
Malware Detection based on Dependency Graph
using Hybrid Genetic Algorithm

Keehyung Kim
School of Computer Science and Engineering

Seoul National University
599 Gwanak-ro, Gwanak-gu

Seoul, 151-744 Korea
keehyung@snu.ac.kr

Byung-Ro Moon
School of Computer Science and Engineering

Seoul National University
599 Gwanak-ro, Gwanak-gu

Seoul, 151-744 Korea
moon@snu.ac.kr

ABSTRACT
Computer malware is becoming a serious threat to our daily
life in the information-based society. Especially, script mal-
wares has become famous recently, since a wide range of
programs supported scripting, the fact that makes such mal-
wares spread easily. Because of viral polymorphism, current
malware detection technologies cannot catch up the expo-
nential growth of polymorphic malwares. In this paper, we
propose a detection mechanism for script malwares, using
dependency graph analysis. Every script malware can be
represented by a dependency graph and then the detection
can be transformed to the problem finding maximum sub-
graph isomorphism in that polymorphism still maintains the
core of logical structures of malwares. We also present ef-
ficient heuristic approaches for maximum subgraph isomor-
phism, which improve detection accuracy and reduce com-
putational cost. The experimental results of their use in a
hybrid GA showed superior detection accuracy against state-
of-the-art anti-virus softwares.

Categories and Subject Descriptors
D.4.6 [Software]: Security and Protection—Invasive soft-
ware; I.2.8 [Artificial Intelligence]: Problem Solving, Con-
trol Methods, and Search—Heuristic methods

General Terms
Algorithms, Experimentation, Security

Keywords
Malware detection, subgraph isomorphism, genetic algorithm,
dependency graph

1. INTRODUCTION
Computer Malware is a software or program that damages

computer systems or destroys valuable information stored in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’10, July 7–11, 2010, Portland, Oregon, USA.
Copyright 2010 ACM 978-1-4503-0072-8/10/07 ...$10.00.

computers. High use of web browsers and USB devices intro-
duced new types of malwares. Written in script languages
such as Visual Basic Script (VBS), javascript, etc., these are
known as script viruses, distributed in the form of sources,
and spreading fast. It is easy to make new variants in high
level in that the source code itself is a virus.

Over the time, changing the appearance of malwares, more
complex techniques have appeared to avoid detection of anti-
virus softwares. One of the most famous techniques is poly-
morphism. Polymorphic viruses keep the same functional-
ity as the original viruses, while having apparently different
structures. It is possible to create a great number of variants
based on the one virus by combining several polymorphic
techniques.

Furthermore, there exist toolkits that modify the code
by junk code insertion and statement reordering, as well
as variable renaming, and generate polymorphic viruses au-
tomatically [1]. Using those toolkits, anyone can produce
polymorphic ones by clicking several buttons in a few min-
utes. Recent researches show that unknown malwares can be
created from the original ones, in the context of evolution,
utilizing genetic frameworks [13, 14].

Typical malware detection methods based on signatures
therefore have difficulty in detecting polymorphic viruses
when they first appear [1, 15] because their signatures are
not yet analysed. Although current anti-virus softwares
seem sufficient to deal with most of malwares for individ-
ual use, they are nevertheless short for fighting against new
complex malwares. For these tools, signature-based scanners
that search a unique sequence of instructions, are fragile to
some variations that can be induced automatically, we need
more robust detection algorithms. In this paper, we study
how to detect polymorphic malwares, previously unknown,
both accurately and effectively.

Polymorphism only changes the appearance of a malware
but keeps the contents. Thus, the core part like dependency
among important variables and statements of a malware is
still valid to be able to perform destructive works as it is
supposed to. We also examined polymorphic changes that
confuses current anti-virus softwares and tested that they
are ineffectual to the dependency graph. The graphs mostly
stay similar even when the source code is significantly altered
[12]. To figure out whether the target file is a polymorphic
variant of a known malware, we model the problem as maxi-
mum subgraph isomorphism. Since maximum subgraph iso-
morphism is NP-hard [6], we propose a genetic algorithm

1211

(GA) and heuristics to secure both detection accuracy and
time consumption.

