolvable by an SMT solver given invariant approximations.
For simplicity, Algorithm 4 aborts the learning algorithm with the unresolved equivalence
query.

5.3 Main Loop of Our Approach

Algorithm 5 gives the top-level loop of our framework. Initially, we use the disjunction of
strongest approximation and the postcondition as the under-approximation; the weakest ap-
proximation is the over-approximation. The under-approximation aims to find an invariant
that establishes the postcondition. This heuristic is proved very useful in practice.

(* {δ} while ρ do S {ε} *)
function randomized membership µ =

try Algorithm 3 with input µ when abort → return YES or NO randomly ;

ι := (δ ∧ ρ) ∨ ε; ι := ε ∨ ρ;
repeat

try ι := Algorithm 1 with randomized membership and Algorithm 4
when abort → continue

until an invariant ι is found ;
Algorithm 5: Main Loop

After determining the approximations, Algorithm 1 is used to find an invariant. We use
Algorithms 3 and 4 to resolve queries with an SMT solver given the invariant approximations.
If Algorithm 3 aborts with an unresolved membership query, a random answer is returned
by randomized membership. If Algorithm 4 aborts with an unresolved equivalence query, the
learning algorithm is restarted.

Since algorithmic learning does not commit to any specific target, it always finds an invari-
ant consistent with answers to previous queries. In other words, the learning algorithm will
always generate an invariant if there is one consistent with our random answers. Although our
random answers may not reflect the real program behavior, an invariant can still be inferred.
Verifying whether a formula is an invariant is done by checking the sufficient conditions of
Definition 5 in our equivalence query resolution algorithm (Algorithm 4).

10

case SIZE AP MEM EQ coin tossing iterations time (sec)
ide-ide-tape 16 6 16.1 5.3 4.3 1.2 0.048

vpr 8 7 21.3 9.8 18.3 3.3 0.064
ide-wait-ireason 9 6 41.7 24.1 9.4 2.2 0.130

usb-message 18 10 31.1 10.6 7.0 1.0 0.200
parser 37 20 7157.0 876.3 1058.5 14.5 31.196

Table 1: Performance Numbers

{ ret = 0 ∧ bh b count ≤ bh b size }
1 while n > 0 do
2 if (bh b size − bh b count) < n then count := bh b size − bh b count
3 else count := n;
4 b :=nondet;
5 if b then ret := 1;
6 n := n− count; bh b count := bh b count + count;
7 if bh b count = bh b size then
8 bh b size := nondet; bh b count := nondet; bh b count := 0;
9 end
{ n = 0 ∧ bh b count ≤ bh b size }

Figure 2: A Sample Loop in Linux IDE Driver

6 Experiments

We have implemented a prototype 1 in OCaml. In our implementation, we use Yices as the
SMT solver to resolve queries (Algorithm 3 and 4). From SPEC2000 benchmarks and Linux
device drivers we chose five while statements. We translated them into our language and
added postcondition manually. Table 1 shows the performance numbers of our experiments.
Among five while statements, the cases parser and vpr are extracted from PARSER and VPR
in SPEC2000 benchmarks respectively. The other three cases are extracted from Linux 2.6.28
device drivers: both ide-ide-tape and ide-wait-ireason are from IDE driver; usb-message
is from USB driver. For each case, we report the number of language constructs in the loop
(SIZE), the number of atomic propositions (AP), the number of membership queries (MEM),
the number of equivalence queries (EQ), the number of randomly resolved membership queries
(coin tossing), the number of the CDNF algorithm invocations (iterations), and the execution
time. The data are the average of 500 runs and collected on a 2.8GHz Intel E7400 Duo Core
with 3GB memory running Linux 2.6.28.

Our technique is able to find invariants for four cases within 1 second. Most interestingly,
the learning algorithm is able to find an invariant for usb-message regardless of the outcomes
of coin tossing. Although about 7 membership queries are resolved randomly, an invariant can
always be found in that case. For the most complicated case parser, our technique is able to
generate an invariant with 1059 random membership resolutions in about 31 seconds.

