
Software & Systems Modeling manuscript No.
(will be inserted by the editor)

Yunja Choi · Christian Bunse

Design Verification in Model-based µ-Controller
Development using an Abstract Component

the date of receipt and acceptance should be inserted later

Abstract Component-based software development is a
promising approach to controlling the complexity and
quality of software systems. Nevertheless, recent ad-
vances in quality control techniques do not seem to keep
up with the growing complexity of embedded software;
embedded systems often consist of dozens to hundreds
of software/hardware components which exhibit com-
plex interaction behavior. Unanticipated quality defects
in a component can be a major source of system fail-
ure. To address this issue, this paper suggests a design
verification approach integrated into the model-driven,
component-based development methodology Marmot.

The notion of abstract component – the basic build-
ing block of Marmot – helps lift the level of abstrac-
tion, facilitates high level reuse, and reduces verification
complexity by localizing verification problems between
abstract component before refinement and after refine-
ment. This enables the identification of unanticipated
design errors in early stages of development.

This work introduces the Marmot methodology,
presents a design verification approach in Marmot, and
demonstrates its application on the development of a µ-
controller-based abstraction of a car mirror control sys-
tem. An application on TinyOS shows that the approach
helps reuse models as well as their verification results in
the development process.

This paper is an extended version of [11,13].

This work has been supported by the Korea Research Foun-
dation Grant funded by the Korean Government(KRF-2008-
331-D00525) and the Engineering Research Center of Excel-
lence Program of Korea Ministry of Education, Science and
Technology(MEST) / Korea Science and Engineering Foun-
dation(KOSEF), grant number R11-2008-007-03002-0.

Yunja Choi
School of Electrical Engineering and Computer Science,
Kyungpook National University, Daegu, Korea
E-mail: yuchoi76@knu.ac.kr

Christian Bunse
School of IT, International University in Germany, Bruchsal,
Germany
E-mail: Christian.Bunse@i-u.de

Keywords Abstract component, Model-Driven Devel-
opment, Design verification, Embedded systems

1 Introduction

Embedded software controlling electronic systems is ev-
erywhere in modern society from large-scale aircraft con-
trol systems to small-scale sensor nodes. Many of such
systems are safety-critical; for example, any potential
cause of failures in air-traffic control systems, medical
device control systems, and braking systems in modern
cars must not be tolerated. Thus, software development
approaches for such systems have to specifically address
quality issues and provide means to either avoid or iden-
tify them early during development [32].

One approach to address these issues is component-
based development, following the ideas of Clemens
Szyperski [46]: Component-based software develop-
ment (CBSD) or component-based software engineering
(CBSE) is concerned with the assembly of pre-existing
software components into larger pieces of software. In
this sense, a software component is a unit of composition
with contractually specified interfaces and explicit con-
text dependencies. Componentizing software had been
suggested as a way of tackling the software crisis. In con-
trast to the ideas of modular development, CBSE com-
bines elements of software architecture, modular software
design, software verification, configuration and deploy-
ment.

This study suggests a design verification approach in-
tegrated into the model-driven, component-based devel-
opment methodology named Marmot [4,11]. Marmot

1

aims at providing the ingredients to master the multi-
disciplinary effort of developing embedded systems. In
general, Marmot is not meant to be a method for
Hardware-Software Co-design. The focus on Marmot is
clearly on the software side of development but provides

1
Marmot stands for Method for component-bAsed Real-

tiMe Object-oriented development and Testing.

2 Yunja Choi, Christian Bunse

means for developing platform specific software systems.
It thus, provides templates, models, and guidelines for
the software products describing a system, and how these
artifacts are built up throughout development. In detail,
Marmot iterates from the design of abstract compo-
nents and the specification of their externally visible be-
havior. These abstract components are then successively
refined and decomposed into sub-components in order to
realize them according to the development platform and
available resources. Following this view hardware compo-
nents are “specified” regarding implementation-relevant
aspects but Marmot does not provide a means for their
development.

The iterative nature of Marmot helps manage the
increasing interaction complexity among components,
but also provides a means for pre-checking a system’s
behavior, even before each component has been com-
pletely realized. By focusing on the essential properties
of the system, the initial abstract specification can be rel-
atively simple, which makes it feasible to apply formal
methods [15,30], including the use of automated formal
verification techniques such as model checking [14,27].
The gradual refinements and decomposition is supported
by the notion of abstract component2.

This work introduces a consistency model for check-
ing interaction consistency among abstract components.
An abstract component is a basic building block of the
Marmot that enables high-level reuse and systematic
transformation of the Marmot model into formal speci-
fications, suitable for performing automated formal veri-
fication. The semantics of inter-communicating abstract
components is defined using the π-calculus [39] notation
and their internal behavior is defined in terms of labeled
transition systems. This enables the definition of a trans-
lation rule between the abstract component and formal
specification language for model checking [14]. The con-
sistency model is systematically extracted from Mar-

mot abstract components and verified/refuted using the
model checker Spin [27] during the iterative design pro-
cess.

The proposed approach is demonstrated with a small
case study by applying Marmot during the develop-
ment of an abstract version of a mirror control system,
showing that potentially fatal communication problems
can be identified during the iterative process of compo-
nent refinement and verification. A more extensive appli-
cation of the approach is being conducted on the design
verification of TinyOS – a representative operating sys-
tem for wireless sensor networks.

Recently, there have been several approaches for
component-based development and verification [25,47,
28]. Nevertheless, this work is the first to incorporate

2 The term abstract components, coined by Braun and
Wallnau [6] refers to view components as application-specific
core assets, and thus emphasizes component-based design ap-
proaches rather than standard component infrastructures or
component marketplaces.

verification activities into the entire design process, from
conceptual design to physical components. The following
summarizes the major differences between this work and
existing approaches:

1. it is process oriented : formal verification tech-
niques are used to support the iterative specification-
refinements process. The main goal is to assure the
continuity of the design process by checking the be-
havioral consistency of abstract components before
and after their refinements.

2. it lifts the level of abstraction : The same notion of
abstract component is used throughout the design
process from specifying system context to generating
program code. By conceptualizing the design process
with a uniform notion, it facilitates systematic de-
velopment and verification as well as a high-level of
reuse.

3. it reduces verification complexity using a structured
approach : consistency models are automatically gen-
erated from the structured information on abstract
components and their refinement relationship. This
information helps reduce the verification complexity
by systematically localizing it to the problem among
directly related abstract components in the refine-
ment/decomposition hierarchy.

The remainder of this paper is organized as depicted
in Figure 1: Section 2 discusses related work. Section 3
provides a brief overview of the Marmot methodology.
Section 4 introduces a case example, the mirror control
system. Section 5 provides a brief overview of the pro-
posed design verification approach followed by underly-
ing formalism (Section 6), its application to mirror con-
trol system (Section 7), and experiments on a TinyOS
(Section 8). This paper concludes with a discussion in
Section 9.

Fig. 1 Organization of this paper

2 Related Work

The component paradigm promises to address many of
the productivity and quality problems currently faced by
the software industry, but its correct application requires
systematic and methodological verification support. This

Design Verification in Model-based µ-Controller Development using an Abstract Component 3

chapter surveys existing approaches to component based
development from two different perspectives: from the
design and modeling as well as from the verification per-
spective.

2.1 Model-Driven and Component-based Development

A wide range of theoretical and practical methods
have been developed in the context of the component
paradigm. Following the taxonomy published in [8], the
following major efforts in this regard can be identified.

Catalysis [16] is one of the first methods developed
to leverage the UML(Unified Modeling Language) [24] in
connection with component based development, which
embraces many of the other reuse technologies. The
method either introduced or popularized many of the
ideas that today are considered natural ingredients of
component-based development. Catalysis uses an itera-
tive and incremental process based on abstraction and
refinement mechanisms. These mechanisms are applied
throughout system development from early analysis to
implementation and set up the basis for recursive rela-
tionships between models, which then support forward-
and re-engineering of systems. Catalysis makes use of the
UML with strong semantic consistency and completeness
criteria based on a small set of core constructs.

Select Perspective [20] emphasizes the importance of
business process modeling and follows a clean process
that transforms system-independent business processes
into implementation-oriented models. This includes the
explicit identification of components, as well as the po-
tential integration of legacy systems. Select Perspec-
tive defines most of the essential ingredients needed for
component-based development in the early stages of the
software life cycle. Unlike other methods, it also explains
the role that component technology can play in integrat-
ing legacy systems into new applications. However, its
main weakness is that it is not always clear which as-
pects of the underlying business objects are being de-
scribed by which models. In other words, the distribu-
tion of the information describing a business object is
somewhat arbitrary.

UMLComponents [10] focuses on the specification of
components using the UML. The method identifies two
main phases: the requirements work-flow which captures
the basic needs that the system must fulfill in terms of
use cases and high level business classes, and the specifi-
cation work-flow which documents the business types,
interfaces, and components that have been chosen to
satisfy these requirements. In essence, UMLComponents
packages are a core subset of Catalysis concepts. Un-
fortunately, it loses key ideas such as the nesting of
components to arbitrary depths, the recursive applica-
tion of development concepts, and the use of frameworks
to package larger-grained reusable structures than inter-
faces and components.

In summary, the taxonomy showed that methodolog-
ical support for component-based software development
has made significant advances, compared to the early
methods, such as OMT(Object Modeling Technique).
However, the methods available today are not silver-
bullets and are sensitive to the requirements of different
domains and system types. More specifically, the area of
safety-critical systems requires formal development and
support for addressing non-functional properties. This
warrants “new” methods, such as Marmot.

2.2 Formal design verification

Existing formal design verification approaches can be
categorized into three: (1) research on formal seman-
tics for component and composition in general [2,3,48],
(2) transformational approaches for the verification of
Uml diagrams or architecture [5,9,35,40,44], and (3) in-
tegrated approaches in software development [1,18,28,
49].

Research on formal semantics aims at providing for-
mal semantics for component models. For example, [48]
formalizes behavioral consistency among components
with respect to Petri-net semantics. [2] provides a for-
mal notation and theory for the architectural connection
of components including the notion of ports, connect,
and refinement. [3] formalizes the component composi-
tion using a channel-based coordination model. These
approaches mainly focus on the formal definition of a
component and of composition without properly address-
ing practical aspects (e.g., integration into existing de-
velopment methodologies and/or support by automated
checking techniques).

Transformational approach transforms semi-formal
models into verifiable formal models. [44] uses a vari-
ation of Petri Nets as the underlying formalism of a sys-
tem model and translates it into Promela to use the
Spin verifier. [5,35] define operational semantics for Uml

statechart and its translation into Promela, the input
language of the Spin model checker, based on the opera-
tional semantics. [40] defines a process algebra for regu-
lar sequence diagrams. The proposed approach includes
these transformational approaches. Some of them [35,51]
are adopted in our Uml-Promela translation.