Based on the above design, we implemented a dependency
graph-based malware detection tool. Experimental results
indicate that the proposed method is both effective and effi-
cient. It accurately caught polymorphic malwares and out-
performed current anti-virus softwares, and the heuristic ap-
proaches reduced time consumption.

The rest of the paper is organized as follows. Section 2
and 3 provides an overview of malware polymorphism and
related work. In section 3, we illustrate the detection mech-
anism and the method we propose. Section 4 describes the
malware dataset we collected and generated for the experi-
ment, while section 5 provides experimental results and dis-
cussions. Section 6 concludes the paper and gives directions
for future work.

2. RELATED WORKS
A number of malware detection methods were proposed to

prevent different kinds of viruses, spywares, etc. The sim-
plest and most widely used technology is signature-based
one which requires forensic experts to study each malware’s
behaviour and to update the signature in the database [1].
The signature-based scanner later compares every single file
to each malware and tries to find the same sequence of pat-
terns as that of the malware. It is thus hard, if not possible,
to detect them in the early stage of their life. Several tech-
niques for virus detection were suggested, to remedy this
weakness, including rule learning [17], control flow graph
[4], neural networks [18], and data mining [16] approaches.

Since script malwares spread in source-code form, a great
degree of freedom in formatting for polymorphism is given to
virus makers [1]. Variability in formatting requires the de-
tection system non-case-sensitive approaches different from
previous approaches [3]. Unlike other viruses that are prop-
agated in executable format, this leads for forensic experts
to a possibility of performing various static analysises. For
example, Ko [9] used a flow analysis on macro operations
to determine whether it is a malware. The system, based
on associated values on variables, extracts the control and
data flow from the macro, compares the flow with that of
the known suspect, and measures similarity.

A number of polymorphic transformations are also used in
the field of code obfuscation. Thus, researches on code pla-
giarism detection do not only share common traits, but also
give meaningful insight into detection on polymorphic script
malwares. In an AST-based approach [2, 10], a program is
parsed into an abstract syntax tree (AST). Then duplicate
subtrees are searched to find similar parts. In a token-based
approach [8], a program is first transformed into a sequence
of token symbols such as identifiers and keywords. Then,
duplicate token subsequences are searched in detection pro-
cess. Recent research proposed an idea, adapting program
dependence graph analysis for core-part detection for soft-
ware plagiarism [12].

3. MALWARE POLYMORPHISM
Polymorphic viruses confuse virus scanners by changing

their appearance and thus make detection hard. There exist
many kinds of polymorphism to change appearance of mal-
ware codes. Fortunately, most of polymorphic viruses are,
however, actually generated by simple rules. The follow-

ing eight polymorphic techniques are the most well-known
which are often used by virus creators and virus mutation
or creation engines. Figure 1 shows examples of polymor-
phic variants. Figures 1(b)-(h) are variants derived from the
original, Figure 1(a); they are described in the following.

Format Alteration
It is done by inserting and removing blanks or comments.
Format alteration is the simplest and least effective method
among others. However, even this simple method sometimes
lets malwares avoid detection tools.

Variable Renaming
Identifier names of variables can change consistently without
violating program correctness. Variable renaming can con-
fuse human beings, but is almost futile to detection tools
[12]. In Figure 1(b), variable identifiers n, p, and i were
renamed to a, b, c, respectively.

Statement Reordering
A sequence of some statements can be rearranged while not
causing program errors. In Figure 1(c), some statements not
dependent on other statements were relocated.

Statement Replacement
Some statements can be replaced with others having the
same functionality without damaging the logic. In Figure
1(d), the statement p = 1 which assigns value 1 to variable
p was replaced by p = n/5 exploiting the fact that n equals
5. This is a more complex technique compared to previous
three methods in that it changes a statement itself.

Control Replacement
Some control statements perform similar works. For exam-
ple, a for loop and a while loop are interchangeable. An
example is shown on Figure 1(e). The dependency of state-
ments and variables are still kept.

Junk Code Insertion
Immaterial codes can be inserted to confuse detection, while
not disturbing the original logic. As in Figure 1(f), junk
codes can be inserted which are inert with respect to the
original code; in other words, running junk code does not
affect the logic of the original code [1].

