
On Supporting Effective Web Extraction
Wook-Shin Han #, Wooseong Kwak #, Hwanjo Yu ∗

#Department of Computer Engineering, Kyungpook National University, Korea
∗Department of Computer Science and Engineering, POSTECH, Korea

Abstract— Commercial tuple extraction systems have enjoyed
some success to extract tuples by regarding HTML pages as
tree structures and exploiting XPath queries to find attributes
of tuples in the HTML pages. However, such systems would be
vulnerable to small changes on the web pages. In this paper, we
propose a robust tuple extraction system which utilizes spatial
relationships among elements rather than the XPath queries of
the elements. Our system regards elements in the rendered page
as spatial objects in the 2-D space and executes spatial joins to
extract target elements. Since humans also identify an element in
a web page by its relative spatial location, our system extracting
elements by their spatial relationships could possibly be as robust
as manual extraction and is far more robust than existing tuple
extraction systems.

I. INTRODUCTION

Extracting tuples from HTML pages has been an important
issue [1], [2], [3], [4], [5] in various web applications such
as web data integration and mashups that repurpose and
selectively combine existing web data and services [5]. Com-
mercial tuple extraction systems (a.k.a. wrapper generators)
extract tuples by regarding HTML pages as tree structures
and exploiting XPath queries (or regular expressions) to find
attributes of tuples in the HTML pages. In such systems, given
a sample HTML page T , the user first defines a target schema
S for the tuples to extract and associates XPath queries of
the HTML elements (corresponding to the attributes of the
tuples) in T to target elements of S. The systems store these
associations as mapping rules for extracting tuples. Thus, these
rules can be applied to all pages similar to T .

Commercial tuple extraction systems typically require two
steps to extract tuples from a given web page: 1) selecting the
boundary element of the first tuple to extract (assuming the
remaining tuples can be extracted by changing the position
information of the boundary element) and 2) selecting the
corresponding tag for each attribute of the tuple.

Figure 1 shows the conventional tuple extraction process
in detail. Suppose a user wants to extract names, ages, and
cities of the people whose names are “David Dewitt” from the
Yahoo’s people search page. The user is first required to select
the TR tag (boundary tag) of the first tuple. More specifically,
an absolute XPath, /HTML/BASE/BODY/DIV[2]/TABLE
/TBODY/TR[3], is used to locate the TR tag. Once the
XPath for the first tuple is identified, the user needs to
select tags for the attributes, i.e., names, ages, and cities.
Specifically, three relative XPath queries from the TR
tag—./TD[2]/DIV[1]/A[1]/B[1], ./TD[3], and ./TD[4]—
are used to locate these attributes. The tuple extraction system

will increase the index of the TR tag to extract from the sec-
ond tuple. That is, /HTML/BASE/BODY/DIV[2]/TABLE
/TBODY/TR[4] will be used for extracting the second tuple.

1. select the boundary of the first tuple 2. select elements to extract

Fig. 1. An example page from the Yahoo’s people search.

Since absolute (or partial-match) XPath queries are used
to extract tuples from web pages, the conventional extraction
systems are vulnerable to small changes in the web pages.
For example, if the email column is added just before the age
column, the systems using either the absolute XPath or partial-
match XPath could not extract ages and cities of the people.
Thus, a completely different mechanism is needed to resolve
these problems.

We propose a robust tuple extraction system that utilizes
spatial relationships among elements rather than the XPath
queries of the elements. Spatial information (e.g., 2-D coordi-
nates) of elements can be obtained from the DOM tree when
a web page is rendered in a browser. Our system regards
elements in the rendered page as spatial objects in the 2-
D space, and thus, executes spatial joins to extract target
elements. Since humans also identify an element in a web page
by its relative spatial location, our system extracting elements
by their spatial relationships could possibly be as robust as
manual extraction. To the best of our knowledge, this is the
first research to leverage spatial join to extract tuples from
web pages.

Our contributions are summarized as follows: 1) We propose
the first framework that leverages spatial join for robust tuple
extraction from web pages. 2) We propose a query language
RAQuery that supports various matches as well as complex
spatial joins among sets of HTML elements. 3) We develop
spatial join algorithms that process the RAQuery.

The rest of this paper is organized as follows. Section II
describes rectangle algebra and presents RAQuery based on



rectangle algebra. Section III presents a spatial join tailored to
tuple extraction. We conclude in Section IV.