Integrated approach integrates transformational ap-
proaches into development process. For example, the
OMEGA project [28] is a notable approach for formal
design verification of embedded software. The approach
is based on a Uml profile that supports automated for-
mal verification. The work demonstrates that Uml, with
well-defined semantics, can be a practical choice as a
modeling language for both development and verifica-
tion. Nevertheless, it does not particulary address issues
related to engineering methodology, such as component
identification, decomposition (as well as the verification
of its refinements), and reuse in the development process.

4 Yunja Choi, Christian Bunse

Clientship

rules

Clientship +

Containment rules

Clientship +

Containment rules
Clientship +

Containment rules

Containment rules

Cliensthip

rules

Clientship

rules

Fig. 2 Component Hierarchy

[49] is the closest to the proposed approach in the
sense that it is closely coupled with a component-based
development process. It takes a bottom-up approach
by identifying properties for each component under en-
vironmental assumptions. Compositional verification is
performed by ‘cleverly’ assembling those properties of
each sub-component that has already been verified. In
contrast, the proposed approach extracts environmen-
tal constraints from the internal behavior of an abstract
component, which is specified during the Marmot re-
finement process, eliminating the need for manually iden-
tifying environmental assumptions.

Besides, a number of direct applications of formal ver-
ification on embedded software [19,21,29,44] exist. For
example, [42] models a hardware-implemented run-time
kernel using Uppaal and verifies the absence of dead-
locks, the correctness of kernel calls and the FIFO order
using the Uppaal model checker. Nevertheless, these ap-
proaches are more toward showing the capability of auto-
mated formal verification than addressing methodologi-
cal issues.

3 The Marmot Methodology

Reuse is a key success factor in today’s software indus-
try and can be regarded as a major driving force in
hardware and software development. Reuse is pushed
forward mainly by the growing complexity of software
systems. This section introduces a methodology for the
component-based development of embedded systems, re-
ferred to as Marmot, that is specifically geared to-
wards facilitating reuse in embedded systems develop-
ment. Marmot is an extension to the KobrA method [4],
a component-based development framework for informa-
tion systems, and adds concepts addressing the specific
requirements of embedded system development.

StructureModel

(UML Class/Object Diagram)

Functional Model

(Operation Schemata)

BehaviorModel

(UML Statechart diagram)

Specification

S
y
ste

m

C
o
m
p
o
n
e
n
t StructureModel

(UML Class/Object
Diagrams)

Interaction Model

(UML Collaboration!

Diagrams)

ActivityModel

(UML Activity Diagram)

Realization

Fig. 3 Marmot Component

3.1 Principles

Marmot [4,11] advocates composition as the single
most important engineering activity by viewing a system
as a tree-shaped hierarchy of components, in which the
parent/child relationship represents composition (Fig-
ure 2). A Marmot project is based upon the follow-
ing fundamental activities: (1) Iteratively decompose the
system into finer-grained parts that are individually con-
trollable (this is termed “decomposition”), and (2) re-
duce the level of abstraction to create representations
of the system that come closer and closer to executable
formats, which is termed “refinement”.

Another important principle in Marmot is the sep-
aration of concerns: Separation and clear distinction of
what a software unit does (e.g., “specification”, “inter-
face”, and “signature”) from how it does it(e.g., “realiza-
tion”, “design”, “architecture”, “body”, and “implemen-
tation”). This facilitates a “divide and conquer” way to
cope with system complexity and increases flexibility and
reusability by allowing new versions of a unit to be easily
interchanged with old versions, provided they share the
same “specification”.

A component modeled according to these principles
(see Figure 3) is essentially described on two levels of
details - one representing a component’s interface (what
it does) and the other representing its body (i.e., how it
fulfills the specified interface). Following these principles,
each component of a system can be described by a suite
of UML diagrams as if it were an independent system in
its own right. The notion of an abstract component will
be described in detail later.

In principle, many methods change the way they rep-
resent certain abstractions or concepts based on the level
of granularity or phase of development, at which they are
being addressed, not because of any inherit changes in
the concept itself. In other words, they represent and ma-
nipulate a given abstraction in distinct ways in different
parts of the method. Marmot therefore follows the prin-
ciple of uniformity. It requires that, wherever possible, a

Design Verification in Model-based µ-Controller Development using an Abstract Component 5

given fundamental concept is represented and manipu-
lated in the same way in all parts of the method, and in
all phases of a project that uses the method.

Marmot’s approach to modeling is based on the ba-
sic idea that the development time artefacts (e.g. UML
diagrams) should be constructed and organized in a way
that reflects the run-time component-oriented structure
of the system. This idea is captured by the so-called
“principle of locality” which requires that every devel-
opment artefact, including UML models and diagrams,
be focused towards the description of a single run-time
artefact. In other words, there are no global models or
diagrams. Instead, every model or diagram is focused on
the description of a single artefact: that is, it is “local”
to that artefact.

A potential disadvantage of role modeling to the ex-
tent used in Marmot is the unnecessary duplication of
information. Since separate development artefacts, such
as UML diagrams, necessarily overlap to some degree,
and each describes a specific piece of information from its
own viewpoint, there is a danger of unnecessary redun-
dancy. This is particularly so for class diagrams which
are notoriously difficult to finish, and can in principle be
cluttered with an unlimited number of artificial associ-
ations. To avoid this problem, Marmot requires every
diagram to contain the minimum information needed to
convey the required ideas.

3.2 Process Model

The Marmot process model identifies four essential
goals that should be achieved by any software develop-
ment process. This process model prescribes generic pro-
cesses to achieve each of these goals as well as a sequence
in which these goals should be achieved. The core prin-
ciple of Marmot is the separation of concerns, so Mar-

mot associates its main development effort with two ba-
sic dimensions that are mapped to four basic activities
[4]. These are depicted in Figure 4:

1. Composition/Decomposition dimension.
Decomposition follows the “divide-and-conquer”
paradigm, and is performed to subdivide the entire
embedded system into smaller parts that are easier
to understand and control. Composition represents
the opposite activity, which is performed when the
individual components have been implemented, or
some others reused, and the system is put together.

– Decomposition. Development projects that aim
at developing a new product typically start above
the top left-hand side box in Figure 4. The box
represents the entire system to be built. Before
the specification of the box, the concepts of the
domain or the physical world in which the sys-
tem is supposed to operate have to be determined.
This comprises descriptions of all entities relevant

Fig. 4 Development Dimensions

to the domain, including standard hardware com-
ponents that will eventually appear on the right-
hand side towards concretization. In embedded
systems, these implementation-specific entities of-
ten determine the way in which a system is di-
vided into smaller parts. During decomposition,
newly identified logical parts of the system are
mapped to existing components. Whether these
are hard- or software does not play a role during
this early phase because of the way all compo-
nents are treated in terms of collections of de-
scriptive artifacts, that are, models.

– Composition. After having implemented some
components and having reused some others, the
system can be assembled according to the ab-
stract model. Therefore, the subordinate boxes
with their respective super-ordinate boxes have
to be coordinated in a way that follows the com-
ponent standard described earlier exactly.

2. Abstraction/Concretization dimension. This
dimension is concerned with the implementation of
a system and the gradual refinement of artifacts to-
wards more concrete/executable representations. The
activity is called embodiment, and it turns the ab-
stract system represented by models into more con-
crete representations that can be executed by a com-
puter. The reverse direction is called verification.
This activity checks whether the concrete represen-
tations are in line with the abstract ones.

6 Yunja Choi, Christian Bunse

– Embodiment. During decomposition, the
shapes of each identified individual component
are defined in an abstract and logical way. The
system, or parts thereof, can then be moved
towards more concrete representations. This
means they become platform-specific.

– Verification. In general, software verification
provides objective evidence that the result of a
particular development phase meets all specified
requirements for that phase. Therefore, as a final
activity, verification (i.e., in reverse to embodi-
ment) is carried out in order to check whether
the concrete composition of the embedded system
corresponds to its abstract description.

3.3 Product Model

The product model provides semantics and syntax for
modeling software products. When using Marmot, com-
ponents and systems (i.e., in the form of a component
containment tree) are built on the same fundamental
principles as in object technology. Therefore, Marmot

components follow the principles of encapsulation, mod-
ularity, and unique identity that most component defini-
tions put forward, which lead to a number of obligatory
properties:

– Composability is the primary property of a Marmot

component, and can be applied recursively: Compo-
nents are composed of components, which are again
composed of components, etc.

– Reusability is the second key property, and can
be separated into: Development for reuse, which
deals with how components have to be specified and
treated, so that they can be reused, and development
with reuse, dealing with the integration and adapta-
tion of existing components into a new application.

– Unique identities require that a component may be
uniquely identifiable within its development envi-
ronment as well as within its runtime environment.
Marmot provides the principles for that.

– Modularity/encapsulation refer to a component’s
scoping property as an assembly of services, which is
also true for a hardware component, and as an assem-
bly of common data, which is true for the hardware
and the software parts of an embedded component.
Here, the software only represents an abstraction of
the hardware, which essentially provides the memory
for the data.

– An additional important property is communication
through interface contracts, which becomes feasible
in the hardware or embedded world through typi-
cal software abstractions. Here, the additional hard-
ware wrapper of Marmot realizes that the typical
hardware communication protocol is translated into
a typical component communication contract.

external internal

external internal
behavior

11 1..*1..*

interface

attribute

operation relation

structure

0..*0..*

0..*0..*

component

1..*1..*

1..*1..* 0..*

0..*

+refining

0..*

+refined

0..*
**

1..*1..*

has

1..*

1

has

Fig. 5 Marmot component meta-model

Composition along the Composition/Decomposition
dimension turns a Marmot project into a tree-shaped
structure with consecutively nested abstract component
representations. Such a tree is called a containment tree.
Every box in the tree, each representing a component or
a system in its own right, is made up of a component
specification and a component realization. The specifi-
cation is a suite of descriptive artifacts that collectively
define everything externally knowable about a compo-
nent. These descriptions fully specify a component in a
way that it can be assembled in a system and used by
the system. The realization is a suite of descriptive arti-
facts that collectively define how a component is inter-
nally realized. According to the composition principles,
components can be made up of other components. Any
component in a Marmot containment tree can there-
fore be a containment tree in its own right, and, as a
consequence, another Marmot project.

3.4 Abstract component

The Marmot model can be uniformly represented with
abstract component. As depicted in Figure 5, an abstract
component consists of one or more structures and one
or more behaviors. Each structure and behavior has an
internal part hidden from outside the component and an
external part visible from outside which also defines an
interface of the component. The structure may contain
specifications of attributes and operations of the compo-
nent as well as the specifications regarding relationships
with other components.

Each external structure has an external behavior vis-
ible from outside; an example can be the change of its at-
tribute values (states) according to the service requested.
Each internal structure can have one or more internal
behaviors specifying how externally visible operations
(services) of the component (specified in the external
structure) are internally realized. If the component is de-
composed into sub-components, the component acts as

Design Verification in Model-based µ-Controller Development using an Abstract Component 7

a container of the sub-components and its internal be-
havior can be considered to specify the glue-code for the
sub-components. Otherwise, an internal behavior spec-
ifies an algorithm for implementing an externally visi-
ble service. This realization can be self-contained in the
component or implemented by using services from other
components. In the latter case, only the services provided
by visible components can be used; a component A is vis-
ible to a component B only if A is a refining component
of B and if this relationship is explicitly specified in the
internal structure of the refined component.

