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a b s t r a c t

This paper presents a novel method to convert a photograph into a stipple illustration. Our
method addresses directional stippling, where the collective flows of dots are directed par-
allel and/or orthogonal to the local feature orientations. To facilitate regular and directional
spacing of dots, we introduce the notion of a structure grid, which is extracted from the
smoothed feature orientation field. We represent a structure grid as a 2D texture and
develop an efficient construction algorithm that outperforms conventional Lloyd’s method
in terms of the rigor of dot alignment. Moreover, the criss-crossing nature of a structure
grid allows for the inclusion of line primitives, providing effective description of dark tone.
Given a structure grid, we determine the appropriate positions and attributes of primitives
in the final illustration via rapid pixel-based primitive rendering. Experimental results
show that our directional stippling method nicely reproduces features and tones of various
input images.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Resynthesizing an image using points is a recurring
problem in computer graphics. It has been addressed in
different but related contexts such as halftoning, sampling,
and stipple drawing. The main goals in this line of work are
often summarized as how well the point distribution
approximates the original tone without creating disturbing
visual artifacts, e.g., point clustering or aliasing. One of the
recent trends in halftoning and stippling is to incorporate
structure or orientation information in generating dot dis-
tributions. For instance, the structure-aware halftoning
techniques [1,2] are particularly useful in preserving visu-
ally identifiable structures and textures in the original
image.

More closely related to our work is the directional stip-
pling technique [3,4] which puts more emphasis on aes-
thetic distribution of points that collectively follows the
. All rights reserved.
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smooth feature orientations in the original image. Such a
stippling style is known as hedcut, in which a set of regu-
larly spaced points tends to form a ‘flow’ that lines up
strictly along and/or perpendicular to the dominant feature
orientations nearby (Fig. 1a and b). The hedcut illustration
style is originally ‘‘designed to emulate the look of wood-
cuts from old-style newspapers, and engravings on certifi-
cates and currency’’ [5], and has often been used by artists
for illustrating portraits in newspapers and magazines. In
addition to the directional spacing of dots, hedcut stippling
has another notable difference. Conventional stippling
usually describes tone by controlling the distribution den-
sity while keeping the dot size fixed. In contrast, hedcut
stippling describes tone by controlling the dot size while
keeping the distribution density fixed (Fig. 1a and b).

Many sampling/stippling methods employ Lloyd’s algo-
rithm (or its variants) [6–10] to provide regular dot spacing
but they do not support such flow-like arrangement of
dots. On the other hand, the method of [3] does generate
hedcut-style stipple illustrations, based on an orienta-
tion-constrained Lloyd’s algorithm. This method, however,
is not without limitations. As the authors pointed out, it
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Fig. 1. Hedcut illustrations created by artists: (a) Kevin Sprouls (www.sprouls.com), (b) Randy Glass (www.randyglassstudio.com), and our method
(c) and (d).
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aligns points well along the feature lines, but not necessar-
ily along the perpendicular directions and thus may lack
the structural rigor of true hedcut style. In this paper, we
present an entirely different approach, which is not based
on Lloyd’s method. The core idea is to construct a feature-
adaptive grid, which we call a structure grid, using a
smoothed feature orientation field. Unlike Lloyd’s method,
the use of a structure grid ensures regular spacing of dots
along the feature directions as well as their perpendicular
directions.

Another limitation of [3] (or stippling in general) is that
despite the efforts to maintain the uniformity of point dis-
tribution, it is hard to avoid point clustering or unwanted
patterns in dark regions. This problem may occur regard-
less of the dot management policy: varying dot size (dots
too big) or varying dot density (dots too many). While
reducing the sizes (or density) of dots could avoid point
clustering, it would result in ineffective representation of
dark tone. As shown in Fig. 1a, hedcut artists often use
hatching lines to represent dark tone, as a way to prevent
point clustering and its resulting distracting patterns. Our
structure grid allows for a similar solution. Its strict align-
ment of points enables us to add line primitives connecting
the dots along the tangential and normal directions of fea-
tures. Consequently, we can easily handle the mixing of
points and lines, as well as seamless transition from bright
tone to dark tone. In this sense, a structure grid provides a
unified platform for handling the mixture of feature-
guided stippling and feature-guided hatching.