6.1 ide-ide-tape from Linux IDE Driver

Figure 2 is a while statement extracted from Linux IDE driver.2 The flexibility in invariants
can be witnessed in the following run. After successfully resolving 3 equivalence and 5 mem-
bership queries, the CDNF algorithm makes the following membership query unresolvable by

1Available at http://ropas.snu.ac.kr/vmcai10/inv-learn-released.tar.gz
2The source code can be found in function idetape copy stage from user() of drivers/ide/ide-tape.c in

Linux 2.6.28

11

{ phase = F ∧ success = F ∧ give up = F ∧ cutoff = 0 ∧ count = 0 }
1 while ¬(success ∨ give up) do
2 entered phase := F;
3 if ¬phase then
4 if cutoff = 0 then cutoff := 1;
5 else if cutoff = 1 ∧maxcost > 1 then cutoff := maxcost ;
6 else phase := T; entered phase := T; cutoff := 1000;
7 if cutoff = maxcost ∧ ¬search then give up := T;
8 else
9 count := count + 1;

10 if count > words then give up := T;
11 if entered phase then count := 1;
12 linkages := nondet;
13 if linkages > 5000 then linkages := 5000;
14 canonical := 0; valid := 0;
15 if linkages 6= 0 then
16 valid := nondet; assume 0 ≤ valid ∧ valid ≤ linkages;
17 canonical := linkages;
18 if valid > 0 then success := T;
19 end
{ (valid > 0 ∨ count > words ∨ (cutoff = maxcost ∧ ¬search))∧
valid ≤ linkages ∧ canonical = linkages ∧ linkages ≤ 5000 }

Figure 3: A Sample Loop in SPEC2000 Benchmark PARSER

the invariant approximations:
ρ︷ ︸︸ ︷

n > 0 ∧ (bh b size − bh b count) < n ∧ ret 6= 0∧bh b count = bh b size

Answering YES to this query leads to the following unresolvable membership query after
successfully resolving one more membership query:

ρ ∧ bh b count 6= bh b size ∧ bh b count ≤ bh b size

We proceed with a random answer YES . After successfully resolving two more membership
queries, we reach the following unresolvable membership query:

ρ ∧ bh b count 6= bh b size ∧ bh b count > bh b size

For this query, both answers lead to invariants. Answering YES yields the following invariant:

n 6= 0 ∨ (bh b size − bh b count) ≥ n

Answering NO yields the following invariant:

(bh b count ≤ bh b size ∧ n 6= 0) ∨ (bh b size − bh b count) ≥ n

Note that they are two different invariants. The equivalence query resolution algorithm (Algo-
rithm 4) ensures that both fulfill the conditions in Definition 5.

6.2 parser from VPR in SPEC2000 Benchmarks

Figure 3 shows a sample while statement from the parser program in SPEC2000 benchmark.3

In the while body, there are three locations where give up or success is set to T. Thus one of
3The source code can be found in function loop() of CINT2000/197.parser/main.c in SPEC2000.

12

these conditions in the if statements must hold (the first conjunct of postcondition). Variable
valid may get an arbitrary value if linkages is not zero. But it cannot be greater than linkages
by the assume statement (the second conjunct of postcondition). The variable linkages gets an
arbitrary value near the end of the while body. But it cannot be greater than 5000 (the fourth
conjunct), and always equal to the variable canonical (the third conjunct of postcondition).
Despite the complexity of the postcondition and the while body, our approach is able to
compute an invariant in 15 iterations. The execution time and number of iterations vary
significantly. They range from 2.25s to 163.46s and 1 to 78 with standard deviations 29.42 and
14.0 respectively. By Chebyshev’s inequality [12], our technique infers an invariant within two
minutes with probability 0.891.