This abstract component can be realized using
UML [24] diagrams in the software modeling stage; for
example, UML class diagrams and object diagrams are
used to specify the external and the internal structure
of the component. Statecharts and activity/interaction
diagrams are used to specify the external behavior and
the internal behavior of the component, respectively3.
For lower level component specifications, such as hard-
ware components, one may use other modeling languages
such as HDL or SystemC.

3.5 Summary

In summary, the core of Marmot is represented by two
major activities: Component Identification and Compo-
nent Realization. Once a component is identified with its
set of services and externally visible behavior, its realiza-
tion (implementation) can be achieved either by reusing
services provided by existing components or by imple-
menting its service from scratch, which again can result
in building sub-components.

In more detail, a Marmot project is based upon the
following fundamental activities:

1. Decompose the system into finer-grained parts that
are individually controllable.

2. Reduce the level of abstraction to create representa-
tions of the system that come closer and closer to
executable formats.

In other words, every system is organized as a
tree-shaped hierarchy of logical building blocks that
have class-like and package-like properties. The class-like
properties allow a component to have attributes, opera-
tions and behavioral features, whereas the package-like
properties allow a component to represent a name space
and act as container for a wide range of documents, con-
cepts and other components.

Figure 6 shows how the primary component engineer-
ing activities, when visualized in connection with the hi-
erarchic product they generate can be regarded as lead-

3 To facilitate specifying correct and unambiguous system
behavior, this study uses a template for specifying operations
and attributes of a component as well as an action language
similar to Omal [43] for unambiguously specifying behaviors
in the UML diagrams.

Fig. 6 Marmot Process

ing to a spiral-based process. The final goal of the com-
ponent reuse activities is to fully integrate a component
that has been developed earlier outside the context of the
tree (i.e., an external component). To achieve this, the
specification desired of the reusing component and the
provided specification, offered by the pre-existing com-
ponent, have to be brought into agreement. When such a
situation exists, the reused component realizes, and usu-
ally also implements the specification that is required
by the reusing component, and the reused component is
then fully integrated.

4 A Case Example: Mirror Control System

The mirror control system is an embedded system com-
posed of electrical and mechanical components and is
used for controlling the movement of a car’s exterior
mirror (see the left side of Figure 7). The system al-
lows the mirror to be moved horizontally and vertically
into a position that allows the driver to watch traffic
behind him/her. In addition, the system supports stor-
ing/recalling different mirror positions (i.e., needed for
cars that make use of driver profiles).

4.1 System overview

Since the focus of this study is on software develop-
ment, the mirror control system was realized in a sim-
plified (hardware) version using a µ-controller (i.e., an
ATMELTM Mega 8), a button, and two servos, also
known as the Servo-Control System (see the right side
of Figure 7).

A servo drive receives a command signal from a con-
trol system, amplifies the signal, and transmits electric
current to a servo motor in order to produce motion

8 Yunja Choi, Christian Bunse

Fig. 7 Exterior mirror and its prototype realization

proportional to the command signal. Typically, the com-
mand signal represents a desired velocity. A velocity sen-
sor attached to the servo motor transmits the actual mo-
tor velocity to the servo drive. The servo drive contin-
ually compares the actual motor velocity with the com-
manded motor velocity to generate an output to the mo-
tor that is to correct any error in the velocity.

The micro-controller has limited performance and re-
sources (i.e., 4 MHz, 8KB programmable Flash memory,
512 Bytes EEPROM, and 1KB Internal SRAM) as well
as minimal I/O capabilities (i.e., three counters, three
PWM Channels (pulse width modulation), and a multi-
plexed 8-channel ADC(analog-digital conversion)).

The actual system requires the µ-controller to read
values from the potentiometers (requires an analog-
digital conversion), converts these readings into a turn-
ing angle, and generates the needed servo control signals
(which requires PWM signal generation using timers and
interrupts), while at the same time indicating movement
and turning angle on the LCD. In addition, the system
can save a position (turning the angles of both servos) by
pressing the button for more than five seconds. The po-
sition can be later recalled by simply pressing the button
for less than five seconds. Storing and recalling are visu-
alized on the LCD. The right side of Figure 7 shows the
prototype of the system realized using the MyAVRTM -
Board.

4.2 Software realization

The requirements of the mirror control system are de-
scribed by UML usecase diagrams (Figure 8(a)) and an
UML interaction diagram (Figure 8(b)) representing the
general flow of control. The usecase diagram describes
how the actor ‘User’ initiates the task of controlling the
servo rotation. In addition to the graphical depiction, ev-
ery usecase is also textually specified in order to capture
details, not necessarily contained in the UML diagram.

Servo-Control

User

Control Aptitude

Store Position

«
in

c
lu

d
e
»

Recall Position

«
in

c
lu

d
e»

sd Servo-Control System

:Servo-Control System

System_On

:User

[2]

[1]

alt

Tuned

[2]

[1]

alt
Pressed

Pressed

loop

System_Off

Potentiometer

Button

(a) Use case diagram (b) Interaction model

Released (after 5 seconds)

Released (in 5 seconds)

Fig. 8 Mirror-control system context realization

The interaction diagram provides an alternative view of
the way in which user tasks are performed and shows the
typical sequence of operations of the overall system. In
addition, the diagram specifies the signals that, created
by user events, are sent from the micro-controller to the
software system.

Figure 9 represents the structural model of the mir-
ror control system. Electronic components are mapped
to UML classes marked by the stereotype “Component”,
to indicate their nature, and (optionally)“Hardware”, to
distinguish them from later driver classes using the same
name. In order to ensure consistency, software compo-
nents addressing hardware functions (i.e., driver com-
ponents) are named according to the controlled hard-
ware component. The diagrams were manually trans-
lated from the circuit diagram using Marmot mapping
rules and guidelines.

In general, all these specifications form the ‘context
realization’ of the mirror-control system. In a sense, the
“context” can be viewed as a pseudo component at the
root of the development tree. The system is then treated
as an abstract component, since the context provides the
encapsulating realization against which it can be spec-
ified. Using this information allows defining a prelimi-
nary containment hierarchy of the system. This hierar-
chy specifies how coarse-grained components are “made

«Component»

ATMega 8

VCC

GND

«Component»
LCD

«Component»

Servo

«Component»

Potentiometer

Crystal

Frequency = 4MhZ

«Component»

Button

Port 16

(PWM)

Control

Port 9,10 Port 2,3 (UART)

+5V

+

Port 1,7,20,21 Port 17, 18, 19 (ISP)

-

Port 8,22Port 25
+ -

Port 2,3,4,5,
6,11,12,

13,14,15

+

-

Port 23,24

-

+

Port 26,27,28 (Unused)

Fig. 9 UML representation of hardware

Design Verification in Model-based µ-Controller Development using an Abstract Component 9

Component

Application

<Signal>Button_Pressed,

<Signal> Button_Released

<Signal> Potentiometer_tuned

Component

Controller

Position

1

 1

h
a
n
d

l e
s

Ready

Timing

System_On System_Off

(a) Application specification - class diagram (b) Application specification - statechart

B
u

tto
n

_
p
re

s
s
e

d

B
u

tto
n

_
R

e
le

a
s
e

d

[tim
e
>

=
5
] /s

to
re

B
u

tto
n

_
R

e
le

a
s
e

d

[tim
e
<

5
] /re

s
to

re

<Signal> System_On

<Signal> System_Off

Fig. 10 Specifications for the Application component

up of” finer-grained components, in a recursive manner,
down to the level of small, primitive components.

4.3 Component specification

Since the hardware environment is pre-defined, this
study focuses on the development of the software part,
namely the Driver and the Application components.
The Controller component is a container without any
software functionality which contains the Application
component. Figure 10(a) shows the specification level
class diagram of the Application component in its con-
text. Application does not offer any operations to the
outer world, but reacts to signals. This is denoted by
the UML 2.0 stereotype signal. The state diagram of the
component (see Figure 10(b)) shows that it is in the ini-
tial state in the beginning and transits to ready state af-
ter the system on event. When the button pressed event
happens, it transits to the timing state where “the time
till the next button released event occurs” is measured.
Depending on whether the time is less than 5 seconds or
not, it signals restore(recall) action or store action and
transits back to the ready state.

4.4 Component realization

The specification behavior of Application can be in-
ternally realized through a successive refinement pro-
cess; for example, it can be realized using the Driver
component which can be again refined into several sub-
components. Figure 11(a) shows the Driver component,
used to realize the functionality of the Application com-
ponent. As shown in Figure 11(b) the realization of the
Application component is defined in an interaction di-
agram specifying the interaction behavior between the
refined component Application and the refining compo-
nent Driver; the button pressed (button released) event
from the user initiates the timer starts (timer stops)

action in the Driver, and then, depending on the dura-
tion of the event, the Application component interacts
with the Driver to either restore (recall) or store the
mirror position.

Note that the Driver component becomes the target
abstract component at the next iteration (Figure 12);
the external behavior for the Driver may be defined in
statechart in the specification process and the internal
interaction behavior among Driver and its six refining
components may be defined in sequence diagrams in the
realization process.

4.5 Component Implementation

Iteratively devising specifications and realizations is con-
tinued until an existing component is found, or, until
it can be implemented (no reuse). Coming to a con-
crete implementation from the models requires the level
of abstraction to be reduced in the descriptions. First,
the containment hierarchy is simplified according to the
technical restrictions of the used implementation tech-
nology, i.e., through refining the containment hierarchy
and mapping it to a UML model with the source code
structure of the resulting system. Second, the models are

«Component»

LCD

Init

Send

Cmd

Clear

Home

On

Off

Goto

Light

Dimmer

«Component»

Servo

Init

Set

«Component»

Potentiometer

Read

«signal» Poti_Turned

«abstract»,«Component»

Driver

«Component»

Controller

«Component»

Timer

Start

Stop

«Component»

Button

«signal» Pressed

<<signal>> Released

«Component»

EEPROM

MemorySize = 1 KByte

Store

Retrieve

Fig. 12 Realization of the Driver component

10 Yunja Choi, Christian Bunse

:Application

Button

:Driver

Timer_Start

<<signal>> Button_Pressed

<<signal>> Button_Released

Timer_Stop

Timer

sd Button

[Timer > 5 sec]

[Timer < 5sec]

alt

Servo_Set(x,y)

Servo_Set(x,y)

LCD_Send(„Goto Position“)

LCD_Send(„Position Stored“)

EEPROM_Retrieve

x,y

EEPROM_Store(x,y)

«Component»

Driver

LCD_Init

LCD_Send

LCD_Cmd

LCD_Clear

LCD_Home

LCD_On

LCD_Off

LCD_Goto

LCD_Light

LCD_Dimmer

POTI_Read

SERVO_Init

SERVO_Set

BUTTON_Pressed

BUTTON_Released

TIMER_Start

TIMER_Stop

EEPROM_Store

EEPROM_Retrieve

«signal» Button_pressed

<<signal>> Button_released

<<signal>> Poti_turned

«Component»

Controller

(a) Structural realization of Application component (b) Behavioral realization of Application component

Fig. 11 Realization of the Application component

Fig. 13 Source code for the servo component.

mapped to source code, either through a code generator,
or through manual mapping according to mapping guide-
lines as published in [34]. Figure 13 shows an example
code snippet for a servo component.