Spaghetti Code
Consecutive statements can be scattered and linked together
by unconditional jumps such as goto, as in Figure 1(g). The
execution order remains the same in both pieces of codes.

Subroutine Inlining and Outlining
Code inlining is a technique normally employed to avoid sub-
routine call overhead, which replaces a subroutine call with
the subroutine’s code [1]. Outlining is the reverse operation;
it need not preserve any logical code grouping, however. In-
lining and outlining transformations maintain the original
code but deal it in different ways. Figure 1(h) shows an
example of outlining.

1212

dim n, p, i
n = 5
p = 1
for i = 1 to n do

p = p * i
end for

dim a, b, c
a = 5
b = 1
for c = 1 to a do

b = b * c
end for

(a) Original code (b) Variable renaming

dim i, p
p = 1
dim n
n = 5
for i = 1 to n do

p = i * p
end for

dim n, p, i
n = 5
p = n / 5
for i = 1 to n do

p = p * i
end for

(c) Statement reordering (d) Statement replacement

dim n, p, i
n = 5
p = 1
i = 1
while i <= n do

p = p * i
i = i + 1

end while

dim n, p, i
n = 5
p = 1
for i = 1 to n do

if i>0 then
p = p * i

end if
end for

(e) Control replacement (f) Junk code insertion

dim n, p, i
goto X:
Y:
for i = 1 to n do

p = p * i
end for
goto Z:
X:
n = 5
p = 1
goto Y:
Z:

dim n, p, i
n = 5
p = 1
for i = 1 to n do

p = prod(p, i)
end for

function prod(a, b)
return a * b

(g) Spaghetti code (h) Subroutine outlining

Figure 1: Example of Polymorphism

4. THE PROPOSED SYSTEM

4.1 Overview of the System
The overview of the system is illustrated in Figure 2:

1. The system chooses a known malware P1’s dependency
graph G1 from the virus database and a target file P2,
not classified as either malware or benign yet, to test
whether P2 is a polymorphic variant of P1.

2. The code of P2 is parsed and transformed to a code
with semantic meaning. As illustrated on Figure 3(a)-
(b), each line of the original code is divided into a
number of unit statements of semantics.

3. The system extracts a dependency graph G2 from the
semantic code and conducts graph reduction to dimin-
ish the size of graph.

4. The system compares the dependency graph G1 with
the target graph G2 by running heuristics to find the
maximum subgraph isomorphism on the two graphs.

5. Based on the results of the Step 4 and a threshold value
α, we classify P2 as a virus and proceed to the next
pair, or otherwise goto Step 6.

6. Using a hybrid GA, the system, to draw the final deci-
sion, measures the size of maximum subgraph isomor-
phism.

In the following, we describe each part of the system in
detail.

4.2 Variable Dependency Graph
A dependency graph [11] is a directed graph representing

the dependencies of objects towards others. Here, we con-
sider a dependency graph based on the relation among the
lines of the semantic code. Each vertex represents a line in
the semantic code. The dependency between two lines is
represented by a directed edge.

Definition 1 (Dependency Edge). There is a depen-
dency edge from vertex v1 to vertex v2 if there is a certain
variable X such that X is used on v2 while the value of X
is assigned on v1.

Figure 3 provides an example how a dependency graph is
generated from the given code.

Simple polymorphisms such as format alteration and vari-
able renaming do not change anything even in the control
flow graph. Statement reordering actually changes the or-
der of vertices on the dependency graph, but the structure
of that remains the same. More complex techniques such as
statement replacement, control replacement, and junk code
insertion can add one or more vertices into the dependency
graph. However, new vertices do not harm the structure
of the previous dependency graph because it should keep
the same functionality as before. Spaghetti code alters the
control flow of graph and adds vertices for unconditional
jump into the dependency graph. Subroutine inlining and
outlining is the most complex technique, and changes the
dependency graph a great deal. In [12], Liu et al studied
that program dependence graph is robust to five disguises
in software plagiarism: format alteration, variable renaming,
statement reordering, control replacement, and junk code
insertion.

4.3 Graph Reduction
The size of a dependency graph may be reduced. Some

part of the code where the control flow never reaches can
be removed. In addition, vertices that satisfy one of the
following four conditions can be eliminated:

• A vertex with only one outgoing edge without any in-
coming edge. It is mostly the declaration of a variable,
which is not critical when only considering the core
part of the program.