One of the found invariants is the following:

success ⇒ (valid 6= 0 ∧ canonical 6= 0 ∧ valid ≤ linkages∧
linkages ≤ 5000 ∧ canonical = linkages)

∧
give up ⇒ (valid 6= 0 ∨ ¬search ∨ count > words)

∧
give up ⇒ (valid 6= 0 ∨ count > words ∨ cutoff = maxcost)

∧
give up ⇒

(canonical 6= 0 ∧ valid ≤ linkages ∧ linkages ≤ 5000 ∧ canonical = linkages)∨
(valid = 0 ∧ linkages = 0 ∧ canonical = linkages)

This invariant describes the conditions when success or give up are true. For instance, it
specifies that valid 6= 0 ∧ canonical 6= 0 ∧ valid ≤ linkages ∧ linkages ≤ 5000 ∧ canonical =
linkages should hold if success is true. In Figure 3, we see that success is assigned to T at
line 18 with condition valid > 0. The first conjunct (valid 6= 0) is valid. Since valid is set
to 0 at line 14, we know that the condition linkages 6= 0 (line 15) is valid. From line 16
and 17, we see that the third (valid ≤ linkages), fourth (linkages ≤ 5000), and fifth conjunct
(canonical = linkages) are valid. Finally, we have linkages 6= 0 and canonical = linkages. The
second conjunct (canonical 6= 0) is also valid.

7 Discussion and Future Work

The complexity of our technique depends on the distribution of invariants. It works most
effectively if invariants are abundant. The number of iterations depends on the outcomes of
coin tossing. The main loop may reiterate several times or not even terminate. Our experiments
suggest that there are sufficiently many invariants in practice. For each of the 2500 (= 5×500)
runs, our technique always generates an invariant. On average, it takes 14.5 iterations for the
most complicated case parser, and less than 5 iterations for the other cases.

Since plentiful of invariants are available, it may appear that one of them can be generated
by merely coin tossing. But this is not the case. In parser, our technique does not terminate if
the under- and over-approximations are the strongest and weakest approximations respectively.
Indeed, 7157 membership and 876 equivalence queries are resolved by invariant approximations
in this case. Invariant approximations are essential to our framework.

Better invariant approximations (ι and ι) can be computed by static analysis and used in our
framework. More precise approximations of ι and ι will improve the performance by reducing
the number of iterations via increasing the number of resolvable queries. Also, a variety of
techniques from static analysis or loop invariant generation [8, 13, 14, 15, 16, 17, 9, 18] in
particular can be used together to resolve queries in addition to one SMT solver with coin
tossing. Such a set of multiple teachers will increase the number of resolvable queries because
it suffices to have just one teacher to answer the query to proceed.

In comparison with previous invariant generation techniques [8, 13, 14, 15, 16, 17, 9, 18],
we have the following distinguishing features. (1) We do not use fixed point computation nor
any static or dynamic analyses. Instead, we use algorithmic learning [5] to search for loop

13

invariants. (2) Templates for invariants are not needed. Our approach does not restrict to
specific forms of invariants imposed by templates. (3) We employ SMT solvers instead of
theorem provers in our technique. This allows us to take advantages of recent development in
efficient SMT algorithms. (4) Our method can be extended and combined with the existing
loop invariant techniques.

Related Work Existing impressive techniques for invariant generation can be adopted as
the query resolution components (teachers) in our algorithmic learning-based framework. Sri-
vastava and Gulwani [14] devise three algorithms, two of them use fixed point computation
and the other uses a constraint based approach [13, 15] to derive quantified invariants. Gupta
and Rybalchenko [16] present an efficient invariant generator. They apply dynamic analysis to
make invariant generation more efficient. Flanagan and Qadeer use predicate abstraction to
infer universally quantified loop invariants [8]. Predicates over Skolem constants are used to
handle unbounded arrays. McMillan [18] extends a paramodulation-based saturation prover to
an interpolating prover that is complete for universally quantified interpolants. He also solves
the problem of divergence in interpolated-based invariant generation.