A structure grid, as described above, plays an essential
role in our scheme. We define it as a smooth grid that
curves along a vector field reflecting feature directions.
We use a ‘texture’ instead of a set of explicit lines to repre-
sent a structure grid. Our texture representation contains
at each pixel the tangential and normal distances to the
nearest grid intersection. Such a representation allows us
to construct a structure grid by synthesizing a grid texture
from a small grid image with smoothed feature directions
as constraints. Instead of relying on an existing 2D texture
synthesis method, we develop an efficient technique for
structure grid construction which synthesizes and merges
two stripe patterns along tangential and normal directions
of features. We also design a pixel-based primitive render-
ing algorithm that takes advantage of the structure grid to
determine the positions and sizes of stipple dots and
hatching lines in an illustration.

In summary, the main contributions of our paper are as
follows: We introduce structure grid as an effective and
unified tool for directional stippling. We present the defini-
tion, construction method, and rendering algorithm for a
structure grid. As shown in Fig. 1c and d, the use of a struc-
ture grid provides the following benefits:

� A structure grid facilitates uniform spacing of dots along
the tangential and normal directions of features, that is,
the two major directions that constitute point distribu-
tion in a typical hedcut illustration. This produces dot
distributions with stricter alignment than the existing
methods based on Lloyd’s algorithm [11,3].
� A structure grid gives an ability to describe continuous

tone with a mixture of stippling and hatching, which
leads to a more effective description of dark tone than
stipple-only rendering.

2. Related work

2.1. Halftoning

Halftoning is a reproduction technique to approximate
the original image with a reduced number of colors or
grayscales. The output of halftoning often consists of a
set of scattered black dots that are strategically placed to
best describe the original tone. Recently, structure-aware
halftoning techniques [1,2] have been developed based
on iterative optimization and error diffusion, respectively.
Their main goal is to improve the structure and texture
similarities between the original and the halftone images,
rather than generating stylistic and directional dot distri-
butions as in hedcut illustrations.

2.2. Stippling/sampling

Deussen et al. [6] described stippling as a special kind of
non-photorealistic rendering, having more freedom than
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halftoning in terms of dot size, shape, and style of distribu-
tion. They showed that Lloyd’s method produces aesthetic
stipple drawing with rigorous dot spacing. Secord [7] pre-
sented a modified Lloyd’s method that incorporates data-
driven weights, for better protection of image features
such as edges.

Stippling, as with halftoning, could similarly benefit
from reducing aliasing artifacts by seeking blue noise spec-
tral characteristics. Cohen et al. [12] used Lloyd’s method
to produce a tileable set of blue noise dot distributions.
Kopf et al. [8] developed a recursive Wang-tiling method
to enable real-time, dynamic control of blue noise dot dis-
tributions. Ostromoukhov et al. [13,9] presented fast hier-
archical blue noise sampling algorithms by preprocessing
Lloyd’s relaxation step with Penrose tiling and rectifiable
polyominoes, respectively. Balzer et al. [10] developed a
capacity-constrained Lloyd’s method that produces point
distributions with blue noise characteristics but fewer reg-
ularity artifacts.

Mould [14] presented a stippling algorithm based on
graph search (instead of Lloyd relaxation) for improved
protection of image features, such as edges. There are a
few methods based on analysis of hand-drawn stippling
images [15–17]. Maciejewski et al. [15] quantified the dif-
ference between a computed-generated stippling and
hand-drawn stippling of the same object. Kim et al. [16]
used the same evaluation method as Maciejewski et al.
[15] to reproduce the statistical characteristics represented
in hand-drawn stippling. Martin et al. [17] developed an
example-based method to produce scale-independent stip-
ple illustrations for specific output size and resolution.
2.3. Directional stippling/hatching

None of the halftoning/sampling/stippling techniques
mentioned above attempts to place the entire set of points
in the image along curves with some smoothly varying ori-
entations. Artistic rendering often involves such full-scale
directional distribution of primitives, as seen in many of
the existing painting and pen-and-ink algorithms [18,19].
Hedcut illustration, and thus also our work, has this
property.