• A vertex with only one incoming edge without any
outgoing edge. It means that the first vertex uses the
value of the latter one.

• A vertex with only one incoming and one outgoing
edge. It plays a role in conveying a value or data from
one vertex to another mainly.

1213

Figure 2: Overview of detection mechanism

1: dim n, p, i
2: n = 5
3: p = 1
4: for i = 1 to n do
5: p = p * i
6: end for

1: dim n
2: dim p
3: dim i
4: n = 5
5: p = 1
6: i = 1
7: if i ≤ n then
8: p = p * i
9: i = i + 1

10: goto 7:
11: end if

(a) Original code (b) Semantic code

(c) Control Flow Graph (d) Dependency Graph

Figure 3: An illustrative example for dependency
graph: From the given (a) original code, at first, (b)
semantic code is produced. Analysing control flow of
the code, the system easily extracts (c) control flow
graph. (d) Dependency graph is later constructed
based on dependencies of the semantic code and the
order of the control flow graph.

• A vertex without any incoming or outgoing edge. It is
regarded as a non-necessary redundant part.

In Figure 4, vertices 10 and 11 are unnecessary since the
lines 10 and 11 of Figure 3(b) do not have any special se-
mantic meaning. Vertices 1, 2 and 3 have only one outgoing

Figure 4: Reduce the size of dependency graph

edge. Vertices 4 and 5 have only one incoming and one out-
going edge. Thus, the original dependency graph with 11
vertices can be reduced to one with 4 vertices.

4.4 Subgraph Isomorphism
We use subgraph-isomorphism testing on the target file

and the malware to determine whether the target is a poly-
morphic variant. Related terminologies are listed below.

Definition 2 (Graph Isomorphism). A bijective func-
tion f : V → V ′ is a graph isomorphism from a graph
G = (V, E) to a graph G′ = (V ′, E′) if
• ∀e = (v1, v2) ∈ E,∃e′ = (f(v1), f(v2)) ∈ E′

• ∀e′ = (v′
1, v

′
2) ∈ E′,∃e = (f−1(v′

1), f
−1(v′

2)) ∈ E

Definition 3 (Subgraph Isomorphism). An injective
function f : V → V ′ is a subgraph isomorphism from G to
G′ if there exists a subgraph S ⊂ G′ such that f is a graph
isomorphism from G to S.

We finally solve the following optimisation problem.

Definition 4 (Maximum Subgraph Isomorphism).
The problem of maximum subgraph isomorphism is to find
GS = (VS , ES) which satisfies subgraph isomorphism to G′

if there exists a subgraph GS ⊂ G = (V, E) while maximizing
|ES|/|E|.

1214

4.5 Genetic Operators
Since subgraph isomorphism is an NP-hard problem, a

GA is appropriate. A GA generates a set of initial solutions
and lets them evolve over a number of iterations. When GA
meets some condition, the best solution is returned and the
algorithm terminates. Our algorithm replaces 20 percent
of the population per generation and uses two local opti-
misation heuristics after crossover and mutation (hybrid or
memetic GA). In the following, the algorithm for the pro-
posed system is described.

Representation
Linear encoding is used for each chromosome to represent
the arrangement of vertices. Each gene value in a chromo-
some represents the location of the corresponding vertex in
an arrangement (permutation).

Fitness function
We measure the proportion of the number of different edges
between two graphs against the number of edges in the
smaller graph, to evaluate a chromosome. We call this the
difference, noted by d, of the graphs. The difference value 0
means that G1 is a complete subgraph of G2.

I(e,E) =

{
0 if e ∈ E
1 otherwise.

(1)

d =

∑
e∈E1

I(e,E2) +
∑

e∈E2
I(e,E1)

|E1| (2)

where G1 = (V1, E1), G2 = (V2, E2), and |V1| ≤ |V2|. The
computation takes θ(E) time. The smaller the value d, the
higher the fitness.

Initialisation
When GA starts, one solution is created in increasing order,
and the rest 99 solutions are created at random. That is,
the population size is 100. Twenty of them are replaced each
generation.

