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Abstract—In 1968, Volker Strassen, a young German mathe-
matician, announced a clever algorithm to reduce the asymptotic
complexity of n × n matrix multiplication from the order of
n3 to n2.81. It soon became one of the most famous scientific
discoveries in the 20th century and provoked numerous studies
by other mathematicians to improve upon it. Although a number
of improvements have been made, Strassen’s algorithm is still
optimal in his original framework, the bilinear systems of 2 × 2
matrix multiplication, and people are still curious how Strassen
developed his algorithm. We examined it to see if we could auto-
matically reproduce Strassen’s discovery using a search algorithm
and find other algorithms of the same quality. In total, we found
608 algorithms that have the same quality as Strassen’s, including
Strassen’s original algorithm. We partitioned the algorithms into
nine different groups based on the way they are constructed. This
paper was made possible by the combination of genetic search
and linear–algebraic techniques. To the best of our knowledge,
this is the first work that automatically reproduced Strassen’s
algorithm, and furthermore, discovered new algorithms with
equivalent asymptotic complexity using a search algorithm.

Index Terms—Bilinear, Gaussian elimination, genetic algori-
thm, matrix multiplication, Sammon mapping, Strassen’s algo-
rithm.

I. Introduction

MATRIX MULTIPLICATION is a fundamental algebraic
operation used heavily in the fields of science, en-

gineering, and economics. In particular, it is an important
component in applications such as solving linear equations,
image processing, control engineering, and graph problems.
Multiplication of two n × n matrices of the form C = A · B

generally requires n3 scalar multiplications. This is because
the n2 elements of the resulting matrix C each needs n scalar
multiplications. Before 1968, people never doubted that matrix
multiplication requires at least n3 scalar multiplications.

In 1968, Volker Strassen, a young German mathematician,
announced a clever recursive algorithm for multiplying two
n×n matrices that requires only n2.81 scalar multiplications [1].
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Although improvements have been made since then, Strassen’s
work is still optimal under his original framework of dividing
matrices into four n/2 × n/2 matrices and finding bilinear
combinations. Strassen’s algorithm is one of the most famous
scientific discoveries in the 20th century.

Two primary questions motivated this paper. First, how
many algorithms other than Strassen’s exist under the same
framework? Second, can a search algorithm achieve the power
of finding the same or equivalent solutions to Strassen’s
without enormous efforts of genius human beings? This
paper contains a partial answer to these by using genetic
search.

Suppose we wish to compute the product of two matrices,
which takes the form C = A · B, where each of A, B, and C

is an n × n matrix. Assuming n is a power of 2 (n = 2k for
some integer k), we divide each matrix into four n/2 × n/2
matrices as follows:(

C1 C2

C3 C4

)
=

(
A1 A2

A3 A4

) (
B1 B3

B2 B4

)
.

This leads to the following four equations:

C1 = A1B1 + A2B2, C2 = A1B3 + A2B4,

C3 = A3B1 + A4B2, C4 = A3B3 + A4B4.

Each of the four equations requires two multiplications
of n/2 × n/2 matrices. Therefore, we need a total of eight
multiplications of n/2 × n/2 matrices. The total number of
scalar multiplications, Tn, for the product of two n×n matrices
is Tn = 8Tn/2 and T1 = 1. This leads to an asymptotic
complexity of Tn = nlog2 8 = n3. As a result, there is no
advantage in asymptotic run-time by dividing matrices in
this way, although it is a popular and useful way in linear
algebra. Strassen’s algorithm needs just seven multiplications
of n/2 × n/2 matrices instead of eight [1].

The core that constitutes his algorithm is in the following.
He first found seven matrices, P1 through P7 each being able
to be obtained by one multiplication of n/2 × n/2 matrices

P1 = A1(B3 − B4)

P2 = (A1 + A2)B4

P3 = (A3 + A4)B1

P4 = A4(−B1 + B2)

P5 = (A1 + A4)(B1 + B4)

P6 = (A2 − A4)(B2 + B4)

P7 = (−A1 + A3)(B1 + B3).
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Each of the final matrices C1 through C4 then can be
computed using a combination of Pi’s with no multiplications

C1 = −P2 + P4 + P5 + P6

C2 = P1 + P2

C3 = P3 + P4

C4 = P1 − P3 + P5 + P7.