8 Conclusions

By combining algorithmic learning, decision procedures, and predicate abstraction, we intro-
duced a technique for invariant generation. The new technique finds invariants guided by query
resolution algorithms. Algorithmic learning gives a platform to integrate various techniques
for invariant generation; it suffices to design new query resolution algorithms based on existing
techniques. The learning algorithm will utilize the information provided by these techniques.

To illustrate the flexibility of algorithmic learning, we deploy a randomized query resolution
algorithm. When a membership query cannot be resolved, a random answer is returned to the
learning algorithm. Since the learning algorithm does not commit to any specific invariant
beforehand, it always finds a solution consistent with query results. Our experiments indeed
show that algorithmic learning is able to infer non-trivial invariants with this näıve membership
resolution. It is important to exploit the power of coin tossing in our technique.

Acknowledgment We would like to thank Wontae Choi, Deokhwan Kim, Will Klieber, Sasa
Misailovic, Bruno Oliveira, Corneliu Popeea, Hongseok Yang, and Karen Zee for their detailed
comments and helpful suggestions.We also would like to thank Heejae Shin for implementing
OCaml binding of Yices.

References

[1] Cobleigh, J.M., Giannakopoulou, D., Păsăreanu, C.S.: Learning assumptions for compo-
sitional verification. In: TACAS. Volume 2619 of LNCS., Springer (2003) 331–346

[2] Alur, R., Madhusudan, P., Nam, W.: Symbolic compositional verification by learning
assumptions. In: CAV. Volume 3576 of LNCS., Springer (2005) 548–562

[3] Gupta, A., McMillan, K.L., Fu, Z.: Automated assumption generation for compositional
verification. In: CAV. Volume 4590 of LNCS., Springer (2007) 420–432

[4] Chen, Y.F., Farzan, A., Clarke, E.M., Tsay, Y.K., Wang, B.Y.: Learning minimal sepa-
rating DFA’s for compositional verification. In: TACAS. Volume 5505 of LNCS., Springer
(2009) 31–45

[5] Bshouty, N.H.: Exact learning boolean functions via the monotone theory. Information
and Computation 123 (1995) 146–153

14

[6] Dutertre, B., Moura, L.D.: The Yices SMT solver. Technical report, SRI International
(2006)

[7] Kroening, D., Strichman, O.: Decision Procedures an algorithmic point of view. EATCS.
Springer (2008)

[8] Flanagan, C., Qadeer, S.: Predicate abstraction for software verification. In: POPL, ACM
(2002) 191–202

[9] Lahiri, S.K., Bryant, R.E., Bryant, A.E.: Constructing quantified invariants via predicate
abstraction. In: VMCAI. Volume 2937 of LNCS., Springer (2004) 267–281

[10] Graf, S., Säıdi, H.: Construction of abstract state graphs with pvs. In: CAV. Volume
1254 of LNCS., Springer (1997) 72–83

[11] Angluin, D.: Learning regular sets from queries and counterexamples. Information and
Computation 75 (1987) 87–106

[12] Rosen, K.H.: Discrete Mathematics and Its Applications. McGraw-Hill Higher Education
(2006)

[13] Gulwani, S., Srivastava, S., Venkatesan, R.: Constraint-based invariant inference over
predicate abstraction. In: VMCAI. Volume 5403 of LNCS., Springer (2009) 120–135

[14] Srivastava, S., Gulwani, S.: Program verification using templates over predicate abstrac-
tion. In: PLDI, ACM (2009) 223–234

[15] Gulwani, S., Srivastava, S., Venkatesan, R.: Program analysis as constraint solving. In:
PLDI, ACM (2008) 281–292