Selection
The roulette-wheel-based proportional selection is used. The
probability that the best chromosome is chosen was set to
four times higher than the probability that the worst chro-
mosome is chosen.

Crossover and Mutation
Cycle crossover and PMX [7] are used. We first produce two
offspring. Out of them, the better one is chosen as the final
offspring. For mutation, we select two genes at random and
exchange them. The rate of crossover and mutation is set
to 0.9 and 0.2, respectively.

Replacement
We replace the worst members of the population with the
new 20 offspring.

Stopping criterion
The GA stops as soon as we find a complete subgraph iso-
morphism with d value 0. Otherwise, we set the number of
maximum generation to 2,000 and 100 in the standard GA
and the hybrid GA, respectively.

(a) Exchange locations of two vertices

(b) Relocate a vertex to another place

Figure 5: Assume a reduced graph on Figure 4, a
graph on the left of (a), and that of (b) as G, Ga,
and Gb. (a) G is the exact subgraph of Ga if the
location of vertex 8 is exchanged with that of vertex
10. (b) G is the exact subgraph of Gb if the location
of vertex 8 is moved from the second to the fifth.

Local optimisation
We use two heuristics for local optimisation. Details of those
optimisations are described in Section 4.6.

4.6 Heuristics
We devised two heuristics (Figure 5) to improve the qual-

ity of arrangements for maximum subgraph isomorphism.

Algorithm 1 Two-vertex exchange heuristic

1: for v1 ∈ V do
2: for v2 ∈ V and v2 �= v1 do
3: Copy and make G′ from G
4: Exchange vertex v1 and v2 on G′

5: if fitness of G′ is less than G then
6: Copy G′ into G
7: end if
8: end for
9: end for

The first one, shown in Algorithm 1, is similar to 2-Opt
[5] in the travelling salesman problem (TSP). On a solution,
every possible combination of two vertices are considered
for being swapped. The algorithm, then, exchanges the lo-
cations of two vertices if the change causes an improvement.
There exist θ(|V |2) combinations of selecting two vertices.

The other is shown in Algorithm 2. For every vertex, the

1215

Algorithm 2 Vertex relocation heuristic

1: for v1 ∈ V do
2: for location do
3: Copy and make G′ from G
4: Remove vertex v1 and insert it into location on G′

5: if fitness of G′ is less than G then
6: Copy G′ into G
7: end if
8: end for
9: end for

Table 1: Malwares used for test
Virus Name Polymorphic Variants

Neves Neves.a, Neves.b, Neves.c, Neves.d
Rabbit Rabbit.a, Rabbit.b
Internal Internal.a, Internal.b, Internal.c, Internal.f,

Internal.g
Small Small.a, Small.b
Hello Hello

Table 2: Malwares generated using polymorphic
techniques
Variation Used Polymorphism

Hello.v1 Format alteration
Hello.v2 Statement replacement
Hello.v3 Format alteration, variable renaming
Hello.v4 Format alteration, variable renaming,

statement replacement, junk code insertion,
spaghetti code

algorithm tries to find the optimal location. A new solution
is taken if relocation of the vertex into another location im-
proves the fitness. There exist V vertices to move and V −1
possible locations for each vertex.

5. DATASET
We collected fourteen script viruses of five different series

of Visual Basic Script (VBS) malwares including polymor-
phic variants from VX Heaven1: Neves, Rabbit, Internal,
Small, and Hello. Table 1 shows the categorization of the
viruses. Malwares in the same category are regarded as poly-
morphic variants of the original.

In addition, we also created four polymorphic variants
based on Hello virus newly (Table 2). Hello.v1 and Hello.v2
contain only one polymorphic change on Hello virus while
Hello.v3 contains two polymorphic changes. Hello.v4 adopts
five polymorphic techniques, and thus is considered as a very
strong polymorphic virus.

6. RESULTS AND DISCUSSION
A number of experiments were conducted. We provide

experimental results of the heuristic approaches, and those
of the GA and anti-virus softwares.