Hertzmann and Zorin [20] suggested an automatic
method to generate directional and equally spaced hatch-
Fig. 2. Overall process of our dir
ing curves on 3D smooth surfaces, which however is not
directly applicable to 2D images due to lack of information
on the surface geometry, such as principal curvature
directions.

Ostromoukhov’s digital facial engraving system [21]
takes a facial image as input and places a set of equally
spaced engraving lines along the iso-parametric curves
on the face, producing images reminiscent of hedcut illus-
trations, albeit without stippling. This system requires the
user to manually segment the facial surface and carefully
determine the parametric grid in each of the segmented
regions.

Hausner’s tile mosaics technique [11] employs Lloyd’s
method with Manhattan distance metric to arrange rectan-
gular tiles along the feature flow while tightly packing the
space. Kim et al. [3] developed a constrained Lloyd algo-
rithm to align dots strictly along the smooth image feature
flow, resulting in a hedcut-style illustration with more rig-
orous dot spacing than Hausner’s approach. Recently, Kim
et al. [4] incorporated shading information in the direction
field for better description of the local shape and depth of
the surface.
3. Overall process

Fig. 2 shows the overview of our directional stippling
method, which contains the following three components.

� Feature vector field generation: From the input photo-
graph, we first extract feature lines such as edges, then
construct the feature vector field by interpolating the
feature directions on the lines.
� Structure grid construction: Given the feature vector

field, we generate a structure grid, with which to guide
the placement of primitives. The structure grid is essen-
tially a 2D rectangular grid that is smoothly deformed
along the local feature directions. The criss-crossing
grid lines represent two local axes, one along the fea-
ture (tangent) direction and the other along its perpen-
dicular (normal) direction.
� Primitive rendering: Guided by the structure grid, we

draw primitives, i.e., stipple dots and hatching lines. In
principle, dots are placed at the grid intersections and
lines are placed on the grid lines. The attributes
ectional stippling method.
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(position, size, orientation) of each primitive are deter-
mined by examining the structure grid as well as the
tone map. Finally, we add the extracted feature lines
to the output in order to improve the clarity of illustra-
tion, as often done by professional artists.

4. Feature vector field generation

We first extract a black and white feature line map from
the input image, where black pixels denote feature points.
The tangential feature direction is also obtained at each
feature point. The direction vectors at white (non-feature)
pixels are then interpolated from the feature points. The
result of this scattered orientation interpolation is our fea-
ture vector field, a smoothly varying vector field that re-
cords at each pixel the dominant feature directions nearby.
4.1. Feature line map extraction

For constructing the line map, we employ the flow-
based line drawing method by Kang et al. [22], which con-
structs coherent and stylized feature lines. The tangential
direction at each feature pixel is obtained from the edge
tangent flow (ETF), a by-product of this line drawing algo-
rithm (see [22] for more detail).

In professional illustrations, artists often place primi-
tives along the principal curvature directions to depict
the shape of a surface [23,20]. Since it is impossible to
estimate such principal directions directly from a 2D im-
age, we use isophote curves [24,4] to further assist in
reflecting the approximate shape of the surface, under
the assumption of Lambertian shading with a constant sur-
face material property.

We first quantize the image intensities to a user-speci-
fied level and detect isophote curves along the quantiza-
tion boundaries. The isophote pixels are then added to
the feature line map together with the directions obtained
from ETF. In our experiments, we use zero (no isophote
curve) to four quantization levels.

Fig. 3b shows the feature line map for the input image
in Fig. 3a. Black lines show the result of the line drawing
algorithm [22]. Blue lines are the added pixels from iso-
phote curves, which reflect the shape of the nose and the
shades on the cheek.
Fig. 3. Feature vector
4.2. Feature vector interpolation

To determine direction vectors for white (non-feature)
pixels, we apply scattered data interpolation to the vectors
at feature pixels. We find that scattered data interpolation
outperforms ETF smoothing in creating consistent flow and
also in reducing singularities in the vector field. We adopt
multi-level B-spline interpolation [25], which runs fast and
is easy to implement.

Before interpolation, we convert direction vectors to
2 � 2 structure tensors to avoid cancel-out of two oppo-
site vectors (e.g., (1,0) and (�1,0)) [26]. We apply scat-
tered data interpolation to each component of the
structure tensor. At each non-feature pixel, an eigenvector
of the interpolated structure tensor serves as the new
direction vector. Fig. 3c and d show the feature vector
fields obtained from the feature line maps in Fig. 3a and
b, respectively.