Therefore, the whole process consists of only seven mul-
tiplications of n/2 × n/2 matrices. The recursive relation
for the total number of scalar multiplications now becomes
Tn = 7Tn/2, which results in Tn = nlog2 7 = n2.81. Strassen
thus dropped the complexity of matrix multiplication from the
order of n3 to n2.81. In total, Strassen’s algorithm uses seven
multiplications and 18 additions. Some years later Winograd
found an algorithm that uses seven multiplications and only 15
additions [7], [2]. Winograd’s algorithm reduced the number of
additions to 15 by exploiting common subexpressions. How-
ever, the time required for the additions is negligible compared
to the multiplications, and does not affect the asymptotic
complexity of the algorithms when n is large enough.

After Strassen, a large number of mathematicians tried to
find better algorithms. Currently, the best is n2.376, which was
obtained by using a basic trilinear form and the Salem-Spencer
Theorem, which uses arithmetic progression [4]. However, it
has been proven that when using bilinear combinations of
n/2 × n/2 matrices, it is not possible to obtain the product
with only six multiplications of n/2 × n/2 matrices [6], [7];
therefore, Strassen’s algorithm using seven is optimal. If we
divide an n × n matrix into nine n/3 × n/3 matrices and
try the same approach (bilinear combinations) as Strassen’s,
so far 23 multiplications of n/3 × n/3 matrices is the best,
which requires nlog3 23 scalar multiplications in total [8]. Since
nlog3 23 > n2.81, it is asymptotically not as good as Strassen’s
original n/2×n/2 approach. An excellent survey about matrix
multiplication was provided by Pan [9].

Strassen’s method can be found by naively evaluating all
the possible cases exhaustively. Unfortunately, if we attempt
to find a comparable solution using an exhaustive search algo-
rithm, it would take around 67 million years on a Pentium IV
2.4 GHz machine. Instead, we used a genetic algorithm for
this, and succeeded to cut the run-time down to a few hours.
In an extreme case, it took just 10 s to find a solution.
To the best of our knowledge, this is the first work that
automatically found algorithms comparable to Strassen’s. We
hereafter describe how we achieved the goal.

II. A Genetic Search

A. Problem Formulation

It is not clear exactly how Strassen discovered the set of Pi

matrices, which are the crucial part of his algorithm. For this
paper, we assumed each matrix product, Pi (i = 1, 2, . . . , 7),
is written in the following form [10]:

Pi = (αi1A1 + αi2A2 + αi3A3 + αi4A4)

·(βi1B1 + βi2B2 + βi3B3 + βi4B4), αij, βij ∈ {−1, 0, 1}.
These types of combinations for Pi are called bilinear

combinations. If each of C1, C2, C3, and C4 is a linear

combination of P1, P2, . . ., P7, then n2.81 scalar multiplications
are enough for an n × n matrix multiplication. Therefore, for
i = 1, . . . , 7 and j = 1, . . . , 4, our goal is to find seven Pi’s
and associated δji’s, satisfying

Cj =
7∑

i=1

δjiPi. (1)

In this framework, the number of all possible Pi’s is 34 ×34.
Eliminating the zero matrix and symmetric pairs with reversed
signs, the number of unique Pi’s is ((34 − 1)/2)((34 − 1)/2) =
1600. Therefore, the total number of the candidate solu-
tions for seven Pi’s is

(1600
7

)
= 5.2566 × 1018. Verifying

whether a solution satisfies (1) can be done by perform-
ing the Gaussian elimination of four 16 × 8 matrices as
will be seen in Section II-D. On a Pentium IV 2.4GHz
CPU, it takes 0.0001 s to compute the Gaussian elim-
ination of a 16 × 8 matrix. Therefore, it would take
(5.2566 × 1018 × 0.0001 × 4)/(60 × 60 × 24 × 365) = 6.67×
107 years to check all candidate solutions.

B. Genetic Algorithm

A genetic algorithm (GA) is a search method that mimics
the process of natural selection in nature. Fig. 1 shows the
flow of the GA we used. It is a typical steady-state hybrid
GA. In the GA, we first create a fixed number of initial
solutions at random, in which nearly all solutions have poor
fitness; this set of solutions is called the population. Then we
iterate the genetic main loop. Each loop runs as follows. We
choose two parent solutions in the population based on their
relative fitness. Then the chosen solutions are combined by
partly mixing their characteristics to produce a new solution,
called an offspring. The offspring is improved using a local
optimization algorithm. Then the fitness of this offspring is
evaluated. If the offspring satisfies some condition, it replaces
one of the solutions in the population. The loop is repeated un-
til the stopping condition is satisfied. For a good introduction
to GAs, see [5].