5 Design Verification Approach

One major problem in component-based software devel-
opment is to ensure the correctness and consistency of
a system’s behavior. This is not a trivial problem since
behavioral complexity is high due to the composition of
dozens, possibly hundreds, of components into one sys-
tem. The Marmot verification approach uses a divide-
and-conquer strategy, enabled by the notion of abstract
components, to address this issue.

Figure 14 illustrates the schematic view of the Mar-

mot design verification approach using abstract compo-
nents. At the ith decomposition/refinement step, it is as-
sumed that the external structure and behavior of the ith
abstract component is already specified. The next step
then is to realize the abstract component by specifying
its internal structure and behavior. During this step it
might be necessary to acquire services provided by other
components, resulting in the decomposition/refinement
of the abstract component. In this process, it is impor-
tant to assure the behavioral consistency between the
realization behavior of the ith abstract component (the
service user) and the specification behavior of the (i+1)th

abstract component (the service provider). In this sense,
the interaction consistency between refined(ith) and re-
fining components((i+1)th) is defined in terms of system
consistency with respect to its environment.

C1. A system (or a refining component) is consistent
with its environment (refined component) in its be-
havior if it either terminates normally or runs in-
finitely under the infinite sequence of stimuli gener-
ated from its environment (refined component).

C2. A system (or a refining component) is inconsistent
with its environment (refined component) in its be-
havior if it terminates abnormally under the infinite

Design Verification in Model-based µ-Controller Development using an Abstract Component 11

external internal

external internal

behavior

attribute

operation

structure

external internal

external internal

behavior

attribute

operation

structure

component

component

+refined

+refining

Abstract component at i_th level

Abstract component at (i+1)_th level

component model at (i-1)_th level

A compositonal process

forming an environment

Process P_1 from

refining component 1

Process P_2 from

refining component 2

Process P_i from

refining component i

actions generated by the

environment change of states

consistency model

Fig. 14 A general framework for design verification

sequence of stimuli generated from its environment
(refined component).

Behavioral inconsistency of the C2 type can easily
be derived from behavioral inconsistency of the C1 type.
This can be done by transforming the consistency issue
into the problem of finding an abnormal termination for
a system, composed of refining components under the
environment explicitly specified by a refined component
at each ith refinement step. Please note that at the first-
level of an abstract component, the specification of the
abstract component is considered as a stand-alone sys-
tem with the actual operational environment being the
environment of the abstract component.

As illustrated in Figure 14, the activity of checking
behavioral consistency can be systematically integrated
into the development process: At any iteration of com-
ponent decomposion/refinements, a modeler can choose
a subject abstract-component that can be analyzed for
its interaction consistency. The internal behavior of this
component is then transformed into a (compositional)
flow of activities, defining the environment in the consis-
tency model. The internal structure of the subject com-
ponent is used to identify refining components, to extract
their external behavior, and to extract and convert their
behavior into compositional reactive processes. Commu-
nication between the environment and the reactive pro-
cess is based on actions of service calls (from environment
to the reactive system) and the change of the state of the
reactive system.

In general, the consistency model can be automati-
cally constructed for each iteration and model-checked
to ensure behavioral consistency. Figure 15 illustrates

Fig. 15 A prototype realization of the general framework

the proposed prototype implementation for the construc-
tion of the consistency model. First, a Marmot model,
specified in UML, is converted into a model using XML.
This model is again converted into object code following
the abstract syntax of UML. This allows the verification
framework to act independently of UML modeling-tools
and their communication standards. Once the tool inde-
pendent specification exists, the internal behavior spec-
ification(s) of the subject component and the external
behavior specifications of the refining components are
extracted from the object code and are transformed into
the target specification language Promela of the model
checking tool Spin [27].

12 Yunja Choi, Christian Bunse

6 Formalism

This section introduces the underlying formalism that
supports the design verification approach introduced in
Section 5. First, the semantics of an abstract component
and its externally visible behavior is defined by using
the π-calculus [39], with an emphasis on communication
behavior4. Second, the definition of the inter-relations
between an abstract component and its refining compo-
nents is followed by the definition of a consistency model
and the notion of interaction consistency.

6.1 Specification of Abstract Components

In order to understand the behavior of a component, an
abstract component is first defined using the π-calculus
notation [39] as a composition of two parallel processes
consisting of an interface I and an externally visible body
Spec:

Comp spec(i, o, o set, g set, a set) =

new u, v(I(i, o, u, v) | Spec(u, v, o set, g set, a set))

Each Comp spec has pre-defined input/output chan-
nels (i, o), a set of operations (triggering events) o set,
a set of guarding conditions g set, and a set of actions
a set that are visible from outside the component. Thus,
these are used by the component to interact with its
external environment. The interfaces I and Spec inter-
change messages and events through the internal chan-
nels u, v. Here, new u, v represents the fact that channels
u, v are dynamically created within the component with
a limited scope. The symbol “ | ” is used to represent
the parallel composition of two processes.

An interface either receives a message x from input
channel i and forwards it to the internal message chan-
nel u, or receives a message y from the internal output
channel v and forwards it to output channel o. Following
the π-calculus:

I(i, o, u, v) = i?x.u!x.I(i, o, u, v) + v?y.o!y.I(i, o, u, v)

Here, the symbol i?x, u!x represents an input event on
channel i, an output event on channel u, with mes-
sage/signal x, respectively. Two events that are con-
catenated with a “.” symbol occur sequentially; i?x.u!x
means that an input event is followed by an output event.
The + symbol means a non-deterministic choice between
two different event sequences. Note that I is recursively
defined so that it transits back to itself after any pair
of input/output events and the interface I connects ex-
ternal channels to internal channels depending on the
choice of communication behavior of the component.

4 We decided to use the π-calculus instead of formalizing by
using a transition system since our intension is to emphasize
external communication behavior rather than internal state
transitions. However, we do use a transition system to define
consistency model for verification purpose.

i ou v i ou v i ou v

u' v' u' v'

(a) abstract component

with one possible behavior
(b) abstract component with two possible behaviors

Fig. 16 The role of the interface

The purpose of defining an interface as an indepen-
dent process is two-fold: First, more than one possible
behavior can be specified in the abstract component. As
illustrated in Figure 16, the connection between exter-
nal channels i, o and internal channels u, v can be static
when only one internal behavior is specified, or dynami-
cally change depending on the choice of its behavior. Sec-
ond, the communication behavior can change indepen-
dently from functional behavior. For example, more de-
tailed communication behavior, such as a message pass-
ing mechanism, synchronization, and buffering scheme,
can be specified in I to test various communication meth-
ods [12].

The process Spec is a sequential process defined with
a series of process states from Spec0 (i.e., Spec = Spec0).
It represents the process at an initial state, whereby
Speci represents the process at the ith state. In detail:

Speci(u, v, o set, g set, a set) =
∑

op∈o set

u?x.[x = op]Action speci
op(u, v, o set, g set, a set)

+u?x.
∏

op∈o set

[x 6= op]Speci(u, v, o set, g set, a set)

Action speci
op(u, v, o set, g set, a set) =

∑

g∈g set

[g]v!f(i, op, g).Specj(u, v, o set, g set, a set)

Speci receives a message x, checks whether it matches
with one of the operations in o set, and performs corre-
sponding actions Action speci

op if it matches, and does
nothing if it does not match with any of the operations
in the set. Here, the notation

∏
op∈o set[x 6= op] is an

abbreviation for [x 6= op1][x 6= op2] . . . [x 6= opn] for
all opi ∈ o set. Action speci

op defines a series of actions
that need to be performed by the component for a par-
ticular operation. The actions, based on process state,
operation, and guard condition, are notified to the in-
ternal output channel v. This channel is forwarded to
the external output channel o by interface I. Finally, the
process reduces to Specj(u, v, o set, g set, a set) whereby
the mapping from Speci to Specj is pre-defined by condi-
tions on message values. In other words, there is a map-
ping from {(i, x) | process state i, message value x}
to {j | process state j}. This mapping can be extracted
from the state diagrams in the Marmot specification
model.

Design Verification in Model-based µ-Controller Development using an Abstract Component 13

For example, the statechart in Figure 10(b) describes
the specification of an abstract component. In this case,
the Spec process can be specified as follows;

Spec0(...) = u?x.[x = System On]Spec1(...)

+ u?x.[x 6= System On]Spec0(...)

Spec1(...) = u?x.[x = Button pressed]Spec2(...)

+ u?x.[x = System Off]Spec3(...)

+ u?x.[x 6= Button pressed][x 6= System Off]

Spec1(...)

Spec2(...) = u?x.[x = Button Released]Action spec
BR
2 (...)

+ u?x.[x 6= Button Released]Spec2(...),

where

Action spec
BR
2 (...) = [time < 5]v!restore.Spec1(...)

+ [time >= 5]v!store.Spec1(...)

The Spec process can also be modeled as a labeled
transition system (LTS) with final states.

Definition 1 A labeled transition system (LTS)
is a quintuple (S, L, R, I, T), where S is a set of states,
L is a set of labels (actions) of the system, R ⊆ S×L×S
is a transition relation, I is a set of initial states, and T
is a set of terminal states.

A process P = (S, L, R, I, T) transits from a state si

to a state si+1 if and only if P is in state si and there
exists li ∈ L such that (si, li, si+1) ∈ R, briefly denoted

as P
li→ P ′. The notation P (si) is used to denote that the

process P is in state si. Note that equivalently the state
transition can be expressed as P (si) =

∑n
k=1 lik

.P (si+k)
in π-calculus (assuming that there are n possible transi-
tions from state si).

Composition of two processes I and Spec is denoted
by I|Spec representing the parallel composition of I and
Spec with synchronization of actions common to both of
their labels and interleaving of the others. The transi-
tion of a process sometimes generates actions either in-
ternally or externally. Such a transition is denoted with

(si, li/l′i, si+1) or si
li/l′i−→ si+1 meaning that the process

transits from si to si+1 triggered by an action li generat-
ing an action l′i. In this sense, the set of labels L can be
classified into two sets: A set of actions Lt that triggers
transitions in R, and a set of actions Lg generated from
transitions in R. Lt and Lg are not necessarily disjoint.

6.2 Realization of Abstract Components

The specification of a component defines the externally
visible behavior of the component regardless of how it
is realized internally. The externally visible behavior can
be uniquely defined based on the functionality that is
provided by the component. However, each functionality

can be realized in many different ways. The Marmot re-
alization activity defines a special approach towards the
realization of a component specification via decomposi-
tion and refinement. The focus is on making this activity
as flexible as possible so that changing a certain realiza-
tion of a component does not affect the behavior of the
overall system.