5. Structure grid construction

A structure grid consists of deformed 2D grid patches
that conform to the given feature vector field (Fig. 5e). It
facilitates aligned placement of primitives (dots and lines)
with regular spacing along both tangent and normal direc-
tions of the features (Fig. 4).

In order to construct a structure grid, one could at-
tempt to use texture synthesis (e.g., [27]) with a small
2D grid image as texture sample and with the feature
vector field as constraints for local texture orientations.
However, we found that existing texture synthesis tech-
niques do not always perform well for such grid-shaped
texture. In particular, it may obscure some grid intersec-
tions and grid lines (Fig. 5h). This is harmful because grid
intersections and grid lines are where the stipple dots and
hatching lines will be positioned, and thus directly affect
the quality of stipple illustration. Instead, we synthesize a
set of stripes in two orthogonal directions, such that they
follow the tangential and normal directions of the feature
vector field.

5.1. Structure grid and stripe pattern definition

A structure grid G is a vector-valued image (G: p ?
(t0, t1)), where t0 and t1 denote the distances from pixel p
field generation.



Fig. 4. Arranging stipple dots and hatching lines with a grid.

Fig. 5. Stripe pattern synthesis and the resulting structure grid: (a) input image, (b)–(d) Upper: stripe pattern following the feature directions, lower: stripe
pattern perpendicular to the feature directions, where the pixel values are mapped to grayscale values, (e) structure grid, where the minimum among the
two values at each pixel is mapped to a grayscale value, (f) grid pattern constructed by a 2D texture synthesis technique [27], (g) and (h) enlargements of (e)
and (f).
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to the nearest grid lines measured along the two perpen-
dicular local axes, respectively. Let d denote the desired
interval between neighboring grid lines. We then let ti

range in [0,d/2], reflecting the periodic nature of the grid.
We use the same interval d in both tangential and normal
feature directions to ensure regular primitive spacing. The
default value for d is six pixels. With this setting, stipple
dots should be located at pixels with value pair (0,0),
while hatching lines should be placed along (t0,0) or
(0, t1).

We construct a structure grid by running two passes of
stripe pattern synthesis along tangential and normal fea-
ture directions, respectively. Here, a stripe pattern P refers
to a scalar-valued image (P: p ? t) that accounts for one
of the two distance values (t0, t1) at each pixel p (Fig. 5d
and e).
5.2. Stripe pattern synthesis

Given a feature vector field F and a desired spacing d,
we synthesize a stripe pattern P via iterative refinement
of the distance values in P through local optimization. For
the stripes along the tangential directions of F, we initialize
each pixel with the distance from the nearest feature line.
We compute these initial distances via jump-flooding algo-
rithm [28]. The distance values are converted into real
numbers in [0,d/2] using a periodic reflection function,

SðxÞ ¼ Sðxþ dÞ ¼minðx; d� xÞ; ð1Þ

where 0 6 x < d. Function S represents a 1D version of a
regular grid, whose value corresponds to the distance from
the nearest grid point. For the stripes along the normal
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directions, there is no intuitive way to initialize the values
in P, and thus we use random initial values in [0,d/2].

For each pixel p in P, the goal is to obtain its optimal va-
lue t. We iteratively update t using a neighborhood win-
dow W of size (2r + 1) � (2r + 1) centered at p. In our
implementation, we set r = d; the window size is twice
the grid line spacing. Window W should be oriented to fol-
low either the tangential or normal direction of F at p,
depending on the target stripe orientation (Fig. 6, left,
when r = 3). We obtain a 1D array of values by computing
the average pixel value of each row in W along the target
orientation (Fig. 6, the vertical array in the middle). The
resulting 1D array of size (2r + 1), which is denoted by
w[i], i = �r, . . ., r, summarizes the current t value distribu-
tion around the center pixel p.