[16] Gupta, A., Rybalchenko, A.: Invgen: An efficient invariant generator. In: CAV. Volume
5643 of LNCS., Springer (2009) 634–640

[17] Kovács, L., Voronkov, A.: Finding loop invariants for programs over arrays using a
theorem prover. In: FASE. LNCS, Springer (2009) 470–485

[18] McMillan, K.L.: Quantified invariant generation using an interpolating saturation prover.
In: TACAS, Springer (2008) 413–427

[19] Ball, T., Cook, B., Das, S., Rajamani, S.K.: Refining approximations in software predicate
abstraction. In: TACAS. Volume 2988 of LNCS., Springer (2004) 388–403

[20] Lahiri, S.K., Bryant, R.E., Bryant, A.E., Cook, B.: A symbolic approach to predicate
abstraction. In: CAV. Volume 2715 of LNCS., Springer (2003) 141–153

[21] Gulwani, S., McCloskey, B., Tiwari, A.: Lifting abstract interpreters to quantified logical
domains. In: POPL, ACM (2008) 235–246

[22] Zee, K., Kuncak, V., Rinard, M.C.: An integrated proof language for imperative programs.
In: PLDI, ACM (2009) 338–351

[23] Zee, K., Kuncak, V., Rinard, M.: Full functional verification of linked data structures.
In: PLDI, ACM (2008) 349–361

[24] Gulwani, S., Jain, S., Koskinen, E.: Control-flow refinement and progress invariants for
bound analysis. In: PLDI, ACM (2009) 375–385

[25] Podelski, A., Wies, T.: Boolean heaps. In: SAS. Volume 3672 of LNCS., Springer (2005)
268–283

15

[26] Balaban, I., Pnueli, A., Zuck, L.: Shape analysis by predicate abstraction. In: VMCAI.
Volume 3385 of LNCS., Springer (2005)

[27] Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables of a
program. In: POPL, ACM (1978) 84–96

[28] Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstrac-
tion refinement. In: CAV. Volume 1855 of LNCS., Springer (2000) 154–169

16

equivalence query answer I Si Hi ai

T µ1(b0b1) = 00 S1 = ∅ H1 = F a1 = µ1

F µ2(b0b1) = 01 {1} S1 = {µ2} H1 = b1

b1 µ3(b0b1) = 11 ∅ S2 = ∅ H2 = F a2 = µ3

b1 ∧ F µ4(b0b1) = 01 {2} S2 = {µ5}† H2 = ¬b0

b1 ∧ ¬b0 µ6(b0b1) = 10 {1, 2} S1 = {µ2, µ6}
S2 = {µ5, µ7}†

H1 = b1 ∨ b0

H2 = ¬b0 ∨ ¬b1

(b1 ∨ b0) ∧ (¬b0 ∨ ¬b1) YES

† µ5(b0b1) = 10 and µ7(b0b1) = 01

Figure 4: Learning b0 ⊕ b1

A An Example of the CDNF Algorithm

Let us apply Algorithm 1 to learn the Boolean formula b0 ⊕ b1. The algorithm first makes the
query EQ(T) (Figure 4). The teacher responds by giving the valuation µ1(b0) = µ1(b1) = 0
(denoted by µ1(b0b1) = 00). Hence Algorithm 1 assigns ∅ to S1, F to H1, and µ1 to a1. Next,
the query EQ(H1) is made and the teacher responds with the valuation µ2(b0b1) = 01. Since
µ2 6|= F, we have I = {1}. Algorithm 1 now walks from µ2 towards a1. Since flipping µ2(b1)
would not give us a model of b0 ⊕ b1, we have S1 = {µ2} and H1 = b1. In this example,
Algorithm 1 generates (b1 ∨ b0) ∧ (¬b0 ∨ ¬b1) as a representation for the unknown Boolean
formula b0 ⊕ b1. Observe that the generated Boolean formula is a conjunction of two Boolean
formulae in disjunctive normal form.

17