In the Marmot realization process the Spec pro-
cess is refined with the Real process, as defined below,
consisting of a number of parallel SubComp processes
that collaboratively realize it. Note that each SubComp
is considered as an independent component in its own
right. Thus, it can be recursively specified as an abstract
component in the same way as Comp Spec.

Real(u, v, o set, g set, a set) = new {uk, vk}k(

!k SubComp(uk, vk, sub o setk, sub g setk, sub a setk)

| Comp Real(u, v, {uk, vk}k, o set, g set, a set))

The Real process defines the communication chan-
nels among an abstract component and its subcompo-
nents, whereby the Comp Real process defines refined
behavior of the abstract component. Here, the notation
{uk, vk}k is used to abbreviate k pairs of input/output
channels. !k is used to abbreviate the parallel composi-
tion of k SubComp processes whose interrelation is de-
fined in a function f that maps each pair of channel and
message to a sequence of actions depending on guarding
conditions:

f : {(w, op, g) | w ∈ c set, op ∈ o set, g ∈ g set}

−→ {< (wi, ai) >i| wi ∈ c set, ai ∈ a set}

Comp Reali(c set, o set, g set, a set) =
∑

w∈c set,op∈o set,g∈g set

w?x.[x = op]f(w, op, g)Comp Realj(...)

+w?x.
∏

[x 6= op]Comp Reali(...)

c set represents the set of internal input/output
channel pairs {u, v, {uk, vk}k}. Note that the function f
is used to wire sub-components and can be changed in-
dependently from the implementation of each SubComp,
supporting a flexible design for the component-based de-
velopment of software systems.

For example, the class diagram in Figure 11(a)
shows the structural realization of the abstract com-
ponent Application which is refined with the Driver
component. In this case, the Real process for the
Application component has a pair of internal in-
put/output channels, e.g., {u driver, v driver}, for com-
municating with the Driver component, in addition to

14 Yunja Choi, Christian Bunse

the input/output channels {u, v} defined in the speci-
fication level. Since there is only one refining compo-
nent the following condition holds: If a message ar-
rives at u, it delivers the message to the destination
u driver. f is defined as f(u, button pressed, true) =
{< u driver, T imer Start >} assuming that the realiza-
tion behavior of the Application is specified so that the
message T imer Start is to be delivered to the Driver
component when button pressed event occurs.

The refined behavior of the Application component is
specified by a series of sequence diagrams. Figure 11(b)
illustrates one of these sequence diagrams that specifies
the interaction behavior between the refined component
Application and the refining component Driver when a
button-related signal is received. Note that the sequence
diagram is used to specify detailed actions taken by the
Application for each external signal. The following is a
fragment of the Real process derived from the sequence
diagram;

Real(...) = new{..u driver, v driver..}(

Driver(u driver, v driver, ..) | Comp Real(...))

Comp Real1(...) = u?x.[x = button pressed]

u driver!T imer Start.Comp Real2(...) + ...

6.3 Consistency Model

As briefly introduced in Section 5, the internal behav-
ior is specified by an abstract component as the envi-
ronment of the set of refining abstract components that
are used to realize the abstract component, where the
compositional process of refining abstract components is
considered as a stand-alone system. In this sense, a more
restricted form of composition is considered in the follow-
ing: A process P = (Sp, Lp, Rp, Ip, T p) may be restricted
by its environment E = (Se, Le, Re, Ie, T e), denoted by
P ↑ E = (Sp × Se, Lp ∪ Le, Rp × Re, Ip × Ie, T p × T e),
meaning that the environment E generates, and, thus,
constrains the (sequence of) actions that triggers transi-
tions in P .

a.
sp

i

l
p
i

−→sp
i+1

, se
i

le
i

/le
i
′

−→ se
i+1

(sp
i
,se

i
)
l
p
i

,le
i

/le
i
′

−→ (sp
i+1,se

i+1)

(lei
′ = lpi)

b.
sp

i

l
p
i

−→sp
i+1

, se
i

le
i

/le
i
′

−→ se
i+1

(sp
i
,se

i
)
{},le

i
/le

i
′

−→ (sp
i
,se

i+1
)

(lei
′ 6= lpi)

Rule a says that both P and E follow transitions when
the triggering action for a transition of P is generated
from a transition of the environment E. Rule b says that
P stays in the same state when E does not generate an
action that triggers a transition in P .

The consistency model comprises the behavioral de-
scription of refining components and the realization of
each service of a refined component. Both can be consid-
ered as a parallel composition of processes.

Definition 2 A consistency model for the ith refinement
is a closed system P ↑ E, with P = P1|P2| . . . Pn being a
compositional process consisting of the externally visible
behavioral specification of each refining component, and
E = E1|E2| . . . Em being a compositional process consist-
ing of the realization behavior of each service provided by
the refined component.

Note that the notion of environment is a relative con-
cept. At each ith refinement step, a set of refining com-
ponents is considered to be a stand-alone system whose
behavior is restricted by the internal behavior specified
in the refined component acting as an environment of
the system.

The consistency model is used to check interaction
consistency in the Marmot component refinement ac-
tivity with respect to termination and progressiveness.

Definition 3 Termination: A process P terminates
normally (in state s) under environment E, denoted as
Terminate(P (s)) ↑ E, if and only if P terminates to
a state s that belongs to the pre-defined set of terminal
states T , i.e., P (s) ∧ s ∈ T , and there is no l ∈ L, s′ ∈ S

such that (s
l
→ s′) ↑ E.

– A compositional process P = P1|P2| . . . Pn terminates
normally, if each of its sub-processes Pi with a non-
empty set of terminal state Ti terminates normally
in state si under environment Ei. Here, Ei is a par-
allel composition of the environment of P and all the
processes Pj with j 6= i, i.e., Terminate(Pi(si)) ↑ Ei

where Ei = E|P1|P2 . . . Pi−1|Pi+1| . . . Pn.

Definition 4 Progressiveness: A process P is pro-
gressive (in state s) under environment E, denoted by
Progress(P (s)) ↑ E, if and only if there is a sequence
of states s1, s2, . . . , sn ∈ S and a sequence of labels

l1, l2, . . . , ln−1 ∈ L such that sn 6= s and (s
l1→ s1 . . .

ln−1

→
sn) ↑ E.

– A compositional process P is progressive under an
environment E, if and only if there exists a sub-
process Pi which is progressive under its environment
Ei = E|P1|P2 . . . Pi−1|Pi+1| . . . Pn.

Definition 5 Interaction consistency: A composi-
tional process P is consistent with its environment
in a state sk = (sk1

, sk2
, . . . , skn) after kth transi-

tion, denoted by Consistent(P (sk)) ↑ E if and only if
Terminate(P (sk)) ↑ E ∨ Progress(P (sk)) ↑ E.

Simply speaking, a process is consistent, at a specific
execution time, if and only if it is normally terminated
or progressive.

Interaction consistency can be checked by apply-
ing formal verification methods and automation tools,
such as CSP/FDR [36], theorem proving [45], and model
checking [14,27]. Marmot uses the model checker Spin

because Spin has a built-in invalid end-state verification
option which corresponds to the notion of interaction
consistency.

Design Verification in Model-based µ-Controller Development using an Abstract Component 15

6.4 From Abstract Components to Promela

The goal is to incorporate automated checking mecha-
nism into the Marmot development process so that a
system can be formally checked at the earliest develop-
ment steps. To this end, the proposed verification frame-
work integrates the model checker Spin [27] as a back-
end verifier for the Marmot concept of abstract com-
ponents.

The use of Spin requires a translation of Mar-

mot models into Promela [26], the input language of
Spin. The syntactic transformation from Marmot into
Promela is based on the formal meaning of abstract
components as defined in the previous sections.

Figure 17 shows the skeleton of the syntactic transla-
tion from Marmot (UML based) models into Promela.
The names of operations and actions in a Marmot com-
ponent are translated into elements of the Promela

mtype construct. Each communication channel in a
Marmot component is declared as a message channel of
mtype in Promela. Each Marmot component specifi-
cation, component interface, and component realization
corresponds to a proctype declaration. The Promela

run construct is used to activate an interface process or
a specification process in a component. Message sending
and receiving actions can be directly translated into u!x
and u?y where x and y are declared as mtype. A behav-
ioral specification Speci corresponds to a state of a com-
ponent whose transition is defined by the transitions in
Speci. Similar translation applies to Action speci. Non-
conditional action transitions are translated into sequen-
tial actions followed by a goto statement. The Promela

if construct is used for conditional transitions.

As explained in Section 4, UML diagrams, such as
statecharts for specification behavior and sequence di-
agrams for realization behavior, are used to specify
Marmot abstract components. The proposed proto-
type translation converts sequence diagrams into stat-
echarts [51] and interprets statecharts with LTS seman-
tics. The translation of these statecharts into Promela

follows the rules described in Figure 17 and the LTS-to-
Promela translation proposed in [38].

7 Design Verification of the Mirror Control
System

This section presents the application of the design veri-
fication approach, proposed in Section 5 and Section 6,
to the case example introduced in Section 4. Please note
that all the Promela codes presented in this section are
edited for better readability5.

5 Our prototype translation tool uses encodings of state
variables, and, thus, its Promela code is rather lengthy.

7.1 Translation of component specification

The process Comp Spec for the Application component
is specified in Promela as follows:
mtype = { system_on, system_off, button_pressed,

button_released, poti_tuned, store,
restore};

proctype Comp_spec(chan i, o){
chan u = [1] of {mtype};
chan v = [1] of {mtype};
run Interface(i, o, u, v);
run Spec(u,v);

}

Here, mtype declares the set of actions and operations
used in the Application component. The proctype decla-
ration is used to declare the component process with the
name Comp spec. The input, output channels i, o are
declared in the signature of the component. Inside the
process Comp spec, u, v are declared as channels with
the message type mtype. Furthermore, these two internal
channels are used to deliver messages/signals of actions
and operations. Two parallel processes, Interface and
Spec, are activated by Comp spec as its sub-processes
using the keyword run.

The interface part is directly translated into
Promela proctype that simply delivers messages
to/from internal input/output channels as described be-
low:

proctype Interface(chan i,o,u,v){
mtype x;
do
::i?[x] -> i?x; u!x;
::v?[x] -> v?x; printf("%d", x);
od;

}

Here, the statement i?[x] becomes true if a message
is at the channel i. Note that the output messages from
the internal output channel v is printed, instead of being
delivered to the output channel o, to make it easy to read
the output result.