Although GA has a wide space-search capability, it is
usually not very powerful for greater than toy-sized problems.
Particularly, it is weak in fine-tuning around the local optima.
For practical competence, we often need to incorporate local
optimization algorithms in the framework of GA. These types
of GAs are called hybrid GAs or memetic GAs. Devising a
synergetic local optimization algorithm is thus a crucial part
in the design of hybrid GAs [3]. In the following sections, we
describe each part of the GA in more detail.

C. Encoding

Two key parts of a Strassen-style algorithm are the set of
Pi’s and the combination of Pi’s to produce Ci’s. Once an arbi-
trary set of Pi’s is given, it is not difficult to determine if they
correctly produce the Ci’s using matrix rank and the Gaussian
elimination. Thus the GA here focuses on discovering a set
of Pi’s. In GAs, a solution is represented by a chromosome.
Here, a chromosome is an 8 × 7 matrix; each of the seven
columns is a set of eight αij’s/βij’s. That is, the ith column
corresponds to Pi. As mentioned, the number of all possible
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Fig. 1. Steady-state genetic algorithm.

solutions is 5.2566 × 1018. Due to the huge solution space, a
search algorithm can examine only a relatively tiny fraction
of the space.

D. Fitness

Our goal is to find a solution that satisfies (1). This means
that C1 through C4 each can be represented by a linear
combination of {P1, P2, . . ., P7}. We define fitness as the
number of Ci’s that can be represented by a combination of
Pi’s; thus, fitness is an integer value from 0 to 4. For example,
if C2 is a linear combination of Pi’s and the others are not,
then the fitness of this solution is 1. Therefore, in terms of
fitness, our goal is to find a solution to fitness 4.

To evaluate a solution, we expand each Pi into 16 terms as

Pi =
16∑
j=1

αi,�j/4�βi,j−1( mod 4)+1A�j/4�Bj−1( mod 4)+1. (2)

Let αijβik = γi,(j−1)×4+k, � = [γji], and �i = [δij]T . Then,
Pi can be described as Pi =

∑16
j=1 γi,jA�j/4�Bj−1( mod 4)+1. For

instance, the vector representation of C1 = A1B1 + A2B2

becomes C1 = [1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0]T . The ith element
of the vector represents the term A�i/4�Bi−1( mod 4)+1. From
the equation C1 =

∑7
i=1 δ1iPi, we obtain � · �1 = C1. The

equation � · �1 = C1 is represented by a matrix expression as
follows:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ1,1 γ2,1 γ3,1 γ4,1 γ5,1 γ6,1 γ7,1

γ1,2 γ2,2 γ3,2 γ4,2 γ5,2 γ6,2 γ7,2

γ1,3 γ2,3 γ3,3 γ4,3 γ5,3 γ6,3 γ7,3

γ1,4 γ2,4 γ3,4 γ4,4 γ5,4 γ6,4 γ7,4

γ1,5 γ2,5 γ3,5 γ4,5 γ5,5 γ6,5 γ7,5

γ1,6 γ2,6 γ3,6 γ4,6 γ5,6 γ6,6 γ7,6

γ1,7 γ2,7 γ3,7 γ4,7 γ5,7 γ6,7 γ7,7

γ1,8 γ2,8 γ3,8 γ4,8 γ5,8 γ6,8 γ7,8

γ1,9 γ2,9 γ3,9 γ4,9 γ5,9 γ6,9 γ7,9

γ1,10 γ2,10 γ3,10 γ4,10 γ5,10 γ6,10 γ7,10

γ1,11 γ2,11 γ3,11 γ4,11 γ5,11 γ6,11 γ7,11

γ1,12 γ2,12 γ3,12 γ4,12 γ5,12 γ6,12 γ7,12

γ1,13 γ2,13 γ3,13 γ4,13 γ5,13 γ6,13 γ7,13

γ1,14 γ2,14 γ3,14 γ4,14 γ5,14 γ6,14 γ7,14

γ1,15 γ2,15 γ3,15 γ4,15 γ5,15 γ6,15 γ7,15

γ1,16 γ2,16 γ3,16 γ4,16 γ5,16 γ6,16 γ7,16

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

δ11

δ12

δ13

δ14

δ15

δ16

δ17

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3)