6.1 Effect of Graph Reduction
Tables 3 and 4 show the number of nodes and edges on the

dependency graph of each virus before (column“Node”) and

1VX Heavens Virus Collection, http://vx.netlux.org

Table 3: Graph reduction on Node
Virus # Nodes # Nodes after Ratio

Reduction

Hello 53 25 47.17
Hello.v1 53 25 47.17
Hello.v2 53 25 47.17
Hello.v3 53 25 47.17
Hello.v4 50 25 50
Neves.a 60 21 35
Neves.b 72 25 34.72
Neves.c 100 21 21
Neves.d 122 39 31.97
Rabbit.a 13 0 0
Rabbit.b 14 0 0
Internal.a 65 31 47.69
Internal.b 40 18 45
Internal.c 35 13 37.14
Internal.f 39 18 46.15
Internal.g 160 65 40.63
Small.a 14 4 28.57
Small.b 18 10 55.56

Table 4: Graph reduction on Edge
Virus # Edges # Edges after Ratio

Reduction

Hello 59 38 64.41
Hello.v1 59 38 64.41
Hello.v2 59 38 64.41
Hello.v3 59 38 64.41
Hello.v4 55 38 69.09
Neves.a 65 32 49.23
Neves.b 81 43 53.09
Neves.c 71 32 45.07
Neves.d 134 73 54.48
Rabbit.a 9 0 0
Rabbit.b 10 0 0
Internal.a 86 68 79.07
Internal.b 47 39 82.98
Internal.c 32 22 68.75
Internal.f 47 39 82.98
Internal.g 163 110 67.48
Small.a 14 5 35.71
Small.b 17 14 82.35

after (column “# Nodes after Reduction”) graph reduction.
The column “Ratio” represents the rate of “# Nodes after
Reduction” to “# Nodes.”

For all malwares, the number of nodes and edges in each
dependency graph was reduced significantly after graph re-
duction. On average, the size of a dependency graph was
reduced to 36.78% (nodes) and 57.11% (edges) of the orig-
inal. It means approximately 63% (on nodes) and 43% (on
edges) of each dependency graph do not have a meaningful
role. The reduced graph, however, still preserves the core
characteristics of each malware.

In the case of Rabbit series, there was not any remaining
vertex after graph reduction because of simple codes of those

1216

Table 5: Difference value on maximum subgraph iso-
morphism by Heuristics

Virus Hello Neves Rabbit Internal Small

Hello 0 81.25 144.44 72.72 60
Hello.v1 0 81.25 144.44 72.72 60
Hello.v2 0 81.25 144.44 72.72 60
Hello.v3 36.84 65.62 88.88 72.72 80
Hello.v4 36.84 65.62 88.88 72.72 80
Neves.a 81.25 0 111.11 86.36 60
Neves.b 92.1 34.37 122.22 86.36 60
Neves.c 81.25 0 111.11 86.36 60
Neves.d 97.36 106.25 88.88 77.27 80
Rabbit.a 144.44 111.11 0 188.88 60
Rabbit.b 180 130 11.11 160 60
Internal.a 118.42 121.87 155.55 113.63 80
Internal.b 65.78 106.25 155.55 113.63 80
Internal.c 72.72 59.37 188.88 0 60
Internal.f 65.78 87.17 155.55 113.63 80
Internal.g 102.63 81.25 111.11 81.81 80
Small.a 60 60 60 80 0
Small.b 92.86 57.14 100 85.71 80

malwares. We thus did not adopt graph reduction on Rabbit
variants for experiments.

6.2 Experimental Results
Table 5 shows the difference values when only heuristics

are applied to detection. Eight variants were detected cor-
rectly (with difference value 0) without any mis-categorization.
Since heuristics take fairly less time than a GA does, it can
save significant time if used for the purpose of filtering at the
first stage of the detection system. If we set a more generous
threshold, say α = 40, then 12 variants out of 18 malwares
were detected.

Among totally 18 malwares, 16 variants were well-corrected
by the hybrid GA (Table 6). Internal.a and Internal.g have
some different contents although they belong to Internal
malware series. Thus, they are of more than polymorphism,
and detecting those is somewhat beyond the scope of our
mission.

Although the heuristics alone are not strong enough, they
are useful for screening at the early stage of polymorphism
detection in that they can screen out some pairs of graphs
before the GA, the time-consuming work, runs.