The behavior of the Spec process is derived from
the statechart of the Application component described
in Figure 10(b) as its translated model is shown in
Figure 18: The four labels, Spec 0(line 3), Spec 1(line
9), Spec 2(line 16), and end state, represent the initial
state, ready state, timing state, and the final state, re-
spectively. The Spec process is initially in Spec 0 state
and transits to the Spec 1 state if the system on sig-
nal is received. The transition from Spec 1 occurs either
to Spec 2 or to end state when the button is pressed
or the system off signal is received. In Spec 2, it non-
deterministically sends out store or restore messages
and transits to Spec 1 if the button released event oc-
curs (line 19–line 22). Otherwise, it stays in Spec 2
(line 23). Note that predicate abstraction [23] is ap-
plied to the original guarded action, “if time < 5 then
restore, else if time ≥ 5 then store”, so that it is trans-
formed into a non-deterministic choice of actions be-
tween restore and store; first, time < 5 is replaced with

16 Yunja Choi, Christian Bunse

Marmot construct Promela construct
messages O =

⋃
op set,action set

{n | n ∈ op set or n ∈ action set} mtype = {n1, n2, . . . , nk}, where ni ∈ O.

channels new u chan u = [1] of {mtype}
Processes I(i,o,u,v) proctype Interface(chan i,o,u,v)

Comp spec(i,o,op set, action set) proctype Comp spec(chan i,o){. . . }
Comp real(i,o,op set, action set) proctype Comp real(chan i,o){ . . . }

Process Comp Spec(i,o,O,A) = new u,v I(i,o,u,v) | proctype Comp Spec(chan i,o){
Activation Spec(u,v,O,A) chan u = [1] of mtype;

chan v = [1] of mtype;
run Interface(i,o,u,v);
run Spec(u,v);

}
actions u?x mtype x; u?x;

u!y mtype y; u!y;
states Speci(u, v, op set, action set) statei :
transitions π.Speci(u, v, op set, action set) π; goto statei;
conditionals u?x.[x = a]Speci(u, v, O, A) if :: u?[a] → goto statei; fi;

Fig. 17 Syntactic translation from abstract component to Promela [13]

1: proctype Spec(chan u,v){
2: mtype x;
3: Spec_0:
4: u?x;
5: if
6: :: x == system_on -> goto Spec_1;
7: :: else -> goto Spec_0;
8: fi;

9: Spec_1:
10: u?x ;
11: if
12: :: x == button_pressed -> goto Spec_2;
13: :: x == system_off -> goto end_state;
14: :: else -> goto Spec_1;
15: fi;

16: Spec_2:
17: u?x;
18: if
19: :: x == button_released ->

if
20: :: 1 -> v!store; goto Spec_1;
21: :: 1 -> v!restore; goto Spec_1;
22: fi;
23: :: else -> goto Spec_2;
24: fi;

25: end_state: goto Spec_0;
}

Fig. 18 Spec process in Promela

a boolean variable t transforming the guarded action into
“if t then restore, else if ¬t then store”. Since the value
of t is a non-deterministic choice at this abstract level,
the guarded action is replaced with a “non-deterministic
choice between store and restore” as expressed in line 19
– line 22.

proctype env(chan in, out){
do
:: out!system_on;

do
:: 1 ->

if
:: out!poti_tuned;
:: out!button_pressed;

out!button_released;
fi;

:: 1 -> break;
od;
out!system_off;

:: 1 -> skip;
od;

}

Fig. 19 Environment model of Application in Promela

7.2 Verification of the Component Specification

Once the abstract component has been formally spec-
ified, the behavior of the abstract component can be
checked to see if it is consistent with its environ-
ment. Note that the environment of the Application
component is specified in the use case scenarios given
in Figure 8, which can be directly transformed into
Promela as shown in Figure 19. Here the state-
ments enclosed by do..od are repeated indefinitely as
the poti tuned signal or the button pressed signal fol-
lowed by the button released signal is generated non-
deterministically.

This environment process env is composed with
the Comp Spec process producing a closed consistency
model. This consistency model is fed into the Spin model
checker for automated consistency checking. After ex-
haustive examination for process deadlock situations,
Spin generates a counter example (Figure 20) showing
an execution trace that can reach a process deadlock. If
there is a sequence of signals from Potentiometer that
occupies the input channel of the Interface process, the

Design Verification in Model-based µ-Controller Development using an Abstract Component 17

Fig. 20 A counter example trace

handling of the internal output message can be post-
poned indefinitely, making the system stall.

Figure 20 illustrates the last part of the counter ex-
ample; env generates button pressed signal followed by
button released signal. Both signals are delivered to the
Spec process through the interface sequentially, mak-
ing the Spec process transits to Spec 2 state(line 16 in
Figure 18) where it tries to send store message to the
internal output channel v. At the same time, however,
the env process generates poti tuned signal. Since the
interface can handle only one of the two events i?x and
v?x, it has to serialize the handling of the two events.
If it chooses to handle i?x first, then it generates sig-
nal u!x which cannot be received by the Spec process
because the process is still trying on the unfinished ac-
tion v!store. In the mean time, the env again generates
poti tuned signal which cannot be handled by interface
which stalls on generating signal u!x. No further progress
is possible in this situation.

After careful review of the identified counter exam-
ples, the source of this problem was found as the message
handling mechanism of the interface. This problem can
be addressed by two alternative design choices: The first
possible choice is to change the behavior of the interface
to loose additional messages instead of blocking them
until they are handled. The second possible choice is to
refine the Interface process with two independent mes-
sage handlers that handle input messages and output
messages independently.

I(i, o, u, v) = Iin(i, u) | Iout(o, v)

Iin(i, u) = i?x.u!x.Iin(i, u)

Iout(v, o) = v?x.o!x.Iout(v, o)

This is translated into the following Promela code,

proctype Interface(chan i,o,u,v){
run input_handler(i,u);
run output_handler(o,v);

}

proctype input_handler(chan i,u){
mtype x;
do
::i?[x] -> i?x; u!x;
od;

}
proctype output_handler(chan o,v){
mtype x;
do
::v?[x] -> v?x; printf("%d", x);
od;

}

The second option was chosen in this case study be-
cause there is a possibility of loosing important messages
by following the first option. After refining the message
handler following option two, Spin verifies that the com-
ponent specification is consistent with its environment.
The comprehensive search for consistency checking runs
through 12,799 states and 31,412 transitions consuming
3.6 M bytes of system memory and 0.019 seconds. Veri-
fication was performed on a PC with 2G Hertz Pentium
II processor and 2G bytes of memory.

7.3 Translation of Component Realizations

The Application component is realized using the services
provided by the Driver component as partly illustrated
in Figure 11(b). The realization behavior is specified in
sequence diagrams defining which sub-components (de-
vice drivers) are used to realize a specific function pro-
vided by the Application component. In this realization
model all sub-components are designed as passive ob-
jects with the Application component (the container of
the driver components) acting as an active signal con-
trol center. Each signal passed to the Application com-
ponent is identified with its source and handed to the
corresponding driver depending on the source of the sig-
nal.

Figure 21 shows part of the realization model of the
Application component in Promela. The figure pro-
vides only the part changed from the Spec process (Fig-
ure 18), reflecting the realization behavior specified in
Figure 11(b). The Real process includes two internal
communication channels di and d o to/from the refin-
ing component Driver. For each event, Real specifies
more refined actions taken by the Application compo-
nent. For example, the Real process sends T imer Start
message to the input channel of the Driver component
and transits to Spec 2 state (line 15–16 in Figure 21)
when button pressed event arrives, whereas the Spec
process just transits to Spec 2 for the same event (line
12 in Figure 18).

It was verified using Spin that this realization of the
Application component is consistent with its environ-
ment by replacing the Spec process with Real process
in Promela. it comprehensively searches through 7,375
states and 16,557 transitions using 33.4 M bytes of sys-

18 Yunja Choi, Christian Bunse

1: proctype Real(chan u,v){
2: mtype x;
/* create internal channel for driver */

3: chan di = [1] of {mtype};
4: chan d_o =[1] of {mtype};
5: run Driver(di, d_o);

6: Spec_0:
....

12: Spec_1:
13: u?x ;
14: if
15: :: x==button_pressed ->

di!Timer_Start; goto Spec_2;
16: :: x==system_off -> goto end_state;
17: :: else -> goto Spec_1;
18: fi;

19: Spec_2:
20: u?x;
21: if
22: :: x==button_released ->
23: di!Timer_Stop;
24: d_o?x;
25: if
26: :: 1 -> atomic{ di!LCD_Send;

di!EEPROM_Retrieve;
d_o?x; di!Servo_Set; }

goto Spec_1;
27: :: 1 -> atomic{ di!EEPROM_Store;

di!LCD_Send; di!Servo_Set; }
goto Spec_1;

28: fi;
29: :: else -> goto Spec_2;
30: fi;
31: end_state: goto Spec_0;
}

Fig. 21 Application realization in Promela

tem memory and 0.01 seconds concluding that this model
is consistent in its interaction behavior.

7.4 Checking Interaction Consistency

So far, this study has shown how the Application
abstract component was specified and refined by the
Driver component in the first iteration. The next step is
to specify the Driver component and realize it through
decomposition. For example, the Driver abstract com-
ponent is refined into six subcomponents at the sec-
ond refinement iteration as shown in Figure 12. Fig-
ure 22 shows the translated version of the realization
behavior and structure of the Driver component. The
Driver Real process contains six pairs of internal in-
put/output channels connected to its sub-components.
It activates its subcomponents and deliver input mes-
sages to corresponding sub-components.

Note that this Driver Real process is a refinement
of the Driver process activated in Real (line 5 in Fig-
ure 21), and, thus, interaction consistency can be veri-
fied by simply replacing Driver with Driver Real (and

1: proctype Driver_Real(chan di, d_o){
2: chan bi = [1] of {mtype};
3: chan bo = [1] of {mtype};
4: chan li = [1] of {mtype};
5: chan lo = [1] of {mtype};
6: chan pi = [1] of {mtype};
7: chan po = [1] of {mtype};
8: chan ei =[1] of {mtype};
9: chan eo = [1] of {mtype};
10: chan si = [1] of {mtype};
11: chan so = [1] of {mtype};
12: chan tin = [1] of {mtype};
13: chan tout = [1] of {mtype};
/* run each driver component */

14: run Button_driver(bi,bo);
15: run Servo(si,so);
16: run LCD(li,lo);
17: run Potentio_driver(pi,po);
18: run EEPROM(ei, eo);
19: run Timer(tin, tout);
20: mtype x;
21: do
22: ::di?[x] -> di?x;
23: if
24: ::x==EEPROM_Retrieve -> ei!x;

eo?x; d_o!x;
25: ::x==LCD_Send -> li!x;
26: ::x==Servo_Set -> si!x;
27: ::x==Timer_Stop -> tin!x;

tout?x; d_o!x;
28: ::else ->skip;
29: fi;
30: od;
}
}

Fig. 22 Comp Real process in Promela

adding the specification behavior of each subcompo-
nent). This can be a straightforward way of refinement
checking, but it also increases verification complexity as
refinements add (and never remove) components. There-
fore, this study takes the Driver Real as an execution
environment of the 6 subcomponents whose behavior is
constrained by the Real process but independent from
any higher level processes related to the Application
component.