Now to estimate the optimal t value for p, we find the
best match of the array w against the periodic reflection
function S. For element-by-element comparison of w[i]
and S, we define a template array sx[i] for S, which has
the same size as w[i], where sx[i] = S(i + x), 0 6 x < d and
i = �r, . . ., r. This template array sx contains shifted samples
of the function S, where x is the shift amount (see Fig. 6,
right, array sx on top of function S). We then analytically
find x that minimizes the difference between w[i] and sx[i],

Eðw; sxÞ ¼
Xr

i¼�r

ðsx½i� �w½i�Þ2: ð2Þ

We first divide the range of x into subranges [m/2,
m/2 + 0.5], m = 0, . . ., 2d � 1. Note that in each subrange,
all elements in sx[i] can be determined without using min
function in Eq. (1). That is, in a subrange, sx[i] is either
i + x or d � (i + x) regardless of the value of x. Consequently,
E(w,sx) is reduced to a quadratic function of x in each sub-
range, and we can easily compute xm that minimizes
E(w,sx) in the mth subrange. We select x that has the small-
est cost E(w,sx) among the xm values from all subranges.
The selected x determines the sequence sx that best
matches the current neighborhood around p. The distance
t at p is updated as sx[0], the central element of the array sx.
Fig. 6. Update of a pixel value in t
This update operation is performed for every pixel in
the stripe pattern P. The number of iterations for pixel
updates in P is user-specified (typical number is between
3 and 8). The upper parts of Fig. 5b–d show the iterative
process to generate a stripe pattern along the tangential
directions of the feature flow F. Fig. 5b shows the initial
tangential stripe pattern obtained using the distances from
the feature lines, while Fig. 5c and d show iterative refine-
ment results. A higher number of iterations usually means
longer processing time but better synthesis result. After
the tangential stripe pattern has been generated, the nor-
mal stripe pattern synthesis follows, and is conducted sim-
ilarly. The lower parts of Fig. 5b–d show the process, where
random values have been used for the initial normal stripe
pattern. This second synthesis pass completes a structure
grid G, shown in Fig. 5e. The whole process for structure
grid construction consists of pixel-wise operations, and
we implemented it on GPU.

By separating a structure grid into two orthogonal stripe
patterns, we can outperform conventional 2D texture syn-
thesis in preserving the integrity of the grid intersections
and the grid lines (Fig. 5g and h). Moreover, this approach
leads to significant acceleration. In 2D texture synthesis,
to update the value pair (t0, t1), we need to consider all pixels
in the (2r + 1) � (2r + 1) window W and the new value pair is
chosen from the 2D range {(x,y)jx,y 2 [0,d/2]}. The resulting
operation count is O(d2(2r + 1)2). In our case, however, with
the use of a 1D array w, a new value t can be chosen from the
1D range [0,d/2]. We synthesize two stripe patterns and the
final operation count is 2 � O(d(2r + 1)). See Appendix A for
more detail of the operation counts.

When we place the window W to define the neighbor-
hood of a pixel p, we can control the scale of W as well
as the orientation. The scale factor is not related to the size
of W, which is always (2r + 1) � (2r + 1). Instead, it deter-
mines the coverage of W for the neighbor pixels of p. When
the scale factor is one, which is the default, W contains
(2r + 1) � (2r + 1) pixels centered at p. If the scale factor
is 1/2, the coverage of W reduces to (2r + 1)/2 � (2r + 1)/2
pixels. We can use this scale factor to adaptively control
he stripe pattern synthesis.



Fig. 7. Stipple dot shape comparison.
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the spacing of stripes (and so grid lines), e.g., with image
tone values.
6. Primitive rendering

Once the structure grid is constructed, we draw primi-
tives (stipple dots and hatching lines). Attributes such as
position, dot size, and line width are determined by com-
bining the values in the structure grid with local tone of
Fig. 8. Primitive size

Fig. 9. Comparison with co
the input image. We obtain the tone map T from the gray-
scale version of the input image, which is then Gaussian
smoothed to reduce noise and avoid abrupt tone changes.
6.1. Stipple dots

In directional stippling, the tone is described by varying
the dot size. A straightforward approach would be to draw
explicit circles at the pixels with value pair (0,0) in the
determination.

nventional stippling.
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structure grid. However, it is known that using perfect cir-
cles as dots could easily produce overly mechanical look
(Fig. 7a). Besides, in this case a slight imperfection in the
dot distribution can be easily magnified. Professional
illustrators thus often use somewhat irregular-shaped dots
to create a more natural and comfortable look (Fig. 7b).