II. QUERY LANGUAGE FOR TUPLE EXTRACTION

A. Topological Relationship Using Rectangle Algebra

The interval algebra [6] is the most well-known model
to identify a set of thirteen atomic relations for any two
intervals in the 1-D space. That is, there are seven atomic
relations: before, meets, overlaps, starts, during, finishes, and
equals along with their seven inverse counterparts. The atomic
relation equals inverse is excluded since it is the same as the
atomic relation equals.

Balbiani et al. propose the rectangle algebra by extending
the interval algebra to represent topological relationships be-
tween any two bounding boxes in the 2-D space [7]. For a
bounding box B, we denote Bx as the interval corresponding
to the projection of B onto the x-axis and By as the interval
corresponding to the projection of B onto the y-axis. In rect-
angle algebra, an atomic relation between two bounding boxes
B and B′ is a pair (Rx, Ry) of atomic interval relations, where
Rx the atomic relation between Bx and B′

x, and Ry the atomic
relation between By and B′

y . Thus, 169 (=13 × 13) possible
atomic relations exist to represent topological relationships
between any two bounding boxes.

In Figure 1, consider that we want to extract the ages of
people whose names are David Dewitt. We first find a tag T
with the text “Age” by keyword matching and obtain the 2-D
coordinates of the tag using its DOM node. Then, extracting
any column C below T can be formulated into the query,
“find C such that either T (equal, meets inverse) C or T
(equal, before inverse) C is satisfied.” The former constraint
finds columns underneath T that meet it, while the latter finds
columns that are below T , but not meeting (not adjacent).

B. Rectangle Algebra Query Language

To understand a tuple extraction query language, we need
to know how users typically find tuples to extract from a given
web page. Before finding an element e to extract from a web
page, users typically seek elements relevant to e [8]. Such
relevant elements are called reference elements. For example,
table captions, attribute names, and headers can constitute
reference elements.

A tuple extraction query language must provide language
constructs to express such user behaviors. This motivates us to
develop a new tuple extraction language RAQuery to extract
tuples from web pages using the rectangle algebra. RAQuery
uses an XQuery-like syntax, adding two new constructs Match
and RA. Match finds reference elements by matching various
values. RA supports spatial joins by specifying the rectangle
algebra among reference elements and extracted elements.
For ease of understanding, we first explain RAQuery using
examples rather than presenting the whole grammar.

Match(text=“value”) returns a set of elements in a web page
whose text fields are “value.” Various predicates on attributes
of elements can be specified in Match as well.

RA(e1, e2, p) represents a predicate that returns true if e1 has
the spatial relationship p with e2. Here, atomic relations in the
rectangle algebra are used to represent the spatial relationship.
For example, a constraint “T (equal, meets inverse) C or
T (equal, before inverse) C” is represented as RA(T , C,
[x:equals, y:meets inverse or before inverse]).

Figure 2(a) shows a web page from a meta web site called
SOURCE, which dynamically collects and compiles data from
many bioinformatics web sites [9]. The web page shows a
summary report about the gene named ATP7A.

(a) An example page from the Stanford’s SOURCE.

for e0 in Match(text=“Tissue”),
e1 in Match(text=“Normalized Expression (%)”),
e2 in Match(text=“mouth:”),
e3 in Match(*)

where RA(e0, e1, [x:meets_inverse or before_inverse, y:equal]) and
RA(e0, e2, [x:equal, y:meets_inverse or before_inverse]) and
RA(e1, e3, [x:equal, y:meets_inverse or before_inverse]) and
RA(e2, e3, [x:meets_inverse or before_inverse, y:equal])

return e3;

(b) An RAQuery for the tuple extraction.
Fig. 2. Tuple extraction using RAQuery.

Suppose we want to extract from the web page the nor-
malized expression of the mouth of ATP7A. We see from
the figure that the target element we want to extract is
located below the attribute “Normalized Expression” and to
the right hand side of “mouth,” which is one of the attributes
of “Tissue.” We denote the Tissue, Normalized Expression,
mouth, and the target elements as e0, e1, e2 and e3 respectively.
We first identify the three reference elements e0, e1, e2 and
their spatial relations such that:

for e0 in Match(text=“Tissue”),
e1 in Match(text=“Normalized Expression (%)”),
e2 in Match(text=“mouth:”),
...

where RA(e0, e1,[x:meets inverse or before inverse, y:equal]) and
RA(e0, e2, [x:equal, y:meets inverse or before inverse]) and
...

Then, the target element e3 is expressed as anything
(Match(∗)) that has spatial relations with e1 and e2 as follows.

for ...
e3 in Match(∗),



where ...
RA(e1, e3, [x:equal, y:meets inverse or before inverse]) and
RA(e2, e3, [x:meets inverse or before inverse, y:equal])

Figure 2(b) shows the final RAQuery to extract the target
element.