Figure 23 illustrates the consistency model derived
from the refinement process of the Application compo-
nent. In this example, checking interaction consistency
by simply replacing the Driver with Driver Real (Fig-
ure 23 (c)) requires Spin to search through 128,004 states
and 187,731 transitions, consuming 45 M bytes of sys-
tem memory and 0.2 seconds. On the other hand, the
iterative consistency checking (Figure 23 (b)) searches
through 4,577 states and 13,929 transitions, consuming
33.4 M bytes of system memory and 0.01 seconds. Note
that checking consistency model 3 in this way does not
need more resources than checking consistency model 1
or 2, whereas checking direct composition consumes more
time and memory. The resource consumption for check-
ing direct composition increases exponentially since re-
finements successively add more components.

Design Verification in Model-based µ-Controller Development using an Abstract Component 19

Application

Specification

Application

Realization

Driver

Specification

Driver

Realization

LCD_driver

Specification

Servo_driver

Specification

Timer_driver

Specification

System

environment

Application

Realization

Driver

Realization

LCD_driver

Specification

Servo_driver

Specification
...

Timer_driver

Specification

Application

Specification

System

environment

Application

Realization

System

environment

Driver

Specification

env (from Appl.

Realization)

Driver

Realization

LCD_driver

Specification

Servo_driver

Specification
...

Timer_driver

Specification

Consistency

model 1

Consistency

model 2

Consistency

model 3

(a) Refinements of the Application component (b) iterative consistency model (c) direct composition

Fig. 23 Iterative consistency models in the refinement process

8 Application to a larger System

To obtain more evidence regarding the effects of the pro-
posed design verification approach it has been applied in
a recent project for reverse engineering TinyOS, from its
code written in nesC [22] to application level abstract
components, in a bottom-up manner. The motivation
for this project was to provide a basis for model-based
development for existing embedded software by system-
atically extracting high-level abstract components from
program code. The reverse-engineered abstract compo-
nents become a basis for the model-driven development
of the same application domain.

TinyOS [31] is an open-source operating system for
wireless sensor networks developed at the University of
California at Berkeley. Its core code consists of less than
4000 bytes of code, which consumes less than 256 bytes
of data memory. It supports event-based multi-tasking,
aiming at low-cost embedded operating systems suit-
able for embedded networking. The TinyOS code in-
cludes about 60 files for defining interfaces, 52 files for
defining system components, about 129 library files, and
66 files for a hardware platform for defining platform-
specific components. TinyOS supports 12 different hard-
ware platforms. Among these, the code for hmote2420
was chosen because that specific hardware was available
in the authors’ research group.

Currently, 60 interfaces, 18 system components, 3
library files, and 48 platform-specific components are
being reverse-engineered in abstract components, val-
idated using model-based simulation tools in Rhap-
sody, and verified using the model checker Spin.
Figure 24 shows a part of the component tree
for the TinyOS; in the figure, Msp430AlarmC,
TransformCounterC, and TransformAlarmC are fi-
nal components which have been physically realized.
Others with abstract component stereotype are abstract
components that are roots of their own tree of abstract
components.

Each abstract component is verified for its be-
havioral consistency. For example, in Figure 24,
Msp430T imer32khzC is realized with a composition
of Msp430T imerCapComP , Msp430T imerCommonP ,
and two instances of Msp430T imerP . The behavior of
each of these components is translated into Promela

code as an independent process, and the structural in-
formation, e.g., port binding and dependency, is used to
wire those independent processes. Using Spin, the com-
munication consistency of its realization behavior is ver-
ified within 0.45 hours, consuming 6G bytes of memory
when an exhaustive search method is used. The memory
consumption decreases to 1.6 G bytes but the verification
time increases to 1.2 hours when compression is used.

After the verification of its realizing components, the
abstract behavior of Msp430T imer32khzC is again ver-
ified concerning its behavioral consistency. In this case,
the detailed internal communication behavior is ignored,
and the focus is rather on the behavior w.r.t. external
communication. It took less than 5 minutes and 2.5 G
bytes of memory to verify this consistency using exhaus-
tive verification.

Msp430T imer32khzC is again composed with
Msp430AlarmC to realize Alarm32khz16C. Each of
the abstract behavior specification of the two abstract
components is then translated into Promela to check
the internal communication consistency. It took about
1.08 hours, consuming 15.6 G bytes of memory us-
ing exhaustive verification, and about 2.44 hours and
2.15 G bytes using compression. The external behav-
ior of Alarm32khz16C is much simpler, since all inter-
nal communication between Msp430T imer32khzC and
Msp430AlarmC is hidden, and, thus, it took only 3.18
seconds and 1 G bytes of memory to check the commu-
nication consistency.

Table 1 summarizes the verification performance.
The experiment shows that each abstract component can
be reused with its verification result and that the veri-
fication complexity does not add up as the level of ab-
straction is lowered or increased. Performance depends

20 Yunja Choi, Christian Bunse

init
Interface

AlarmMilli32C

abstract component

Alarm
Interface

Alarm32khz16C

abstract component

AlarmFrom

CounterMilli32C

abstract component

Counter

init
Interface

TransformAlarmC

,

_
Alarm

AlarmFrom

Counter

port_7

Alarm

port_6

Alarm
Interface

Counter
Interface

Msp430Timer32khzC

abstract component

Msp430AlarmC

Msp430Compareport_4Msp430TimerControl

port_3

Msp430Timer

port_2

Alarm

Alarm

init

port_0
Msp430Timer
Interface

Msp430Compare
Interface

Interface

Counter32khz32C

abstract component

CounterFrom

TransformCounterC

CounterCounterFrom

Counter

Counter

1st level abatrct component

2nd level abatrct component

3 rd level abatrct component

Transform

Transform

Fig. 24 A tree of abstract components

on the realization complexity at each refinement step.
The experiment was performed on a Sun workstation
T5240 with 1.2GHz CPU and 64G bytes of memory.

9 Discussion

Component-based software development promises
higher-than-normal reuse rates and shorter time-to-
market, while at the same time providing a high level of
quality. Quality promises are based on the assumption
that system quality will benefit from the assembly of
“known-to-be-good” components. Since the future usage
of components cannot be foreseen, the interaction-
related behavior of components needs specific attention.
Quality assurance activities such as testing or reviews
with a specific focus on component interaction are a step
in the right direction, but are limited in their effects
when it comes to embedded systems. One solution might
be the use of formal methods.

The use of formal methods in embedded system de-
velopment has been an active research issue for almost
a decade [33,50]. Unfortunately, formal methods are
not commonly used in software industry, mainly due to
the lack of experience/evidence, supporting tools, and
methodologies [32]. This situation can be altered by
integrating formal methods into existing development
methodologies so that the application of formal methods
can be seen as a routine task within the existing develop-
ment process. The use of structured methodology helps
making the application of formal methods more system-
atic by providing a gradual but seamless transition from
early design to actual implementation.

The mirror-control case study has demonstrated that
the application of gradual formal transformation and
verification helps identify design errors early in the devel-
opment cycle. The preliminary result of the design ver-
ification approach on complex embedded software looks
promising; the experiment shows that design verification
based on abstract components does not increase com-
plexity exponentially as the level of abstraction is low-
ered or increased.

9.1 Choice of Modeling Language

Formal languages are ideal for formal development
and/or formal verification approaches since they are pre-
cise, unambiguous, and can be formally checked. Some
examples are requirement specification languages, ar-
chitecture description languages [41,37], modeling lan-
guages for communicating processes, such as CSP and π-
calculus, and languages specifically designed for formal
verification, such as Smv and Promela. Nevertheless,
these formal languages have not been widely accepted
in practice mainly because; (1) they are generally diffi-
cult to learn, (2) each of these formal languages puts its
focus on a certain aspect of system, and, thus, difficult
to find a language suitable for the whole development
process, (3) it is difficult to integrate different aspects
of a system when they are specified in different formal
languages, and (4) they are generally good at specifying
details, but are not appropriate in providing structural
information in a large view.

Due to the stated reasons, the semi-formal language
UML is widely accepted despite its ambiguous semantics

Design Verification in Model-based µ-Controller Development using an Abstract Component 21

name type search depth states transitions memory (compression) time (compression)
Msp430Timer32khzC realization 1,494,716 2.4e+07 1.22e+08 6,068.6 (1,609) 1.64e+03 (3.93e+03)
Msp430Timer32khzC specification 392,826 8e+06 2.92e+07 2,461 (1,062.8) 256 (627)
Alarm32khz16C realization 9,047 4.3e+07 2.02e+08 15,621 (2,146) 3.88e+03 (8.8e+03)
Alarm32khz16C specification 761 283,461 438,704 1,499 (821.6) 3.18 (7.8)

Table 1 Experiment data: model checking communication consistency

and potentially unclear usage of different diagram no-
tations. The light-weight formal approach [17,30], that
uses a semi-formal language for modeling and that per-
forms formal verification by translating to a formal lan-
guage, has been considered an alternative and practical
solution. The proposed approach follows the same line
adopting the light-weight approach using UML instead
of using π-calculus or Promela as the modeling lan-
guage.

9.2 Scalability

Automated verification techniques such as model check-
ing suffer from the notorious problem of state-space ex-
plosion. The complexity of the model checking algo-
rithm is typically linear to the size of the model and
formula [14]. Since the size of the model (in terms of the
number of states) grows exponentially as the number of
state variables and the number of interleaving processes
in the system increases, the technique often requires a
large amount of memory and time for checking realistic
models.

This study’s approach tries to alleviate the state-
space explosion problem by localizing the verification
problem. It focuses on a consistency model extracted
from realization-specification behavior at each refine-
ment iteration. As shown in Section 7 and 8, the ap-
proach provides a systematic way of controlling the ver-
ification complexity.

9.3 Tools

9.3.1 CASE tool support

Since Marmot uses standard UML models it can, in
principle, be applied using most CASE tools. However, to
relieve developers from creating standard model sets or
to manually check Marmot’s built-in rules and depen-
dencies a prototype plug-in for IBM’s RationalRose tool-
set was developed. Currently, an additional ECLIPSE
plug-in that makes use of Subclipse and UML2Tools is
being developed. Watch for release announcements at
www.imenco.org. In addition, the MEROBASE compo-
nent locator (http://merobase.com/), developed at the
University of Mannheim, can be used to quickly identify
reusable components. The authors are currently work-
ing towards an adaptation of MEROBASE for embedded
systems.

9.3.2 Translator

The proposed design verification approach can be au-
tomated independently from the modeling tool sup-
port as explained in Figure 14 and Figure 15. To
demonstrate its feasibility and efficiency, a proto-
type translator from Marmot abstract components
to Promela was developed as an ECLIPSE plug-in.
An initial version is available for demonstration at
http://m80.knu.ac.kr/∼sselab/marmot.html.

9.3.3 Counter-example Re-play

It should be noted that the counter examples generated
from the Spin model checker may not be in a familiar
form to engineers. To assist in counter-example com-
prehension, a tool-support is being developed for the
counter-example re-play that interprets counter exam-
ples generated from the Spin model checker, and con-
verts them into UML sequence diagrams so that en-
gineers can re-play it using simulation facilities pro-
vided by commercial UML case tools. An initial ver-
sion of the tool is also available for demonstration at
http://m80.knu.ac.kr/∼sselab/marmot.html.