To this end, we take an implicit approach, and develop a
pixel-based dot rendering algorithm. For each pixel, we
determine its intensity by computing its probability to be
included in the nearest dot. To compute this probability,
we need to know two things: the size of the nearest dot
and the distance to the dot center.

The distance ds from pixel p to the nearest dot center
can be easily obtained as ds ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2

0 þ t2
1

q
. The dot size is in-

versely proportional to the local tone. Let b denote the
average tone in the d � d region X around the nearest
dot center. For ease of computation, we approximate b by
Fig. 10. Comparison with d
T(p), which is justified somewhat by the Gaussian blurring
of the tone map. Now we estimate the size of a black dot
which is needed to reproduce the given tone b in the region
X (Fig. 8a). The dot radius, denoted by s, should satisfy

1� b ¼ ps2

d2 ; that is; s ¼ d

ffiffiffiffiffiffiffiffiffiffiffiffi
1� b
p

r
;

assuming the intensity ranges in [0,1]. If the radius is lar-
ger than d/2, neighboring dots overlap. In this case, we
should adjust the radius computation to compensate the
overlapping of stipples. See Appendix B for more detail.

Now that we have estimated both the dot size s and the
distance ds, the pixel intensity at p is determined as fol-
lows. We assign zero (black) if ds is less than s � ds, where
ds is a user-specified parameter to control the width of the
grayscale band around the dot boundary. This band is for
antialiasing. If ds is greater than s, the intensity becomes
irectional stippling.
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one (white). Otherwise, the pixel p gets an interpolated
grayscale value, 1 � (s � ds)/ds. We used ds = 1 (one pixel)
for all examples.

Our approach allows for pixel-based dot rendering
where the calculation of intensity is performed indepen-
dently of the neighboring pixels. This leads to a simple
and efficient GPU implementation. Our pixel-based dot
rendering generates less-than-perfect circular dots, which
is intended as described above. Also, the use of average
tone value in the local window in computing the dot size
leads to faithful reproduction of the overall tone.
6.2. Hatching lines

Hatching is conducted by placing lines through the pix-
els with value t0 = 0 or t1 = 0 in the structure grid. Again we
control the line width to reflect the local tone. Like stip-
pling, we process each pixel independently.

We determine the intensity of a pixel p by estimating
the probability of p to be included in the nearest hatching
line. Let X be the local region of size d � d centered at the
grid intersection point (with value pair (0,0)) nearest to p.
When a line of width h is drawn in the region X, the white
pixels (no line) occupy area of (d � h)2 (Fig. 8b). To pre-
serve the average tone b in X, the width h should satisfy:

b ¼ ðd� hÞ2

d2 ; that is; h ¼ dð1�
ffiffiffi
b
p
Þ:

The distance dh from p to the nearest hatching line in X is
obtained by dh = min{t0, t1}. If dh is less than h � dh, the
intensity of p is zero. Similarly to stippling, dh is a user-
specified parameter to control the width of the grayscale
band around the hatching line boundary, and dh = 1 in
our experiments. If dh is greater than h, the intensity is
one. Otherwise, the intensity is interpolated.
Fig. 11. Input
As with stippling, our pixel-based hatching line render-
ing method has similar benefits. The implementation is
GPU-friendly, the shapes of hatching lines have natural
variations with antialiasing, and the overall tone is well
preserved.

6.3. Style mixing

As pointed out in Section 1, the stippling-only policy
may lead to trouble in dark area due to the possibility of
dot clustering. Reducing dot size or dot density is not a
good solution either as we would then not be able to de-
scribe the dark tone effectively. To avoid this trouble, hed-
cut artists often use hatching to describe dark tone.

In general, such style mixing is a challenging task as it
could easily generate visual artifacts around the border of
the opposing styles. The introduction of our structure grid,
however, naturally resolves this problem as it allows to
handle both stippling and hatching in a unified manner,
based on the same underlying grid. This ensures seamless
blending of the two styles, as in professional hedcut
illustrations.