We apply the Gaussian elimination on the matrix [� Ci].
If the Gaussian elimination of the matrix [� C1] results in a

matrix of the form

[
I7×7 δ1

O9×7 O9×1

]
, C1 is a linear combination

of Pi’s. Similarly, we check C2, C3, and C4 to see if they are
a linear combination of Pi’s.

E. Crossover

Crossover is a genetic operator for recombining two parent
solutions into a new one. Each parent solution consists of
seven vectors of P1 through P7; thus, there are 14 vectors
in total. The offspring takes seven vectors out of the 14.

For Cj =
∑7

i=1 δjiPi, we define Gj to be {Pi|δji �= 0}. Gj can
be an empty set. Namely, Gj is the set of Pi’s that contribute to
the formation of Cj . For example, if C1 = P1 +P3 +P4, then
G1 = {P1, P3, P4}, which implies that C1 can be expressed
with P1, P3 and P4.

We choose one Gi at random among the nonempty Gi’s
of parent1 and parent2, and we add a Pi that belongs to the
chosen Gi to the offspring, unless the Pi already exists in the
offspring. Then, we choose another Gi and repeat the same
process until the offspring has seven Pi’s. If no such Pi remains
before we have seven Pi’s, we randomly generate new Pi’s and
add them to the offspring until the offspring has seven Pi’s.

F. Local Optimization

After a new offspring is generated by crossover, the GA
improves the solution using a local optimization algorithm.
Each solution has a position in the problem space. If we plot
the fitness of each solution to its corresponding position, we
can construct a fitness landscape for the problem. Some of the
solutions are of high quality and play the role of attractors.
When we have a moderate or low-quality solution, we can
climb to one of the nearby attractors. Although this is not
always beneficial, it saves considerable run-time in the GA.
Considering the huge problem space and limited time budget,
we cannot help but ignore the most seemingly unpromising
areas of the space. The local optimization consists of the
following two parts.

1) Pursuing Linear Independence: If Pi’s are linearly
dependent, the solution contains at least one unnecessary
Pi. Removing unnecessary Pi’s is the goal of the first local
optimization. If Pi’s are linearly independent, the rank of the
matrix � = [γji] is 7. In the case of a rank value lower than
7, we find the nonessential Pi by means of the Gaussian
elimination, and change an αij or βij of the Pi. We then
compute the rank again and repeat this process until the rank
of the matrix � becomes 7.

2) Checking All the Cases: To improve the fitness of
a solution, we check the fitness after replacing one of the
Pi’s with each of the possible 1600 cases. First, we select a
nonessential Pi which does not belong to G1, G2, G3, or G4.
If such a Pi does not exist, an arbitrary Pi is selected. We
replace it with another among the 1600 cases and compute
the fitness. If a better case is found, Pi is replaced. Otherwise,
Pi remains unchanged.
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TABLE I

Number of Solutions

Group Index Solutions Found Distinct Solutions Lower Bound of the Number of Solutions
Group 1 648 32 32
Group 2 891 128 128
Group 3 522 32 32
Group 4 61 35 64
Group 5 30 19 64
Group 6 3 3 32
Group 7 33 30 128
Group 8 149 57 64
Group 9 46 36 64

TABLE II

Representative Solutions in Each Group

Group 1 (Strassen’s Solution) Group 2 Group 3
P1 = A1(B3 − B4) P1 = A1(B3 − B4) P1 = A1(B3 − B4)
P2 = (A1 + A2)B4 P2 = (A1 + A2)B4 P2 = (A1 + A2)B4