6.3 Comparison with Anti-Virus Softwares
We tested new polymorphic variants derived from five

original malwares. To test that currently existing anti-virus
softwares can detect unknown polymorphic malwares, we
used 41 softwares available on VirusTotal2. Table 7 shows
the experimental results. When polymorphic variants of
Hello virus were tested, 29%, 12%, 7%, 2%, and 0% of the
anti-virus softwares detected the five polymorphic viruses,
respectively. The proposed system, on the other hand, de-
tected all of the five.

Twelve of anti-virus softwares detected Hello virus, but
the number decreased significantly and remained less for
higher degree of polymorphism. Surprisingly, just intro-
ducing the simplest polymorphism, format alteration, could

2VirusTotal website, http://www.virustotal.com

Table 6: Difference value on maximum subgraph iso-
morphism by hybrid GA

Virus Hello Neves Rabbit Internal Small

Hello 0 28.13 22.22 40.91 40
Hello.v1 0 28.13 22.22 36.36 40
Hello.v2 0 28.13 11.11 36.36 40
Hello.v3 0 31.25 22.22 31.82 40
Hello.v4 0 34.38 22.22 36.36 40
Neves.a 28.13 0 22.22 36.36 40
Neves.b 63.16 0 22.22 31.82 40
Neves.c 28.13 0 22.22 36.36 40
Neves.d 31.58 0 33.33 27.27 40
Rabbit.a 22.22 22.22 0 155.56 60
Rabbit.b 20 40 0 130 60
Internal.a 55.3 40.6 22.2 27.3 40
Internal.b 20 22 77.78 0 40
Internal.c 40.91 36.36 155.56 0 40
Internal.f 21 22 77.78 0 40
Internal.g 44.7 40.6 44.4 50 40
Small.a 40 40 60 40 0
Small.b 28.57 42.86 57.14 35.71 0

Table 7: Comparison with anti-virus softwares
Virus Variant Anti-Viruses Proposed system

Hello 12/41 (29.27%) Detected
Hello.v1 5/41 (12.2%) Detected
Hello.v2 3/41 (7.32%) Detected
Hello.v3 1/41 (2.44%) Detected
Hello.v4 0/41 (0%) Detected

Neves.a 32/40 (80%) Detected
Neves.b 32/40 (80%) Detected
Neves.c 25/41 (60.98%) Detected
Neves.d 25/41 (60.98%) Detected
Rabbit.a 36/41 (87.8%) Detected
Rabbit.b 33/39 (84.62%) Detected
Internal.a 14/41 (34.15%) Undetected
Internal.b 19/41 (46.35%) Detected
Internal.c 16/40 (40%) Detected
Internal.f 13/41 (31.71%) Detected
Internal.g 21/41 (51.22%) Undetected
Small.a 35/41 (85.37%) Detected
Small.b 7/41 (17.08%) Detected

confuse more than half of the anti-virus softwares. Further-
more, any of the 41 anti-virus softwares could not detect
Hello.v4 variant which contains five polymorphic techniques.
It demonstrates how existing anti-virus softwares are weak
against polymorphism.

Table 7 also contains the detection rates of other existing
polymorphic variants. Although the rates were not as bad as
the newly generated variants (Hello.*), one can observe that
the existing anti-virus softwares are still poor in detecting
polymorphic variants. The hybrid GA successfully detected
all of the variants except for two of them that contain more
than polymorphic variants. Although, in VX Heaven, five
Internal variants are grouped as Internal virus series, some
anti-virus softwares also distinguish some of them from oth-
ers. For example, one anti-virus software recognises both

1217

Internal.b and Internal.f as Internal series while Internal.g
as Zeha series. Therefore two undetected Internal variants
(Internal.a and Internal.g) are too different from others (In-
ternal.b, Internal.c, and Internal.f) in the concept of poly-
morphism.

7. CONCLUSIONS
We proposed a malware detection mechanism based on

the dependency graph analysis and using GAs. Since a
large proportion of malwares are in script format and propa-
gated through USB and web browsers, the dependency anal-
ysis of malware codes seems to be fairly useful to detect
the unknown polymorphic malwares. We, especially, formu-
late malware detection as maximum subgraph isomorphism
problem and use a hybrid GA; the approach outperformed
existing anti-virus softwares in VirusTotal. Especially, graph
reduction and the two heuristic approaches are also crucial
parts of the system.