In practice, we perform hatching if the computed dot
size s is bigger than the user-specified maximum smax.
We can easily control the mixing style by changing smax.
With smax = 0 we obtain pure hatching, while a large smax

would produce pure stippling.

6.4. Dot shape enhancement

The deformation of the regular grid inevitably disrupts
the uniform spacing of grid intersections in a structure grid
G. This could also lead to excessive deformation of dot
shape, especially near singularities where the flow degen-
erates. To alleviate this problem, we may optionally revise
the values t0 and t1 around the grid intersections.
images.
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From the set of grid intersections (the local minima offfiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2

0 þ t2
1

q
, practically), we compute the Voronoi diagram.

Each pixel is then assigned new t0 and t1 by measuring
its distances from the center of its Voronoi cell along the
tangential and normal direction, respectively. Let G

0
denote

this modified structure grid. To resolve the discontinuity of
values t0 and t1 in G

0
near the Voronoi cell boundaries, we

generate G
00

by applying our stripe pattern synthesis sepa-
rately to the t0 and t1 values in G

0
. We finalize the structure

grid using the weighted average, wG
0
(p) + (1 � w)G

00
(p),

where the weight w at pixel p is inversely proportional to
the distance from the Voronoi cell center of p. We use
Fig. 12. Hedcut illus
jump-flooding algorithm [28] to compute the Voronoi cells
and the distances from the Voronoi centers.

7. Experimental results

7.1. Comparisons

Fig. 9 shows comparisons with existing stipple draw-
ing methods. Note that in Fig. 9a and b, the dot density
changes according to the tone, while locally keeping the
uniformity of distribution. In contrast, our approach per-
forms directional stippling that keeps the dot density
fixed while shaping the distribution along the feature
tration results.
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directions. Also, notice the effective description of dark
tone with the substitution of hatching lines. These two
traits of our approach, that is, the directional shaping
of dots and the effective handling of dark tone, helps
clarify the individual leaves of the plant. While Fig. 9a
and b mainly focus on faithful tone reproduction, our
method performs well in conveying features and avoid-
ing dot clumping.

Fig. 10 shows a comparison with the state-of-the-art
directional stippling method [3]. Our method outperforms
in terms of aligning dots in both major directions in hedcut
style. Also, our method effectively covers a wider range of
tone without creating distribution artifacts.
Fig. 13. Hedcut illust
7.2. Illustration results

In our method, all processing steps (with the exception
of the multi-level B-spline interpolation) are pixel-based
operations, and therefore GPU-friendly. We implemented
them on a GPU using pixel shaders. The processing time
depends mainly on the image size, primitive spacing (d),
and window radius (r) and iteration number (niter) for
stripe pattern synthesis. We tested our system on an In-
tel(R) Core(TM) i7 CPU with an nVIDIA GeForce GTX 285
Graphics card. For a 450 � 600 image with parameters
d = r = 6 and niter = 5, the entire process takes about 1.0 s.
In the case using d = r = 8, it takes about 1.5 s.
ration results.
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Figs. 12 and 13 show hedcut illustrations generated by
our system using the input images in Fig. 11. We fix both
the spacing d and the window radius r to six, the number
of iteration niter five, and the maximum stipple size smax

(for style mixing) 3.0. The number of quantization level
to add isophote curves for feature vector field is set to zero
for Fig. 12b and c, and three for others. No sophisticated
parameter tweaking has been needed to produce consis-
tent results from various input images.

We can additionally control the scale factor of the win-
dow W in stripe pattern synthesis. Fig. 12a, b, d and
Fig. 13a show the illustration results when the scale factors
are changed according to the tone values of pixels. Gener-
ally, we use a smaller scale factor for a darker tone. We can
then reproduce dark tones effectively without using too
large primitives due to the increased density of primitives.

7.3. Tile mosaics

Structure grid can serve as a general framework for im-
age stylization, where the primitives are arranged to follow
the feature flow with some spacing constraint. For in-
stance, it can be used to generate tile mosaics.

Given the Voronoi diagram used in the dot shape
enhancement process (Section 6.4), we draw a square for
each center of the Voronoi cell, with the orientation from
Fig. 15. Unwanted patterns or singularities in our results. (a)–(d
the feature flow and the color from the input image. Let
N denote the number of pixels in a Voronoi cell. Then the
side length of the square is determined as

ffiffiffiffi
N
p
� s, where

s is the interval between neighboring squares. In Fig. 14,
the same structure grid obtained from an input stained
glass image was used to generate the hedcut illustration
and tile mosaics.