P3 = (A3 + A4)B1 P3 = A4(B2 + B4) P3 = (A3 − A4)B2

P4 = A4(−B1 + B2) P4 = A3(B1 + B3) P4 = A3(B1 + B2)
P5 = (A1 + A4)(B1 + B4) P5 = (A2 + A4)(B1 − B2) P5 = (A1 + A2 + A3 + A4)(B1 + B2 + B3 + B4)
P6 = (A2 − A4)(B2 + B4) P6 = (A1 + A2 + A4)(B1 + B4) P6 = (A1 + A2 − A3 + A4)(B1 + B2 + B3 − B4)
P7 = (−A1 + A3)(B1 + B3) P7 = (A1 + A2 + A3 + A4)B1 P7 = (A1 − A2 + A3 − A4)(B1 − B2 + B3 − B4)
C1 = −P2 + P4 + P5 + P6 C1 = −P2 − P3 − P5 + P6 C1 = −P1 − P3 + 0.5P6 + 0.5P7

C2 = P1 + P2 C2 = P1 + P2 C2 = P1 + P2

C3 = P3 + P4 C3 = P2 + P3 − P6 + P7 C3 = −P3 + P4

C4 = P1 − P3 + P5 + P7 C4 = −P2 + P4 + P6 − P7 C4 = −P2 − P4 + 0.5P5 − 0.5P6

Group 4 Group 5 Group 6
P1 = A4(−B1 + B2 − B3 + B4) P1 = (A1 + A2)(B1 + B3) P1 = (A1 + A2)(B3 + B4)
P2 = A1(B1 − B2 − B3 + B4) P2 = (A1 + A2 − A3 + A4)(B2 − B3) P2 = (A1 − A2)(B3 − B4)
P3 = (A1 + A4)(B1 − B2 + B3 + B4) P3 = (−A3 + A4)(B1 − B3) P3 = (A2 − A4)(B1 − B2 − B3 + B4)
P4 = (A1 − A3)B3 P4 = (A1 + A2 − A3 − A4)(B1 + B2) P4 = (A2 + A4)(B1 + B2 + B3 + B4)
P5 = (A3 + A4)(B1 + B3) P5 = (A1 − A2 − A3 + A4)(B1 − B2) P5 = (A1 − A4)(B1 + B4)
P6 = (A1 + A2)(B2 − B4) P6 = A2(B1 − B2 + B3 − B4) P6 = (A1 + A2 − A3 − A4)(B1 − B3)
P7 = (A2 − A4)B4 P7 = A4(B1 + B2 − B3 − B4) P7 = (A1 − A2 + A3 − A4)(B1 + B3)
C1 = 0.5P1 + 0.5P2 + 0.5P3 + P6 + P7 C1 = 0.5P1 + 0.5P2 − 0.5P3 + 0.5P5 C1 = −0.5P1 + 0.5P2 − 0.5P3 + 0.5P4 + P5

C2 = 0.5P1 − 0.5P2 + 0.5P3 + P7 C2 = 0.5P1 − 0.5P2 + 0.5P3 − 0.5P5 − P6 C2 = 0.5P1 + 0.5P2

C3 = 0.5P1 + 0.5P2 − 0.5P3 + P4 + P5 C3 = 0.5P1 + 0.5P2 − 0.5P3 − 0.5P4 C3 = −0.5P1 − 0.5P2 + 0.5P3 + 0.5P4 − 0.5P6 + 0.5P7

C4 = 0.5P1 − 0.5P2 + 0.5P3 − P4 C4 = 0.5P1 + 0.5P2 + 0.5P3 − 0.5P4 − P7 C4 = 0.5P1 − 0.5P2 − P5 + 0.5P6 + 0.5P7

Group 7 Group 8 Group 9 (Winograd’s Solution)
P1 = A1B1 P1 = A1B1 P1 = A1B1

P2 = A2B2 P2 = A2B2 P2 = A2B2

P3 = A3(B1 + B2 + B3 + B4) P3 = A3(B3 + B4) P3 = A3(B1 + B2 + B3 + B4)
P4 = (A2 + A4)(B1 + B2 − B3 − B4) P4 = (A2 + A4)(B1 + B2 + B3 + B4) P4 = (A2 + A4)(B3 + B4)
P5 = (A3 − A4)(B2 + B4) P5 = (A3 − A4)B4 P5 = (A3 − A4)(B2 + B4)
P6 = (A2 − A3 + A4)(B1 − B2 − B3 − B4) P6 = (A2 − A3 + A4)(B1 + B3 + B4) P6 = (A2 − A3 + A4)(B2 − B2 − B3 − B4)
P7 = (A1 − A2 + A3 − A4)(B1 − B4) P7 = (A1 − A2 + A3 − A4)(B1 + B3) P7 = (A1 − A2 + A3 − A4)B3