A limit of the proposed system is computational cost of
GA. Although graph reduction and heuristics save the com-
putational time significantly, the GA still requires fairly more
time to process than current anti-virus softwares based on
signature-based scanners. The approaches we used on mal-
ware detection can be extended to the area of software pla-
giarism detection, too, and other applications that use max-
imum subgraph (or graph) isomorphism in some sense. Ex-
tensive experiments on the various size and types of graphs
are in the set of future topics.

Acknowledgements
This work was supported by the Brain Korea 21 Project and
Engineering Research Center of Excellence Program of Ko-
rea Ministry of Education, Science and Technology (MEST)
/ National Research Foundation of Korea (NRF) (Grant
2009-0063242). The ICT at Seoul National University pro-
vided research facilities for this study.

8. REFERENCES
[1] J. Aycock. Computer Viruses and Malware. Springer,

2006.

[2] I. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and
L. Bier. Clone detection using abstract syntax trees.
In Proceedings of International Conference on
Software Maintenance, pages 368–377, 1998.

[3] V. Bontchev. Macro virus identification problems.
Computers and Security, 17(1):69–89, 1998.

[4] D. Bruschi, L. Martignoni, and M. Monga. Detecting
self-mutating malware using control-flow graph
matching. In DIMVA ’06: Proceedings of the
Conference on the Detection of Intrusions and
Malwares and Vulnerability Assessment, pages
129–143, 2006.

[5] T. Bui and B. Moon. A new genetic approach for the
traveling salesman problem. In Proceedings of the
First IEEE Conference on Evolutionary Computation.
IEEE World Congress on Computational Intelligence.,
volume 1, pages 7–12, 1994.

[6] M. R. Garey and D. S. Johnson. Computers and
Intractability; A Guide to the Theory of
NP-Completeness. W. H. Freeman & Co., 1990.

[7] D. E. Goldberg. Genetic Algorithms in Search,
Optimization and Machine Learning. Addison-Wesley
Longman Publishing Co., Inc., 1989.

[8] T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: a
multilinguistic token-based code clone detection
system for large scale source code. IEEE Transactions
on Software Engineering, 28(7):654–670, 2002.

[9] C. W. Ko. Method and apparatus for detecting a
macro computer virus using static analysis, February
2004. United States Patent #6,697,950 B1.

[10] K. Kontogiannis, M. Galler, and R. DeMori. Detecting
code similarity using patterns. Working Notes of 3rd
Workshop on AI and Software Engineering, 1995.

[11] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The
program dependence graph and its use in
optimization. ACM Transactions on Programming
Languages and Systems, 9(3):319–349, 1987.

[12] C. Liu, C. Chen, J. Han, and P. S. Yu. GPLAG:
detection of software plagiarism by program
dependence graph analysis. In KDD ’06: Proceedings
of the 12th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages
872–881, 2006.

[13] S. Noreen, S. Murtaza, M. Z. Shafiq, and M. Farooq.
Evolvable malware. In GECCO ’09: Proceedings of the
11th Annual Conference on Genetic and Evolutionary
Computation, pages 1569–1576, 2009.

[14] S. Noreen, S. Murtaza, M. Z. Shafiq, and M. Farooq.
Using formal grammar and genetic operators to evolve
malware. In RAID: 12th International Symposium On
Recent Advances In Intrusion Detection, volume 5758
of Lecture Notes in Computer Science, pages 374–375,
2009.

[15] S. Pearce. Viral polymorphism. Sans Institute, 2003.

[16] M. G. Schultz, E. Eskin, E. Zadok, and S. J. Stolfo.
Data mining methods for detection of new malicious
executables. In SP ’01: Proceedings of the 2001 IEEE
Symposium on Security and Privacy, page 38, 2001.

[17] M. Z. Shafiq, S. M. Tabish, and M. Farooq. On the
appropriateness of evolutionary rule learning
algorithms for malware detection. In GECCO ’09:
Proceedings of the 11th Annual Conference on Genetic
and Evolutionary Computation, pages 2609–2616,
2009.

[18] G. Tesauro, J. Kephart, and G. Sorkin. Neural
networks for computer virus recognition. IEEE Expert,
11(4):5–6, 1996.

1218

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