8. Discussion and future work

We have addressed the problem of directional stippling,
which appears to have been somewhat overlooked in the
area of stippling. In particular, we have presented a novel
approach to computerized hedcut illustration, based on
the notion of a structure grid as a guiding tool for direc-
tional stippling. Compared to the state-of-the-art hedcut
illustration method [3], our approach ensures more rigor-
ous alignment of primitives, and supports effective
description of dark tone based on seamless mixing of stip-
pling and hatching, which are the key elements of profes-
sional hedcut style. We also showed that the usefulness
of structure grid goes beyond directional stippling. It could
be used to assist other NPR styles, such as mosaics, engrav-
ing, woodcuts, painting, and pen illustration, where the
quality of output is dictated by placement, arrangement,
and spacing of primitives.
) are captured from Fig. 12a–c, and Fig. 13d, respectively.
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Some limitations remain. Hedcut artists typically shape
the flow of dots in such a way that it conforms to the true
structure of the original 3D surface, while avoiding any
unnatural patterns or singularities in the flow. Our auto-
matic flow construction algorithm, however, may leave
some unwanted patterns or singularities in the field.
Although the use of isophotes and scattered orientation
interpolation helps reduce these artifacts, there could still
be some persistent ones (see Fig. 15). In a way this is inev-
itable unless we have the full knowledge on the original 3D
shape of the subject, which however is unavailable in or-
dinary 2D images. Employing a sophisticated interactive
technique such as [29] to restructure the flow may help
in this regard. Nevertheless, let us point out that our sys-
tem generally produces quite convincing stipple illustra-
tions fully automatically without any user intervention.

Possible future research directions include extension to
the hedcut-style video illustration, which would require a
temporally coherent sequence of structure grids. Such im-
age-based feature-following grid, we believe, may be use-
ful in other applications, such as stroke-based rendering,
flow visualization, image vectorization, and other flow-
based stylization methods. In particular, the look of the
structure grid is reminiscent of streamline-based flow
visualization, which calls for its further investigation in
the context of visualization.
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Appendix A. Complexity of optimal texture value
computation

If we take the 2D texture synthesis approach to update
the value pair (t0, t1), we should directly match the
(2r + 1) � (2r + 1) window W with the 2D version of the
periodic reflection function S, which is denoted by
Fig. B.16. Approximating area of an overlapping dot.
S2ðx; yÞ ¼ S2ðx; yþ dÞ ¼ S2ðxþ d; yÞ ¼ S2ðxþ d; yþ dÞ
¼ ðminðx; d� xÞ;minðy;d� yÞÞ:

The template array sx[i] should be expanded to a vector-
valued 2D array sxy[i][j],

sxy½i�½j� ¼ S2ðiþ x; jþ yÞ;

where 0 6 x, y < d and i, j = �r, . . ., r. We then find (x,y) that
minimizes

Xr

i¼�r

Xr

j¼�r

ksxy½i�½j� �W½i�½j�k2
:

Consequently, the total number of operations is
O(d2(2r + 1)2). In our case, however, we use a 1D array w
of size (2r + 1) for matching window W with function S,
and optimize a 1D cost

Pr
i¼�rðsx½i� �w½i�Þ2. Even though

we synthesize two stripe patterns, the total number of
operations is 2 � O(d (2r + 1)).

Appendix B. Overlapping dots

Given a desired spacing d, if the radius of a dot is larger
than d/2, the dot does not entirely fit in the d � d window
(Fig. B.16) and therefore overlapping of dots occurs. In this
case, we consider only the area inside the window when
computing the dot radius. For ease of computation, we
approximate the area with the cross-shaped region plus
the four quadrants, as shown in Fig. B.16. With this, the
equation to compute the dot radius s becomes:

1� b ¼
4kðd� kÞ þ p d

2� k
� �2

d2

s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ d

2

2
s

; k ¼ d
2
� d

ffiffiffiffiffiffiffiffiffiffiffiffi
b

4� p

r
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