C1 = P1 + P2 C1 = P1 + P2 C1 = P1 + P2

C2 = P1 − P2 + P3 − P6 − P7 C2 = −P1 + P5 + P6 + P7 C2 = −P2 + P5 + P6 + P7

C3 = −P2 + 0.5P3 + 0.5P4 + 0.5P6 C3 = −P2 − P3 + P4 − P6 C3 = −P2 + P3 − P4 + P6

C4 = P2 + 0.5P3 − 0.5P4 − P5 + 0.5P6 C4 = P3 − P5 C4 = P2 + P4 − P5 − P6

III. Experimental Results

In our GA, we set the population size to 15. The GA stops
if a valid solution appears or 1000 iterations has passed. Many
more solutions were found than we expected. So far, we have
discovered 2383 solutions that have the same computational
complexity as Strassen’s. Removing duplicate solutions, 372
distinct ones remained. Among them, 32 solutions turned out
to be similar to Strassen’s in the way they are constructed. We
divided the solutions into nine groups based on the numbers

of nonzero entries αij and βij in the Pi’s. For example, group 1
has [3 3 3 3 4 4 4] nonzero elements. It is notable that groups 3,
4, 5, 6, and 7 include 0.5 as the coefficients of Pi’s, which we
did not expect to encounter. (Although they introduce some
scalar multiplications in Ci’s, it does not affect the asymptotic
complexity of the algorithm.)

Since there is no special order in Ci’s, we can make different
solutions with the same structure using the symmetry of Ci’s
and changing the signs of ai’s and bi’s in Pi’s [10]. Using
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Fig. 2. Sammon mapping of the solutions.

this approach, we noticed that 236 solutions were undiscovered
by the GA in groups 4, 5, 6, 7, 8, and 9. We thus have 608
distinct solutions in total. Table II-F shows the numbers of all
the solutions found, distinct solutions, and a lower bound of
the number of solutions, respectively, in each group. One can
observe that there are many solutions that the GA did not dis-
cover. Table II-F shows a representative solution in each group.

Fig. 2 shows the relative distribution of all of the 608
solutions in the problem space, which is plotted by Sammon
mapping [11]. In Sammon mapping, we define the distance
between two solutions as follows. First, we compare the
differences of all the pairs of Pi’s and pick the pair with
the minimum difference. Then we exclude those two Pi’s and
find the minimum difference pair among the remaining. We
repeat this process until we match all the seven pairs. The
distance between the two solutions is defined as the sum of
the differences of the seven pairs. Based on the definition, the
distances between all the pairs of the solutions are computed
and they are mapped into a 2-D box so that the distortion of the
distances are minimized. The solutions labeled “undiscovered”
are those that the GA could not find but we can induce from
the discovered solutions.

While their corresponding groups are not specified, most of
them are clear because they are strongly clustered. Although
they were mapped in two dimensions, the figure is informative.
First, solutions of the same group formed clusters in the
figure. For example, the solutions in group 7 can be found
in four clusters in the figure, and those in group 1, the
group of Strassen’s, can be found in four other clusters. The
clusters seem to provide good evidence that the grouping
(into nine groups) is reasonable. Second, the solutions in each
group show strong symmetry, which we suspect reflects the
symmetry of the ways in which they are constructed.

IV. Discussion

According to our GA search, it turned out that the Strassen’s
algorithm is just one of many solutions with the same compu-

tational complexity. In fact, at least 608 distinct solutions exist
either discovered by the GA or induced from the discovered
solutions. We do not know whether there are more solutions
that have the same complexity as Strassen’s. Considering that
group 6 has only 3 discovered solutions in which at least 64
solutions exist, more groups may be waiting to be discovered.

A bilinear system with n/3 × n/3 matrices is another chal-
lenge. So far Laderman [8] found, from his mathematical in-
sight, a solution requiring only 23 n/3×n/3 matrix multiplica-
tions, though still not as good as the 7 multiplications required
in the n/2×n/2 system. If we want to find a better result than
the n/2 × n/2 case, we need 21 multiplications or fewer. The
problem space of the n/3 ×n/3 system, however, is far larger
than the n/2 × n/2 system, and therefore, it would be a good
problem to test the extreme performance of a search algorithm.
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