9.4 Empirical Evaluation

To evaluate the Marmot approach concerning its char-
acteristics and benefits an empirical study in the form
of a small experiment (quantitative) was performed [7]
to compare the effects of Marmot in embedded systems
development to other approaches such as the Unified pro-
cess and agile development (w.r.t. reuse, quality, effort,
etc.) regarding its impact on reuse and quality. The re-
sults indicate that using MDD and CBD for embedded
system development will have a positive impact on reuse,
effort, and quality. However, similar to product-line en-
gineering projects, CBD requires an upfront investment.
Therefore, all results have to be viewed as initial. This
has led to the planning of a larger controlled experiment
to obtain more objective data.

9.5 Future work

This paper has demonstrated that the application of
gradual formal transformation and verification helps
identify design errors and ensure behavioral correctness
early in the development cycle. Nevertheless, this study

22 Yunja Choi, Christian Bunse

is considered as a starting point requiring further inves-
tigation of several issues:

– Channels and buffers need to be formalized in more
detail in order to express different communication
mechanisms and functional correctness of an inter-
action.

– The design verification framework can be naturally
extended to include the verification of functional
properties, which requires specifying the properties
in temporal logic. A user-friendly way of verification
for functional properties needs to be developed.

– The timing issue is very important in embedded sys-
tems, but it has not been considered in the proposed
approach, yet. A systematic method to divide and
conquer the timing issue is to be investigated.

– The effectiveness of proposed approach needs to be
evaluated on the physical implementation of the
Marmot design in order to be claimed practical. Is-
sues related to energy consumption, timing, and uti-
lization of limited memory [32] are especially impor-
tant in embedded systems. Such issues will be inves-
tigated within the same verification framework in the
future.

References

1. J. Adamek and F. Plasil. Component composition errors
and update atomicity: Static analysis. Journal of Soft-
ware Maintenance and Evolution: Research and Practice,
September 2005.

2. Robert Allen and David Garlan. A formal basis for ar-
chitectural connection. ACM Transactions on Software
Engineering and Methodology, July 1997.

3. Farhad Arbab. Reo: a channel-based coordination model
for component composition. Mathematical Structures in
Computer Science, 2004.

4. Colin Atkinson, Joachim Bayer, and Christian Bunse
et al. Component-based Product Line Engineering with
UML. Addison-Wesley Publishing Company, 2002.

5. Andrea Bondavalli, Mario Dal Cin, Diego Latella, Istvan
Majzik, Andras Pataricza, and Giancarlo Savoia. De-
pendability analysis in the early phases of UML based
system design. International Journal of Computer Sys-
tems – Science and Engineering, 16(5):265–275, Septem-
ber 2001.

6. Alan W. Braun and Kurt C. Wallnau˙The Current State
of CBSE. IEEE Software, 1998.

7. Christian Bunse, Hans-Gerhard Groß, and Christian
Peper. Embedded system construction - evaluation
of model-driven and component-based development ap-
proaches. In MoDELS Workshops, pages 66–77, 2008.
Best Workshop Paper Award.

8. Christian Bunse, Nicole Levy, and Felix Freiling˙A Tax-
onomy on Component-based Software Engineering Meth-
ods. In Ralf Reussner, Judith Stafford, and Clemens
Szyperski, editors, Architecting Systems with Trustwor-
thy Components, volume LNCS 3938. Springer, 2003.

9. Laura Campbell, Betty Cheng, William McUmber, and
R.E.K. Stirewalt. Automatically detecting and visualis-
ing errors in UML diagrams. Requirements Engineering,
(7):264–287, 2002.

10. John Cheesman and John Daniels. UML Components - A
Simple Process for Specifying Component-based Software.
Addison-Wesley Longman, Amsterdam, 2000.

11. Yunja Choi. Checking interaction consistency in MAR-
MOT component refinements. In Proceedings of SOF-
SEM 2007, LNCS 4362, January 2007.

12. Yunja Choi. Verification of an abstract component using
communication patterns. In 2009 ICSE Workshop on
Model-based Methodologies for Pervasive and Embedded
Software, May 2009.

13. Yunja Choi and Christian Bunse. Towards component-
based design and verification of a µ-controller. In 11th
International Symposium on Component-Based Software
Engineering, pages 196–211, 2008.

14. Edmund M. Clarke, Orna Grumberg, and Doron Peled.
Model Checking. MIT Press, 1999.

15. Edmund M. Clarke, Jeannette Wing, and et al. Formal
methods: State of the art and future directions. ACM
Computing Surveys, 28(4):626–643, December 1996.

16. Desmond D’Souza and Alan C. Wills. Objects, Com-
ponents and Frameworks With UML: The Catalysis Ap-
proach. Addison-Wesley, 1998.

17. Steve EasterBrook, Robyn Lutz, and Richart Covington
et al. Experiences using lightweight formal methods for
requirements modeling. IEEE Transactions on Software
Engineering, January 1998.

18. Gregor Engels, Jochen M. Kuester, and Luuk Groen-
wegen. Consistent interaction of software components.
Journal of Integrated Design and Process Science, 6(4):2–
22, December 2003.

19. Luis Gomes et. al. Towards usage of formal methods
within embedded systems co-design. In 10th IEEE Inter-
national Conference on Emerging Technologies and Fac-
tory Automation, September 2005.

20. M. Fung, Brian Henderson-Sellers, and L.-M. Yap. A
comparative evaluation of OO methodologies from a busi-
ness rules and quality perspective. Australian Computer
Journal, 29(3):95–101, 1997.

21. Gerald C. Gannod, Robyn R. Lutz, and Marian Cantu.
Embedded software for a space interferometry system:
Automated analysis of a software product line architec-
ture. In IEEE International Conference on Performance,
Computing, and Communications, April 2001.

22. D. Gay, P. Levis, and R. Behren et al. The nesC lan-
guage: A holistic approach to networked embedded sys-
tems. In Conference on Programming Language Design
and Implementation, pages 1–11, June 2003.

23. Susanne Graf and Hassen Saidi. Construction of abstract
state graphs with PVS. In Proceedings of the Computer
Aided Verification(CAV 1997), pages 72–83, 1997.

24. Object Management Group. UML2.0 superstructure
specifications.

25. Hermann Haertig, Steffen Zschaler, and Martin Pohlack
et al. Enforceable component-based realtime contracts:
Supporting realtime properties from software develop-
ment to execution. ACM Transactions on Software En-
gineering and Methodology, 2007.

26. Gerard J. Holzmann. Design and Validation of Computer
Protocols. Prentice Hall Software Series., 1991.

27. Gerard J. Holzmann. The SPIN Model Checker : Primer
and Reference Manual. Addison-Wesley Publishing Com-
pany, 2003.

28. Jozef Hooman, Hillel Kugler, and Iulian Ober et al. Sup-
porting UML-based development of embedded systems
by formal techniques. Software Systems Modeling, 2008.

29. Pao-Ann Hsiung. Formal synthesis and code generation
of embedded real-time software. In 9th International
Symposium on Hardware/Software Codesign, April 2001.

30. Daniel Jackson and Jeannette Wing. Lightweight formal
methods. IEEE Computer, pages 21–22, April 1996.

31. J.Hill, R. Szewczyk, and A. Woo et al. System archi-
tecture directions for networked sensors. In 9th Interna-
tional Conference on Architectural Support for Program-
ming Languages and Operating Systems, pages 93–104,
November 2000.

Design Verification in Model-based µ-Controller Development using an Abstract Component 23

32. Steven D. Johnson. Formal methods in embedded design.
IEEE Computer, November 2003.

33. C. Kern and M. Greenstreet. Formal verification in hard-
ware design: A survey. ACM Transactions on Design
Automation of E. Systems, April 1999.

34. M.U. Khan and K. Geihs et al. Model-driven develop-
ment of real-time systems with UML 2.0 and C. In Pro-
ceedings of the 3rd International Workshop on Model-
based Methodologies for Pervasive and Embedded Soft-
ware at the 13th IEEE Int. Conf. on Engineering, 2006.

35. Diego Latella, Istvan Majzik, and Mieke Massink. Au-
tomatic verification of a behavioral subset of UML stat-
echart diagrams using the SPIN model-checker. Formal
Aspects of Computing, pages 637–664, 1999.

36. Formal Systems Europe Ltd. Failures-divergence-
refinement: FDR2 user manual, 1997.

37. Nenad Medvidovic and Richard N. Taylor. A classifica-
tion and comparison framework for software architecture
description languages. IEEE Transactions on Software
Engineering, 26(1):70–93, January 2000.

38. Erich Mikk, Yassine Lakhnech, Michael Siegel, and
Gerard Holzmann. Implementing statecharts in
PROMELA/SPIN. In Second IEEE Workshop on Indus-
trial Strength Formal Specification Techniques, October
1998.

39. Robin Milner. Communicating and Mobile Systems: the
π-calculus. Cambridge University Press, 1999.

40. Bill Mitchell. Characterizing comminication channel
deadlocks in sequence diagrams. IEEE Transactons on
Software Engineering, 34(3):305–320, May/June 2008.

41. M. Moriconi, X. Qian, and R.A. Riemenschneider. Cor-
rect architecture refinement. IEEE Transactions on Soft-
ware Engineering, 21(4):356–372, April 1995.

42. Gustaf Naeser and Kristina Lundqvist. Component-
based approach to run-time kernel specification and ver-
ification. In 17th Euromicro Conference on Real-Time
Systems, 2005.

43. Ileana Ober. Action specification in OMEGA, 2004.
Technical Report, Verimag, http://www-omega.imag.fr/.

44. Oscar R. Ribeiro, Joao M. Fernandes, and Luis F. Pinto.
Model checking embedded systems with PROMELA. In
12th IEEE International Conference and Workshops on
the Engineering of Computer-Based Systems, 2005.

45. John Rushby and David W.J. Stringer-Calvert. A less
elementary tutorial for the PVS specification and verifi-
cation system. Technical Report CSL-95-10, SRI Inter-
national, August ’96.

46. Clemens Szyperski. Component Software: Beyond
Object-oriented Programming. Addison-Wesley Publish-
ing Company, 2002.

47. Mircea Trofin and John Murphy. Static verification
of component composition in contextual composition
frameworks. Software Tools and Technology Transfer,
2008.

48. W.M.P. van der Aalst, K.M. van Hee, and R.A. van der
Toorn. Component-based software architectures: A
framework based on inheritance of behavior. Science of
Computer Programming, 42(2-3), 2002.

49. Fei Xie and James C. Browne. Verified systems by com-
position from verified components. In Proceedings of
Joint Conference ESEC/FSE, 2003.

50. Wooseung Yang, Moo-Kyeong, and Chong-Min Kyung.
Current status and challenges of soc verification for em-
bedded systems market. In IEEE International Confer-
ence on System-On-Chip, 2003.

51. Tewfik Ziadi, Löıc Helouët, and Jean-Marc Jezequel. Re-
visiting statechart synthesis with an algebraic approach.
In 26th International Conference on Software Engineer-
ing, 2004.