III. SPATIAL JOIN FOR TUPLE EXTRACTION

To understand how spatial join works for elements in a web
page, we need to understand the structure of the DOM tree
(more precisely, the W3C DOM tree) maintained in a web
browser. The DOM tree maintains two important hierarchies:
the document hierarchy and the containment hierarchy. Parent-
child relationships in an HTML page constitute the document
hierarchy, while containment relationships in an HTML page
rendered by a web browser constitute the containment hierar-
chy. Each DOM node maintains three important types of point-
ers: parentNode, childNodes, and offsetParent. The first two
pointers are used to form the document hierarchy: parentNode
and childNodes point to the parent and child DOM nodes
respectively in the document hierarchy, and offsetParent points
to the nearest parent DOM node in the containment hierarchy.
To represent spatial information (spatial coordinates) for each
DOM node, the relative coordinates are used. That is, the
coordinates of a bounding box for each DOM node n are
represented as relative coordinates from n’s parent bounding
box in the containment hierarchy.

The parser in our system translates each RAQuery into a
query execution plan (QEP). We provide two basic operators,
Match and RAJoin. The algorithms of these operators are
constructed using the iterator model [10] commonly used in
query processors of commercial DBMSs. In the iterator model,
the operators composing the QEP receive an input from the
child operators and then provide the processed result to the
parent operator. To obtain a result from each operator, the
operator provides GetNext() function as the interface.

Figure 3 shows a QEP for the query of Figure 2(b).
First, the results of Match(“Tissue”) and Match(“Normalized
Expression(%)”) will be joined by an RAJoin operator. The
results of that RAJoin will be joined with the results of
Match(“mouth”) by the next RAJoin operator, which will then
be joined with the results of Match(∗) by the final RAJoin
operator.

RAJoin

RAJoin

RAJoin

Match(“Tissue”)
Match(“Normalized

Expression (%)”)

Match(“mouth:”)

Match(∗)

Fig. 3. A query execution plan for the query of Figure 2(b).

The Match operator runs as follows: it traverses DOM
nodes in the document hierarchy using childNodes in breadth-
first order, starting from the root of the DOM tree. For each
DOM node n, the operator executes a matching operation us-
ing its parameter information. For example, Match(“Tissue”)

executes a keyword match using the keyword ”Tissue” on
each DOM node. If n is qualified, n is forwarded to the
parent operator. The absolute coordinates of the bounding box
for n are calculated at the same time and forwarded to the
parent operator as well, which will be used for spatial joins.
To calculate the absolute coordinates for n, we follow the
offsetParent link from n to the root in a bottom-up fashion.

The algorithm for the RAJoin operator employs a nested
loop-based spatial join. The reason for using the nested-loop
join is that the nested-loop is very effective when the number
of tuples in the outer loop is small, and the number of results
qualified by Match operators is typically very small in a web
page. Specifically, the RAJoin operator is associated with an
RA predicate list that must be applied to this join operator.
For example, in Figure 3, the top RAJoin operator has two
RA predicates, one between Match(“Normalized Expression
(%)”) and Match(∗) and the other between Match(“mouth:”)
and Match(∗).

IV. CONCLUSION AND FUTURE WORK

This paper proposed a novel framework and algorithms
to robustly extract tuples from web pages. Existing research
has focused on extracting tuples using XPath or the regular
expression. However such techniques are vulnerable to small
changes on the web pages. Our system, on the other hand,
exploiting spatial joins can correctly extract tuples from web
pages even when the pages are updated over time. Specifically,
our system regards elements in the rendered page as spatial
objects in the 2-D space and executes spatial joins to extract
target elements. We believe that this work lays the foundation
for future studies on robust tuple extraction from web pages.

ACKNOWLEDGEMENT

This work was supported by the Engineering Research
Center of Excellence Program of Korea Ministry of Educa-
tion, Science and Technology(MEST) / Korea Science and
Engineering Foundation (KOSEF), grant number R11-2008-
007-03003-0. Hwanjo Yu is a corresponding author.

REFERENCES

[1] R. Baumgartner, S. Flesca, and G. Gottlob, “Visual web information
extraction with lixto,” in VLDB, 2001.

[2] W. Gatterbauer, P. Bohunsky, M. Herzog, B. Krüpl, and B. Pollak,
“Towards domain-independent information extraction from web tables,”
in WWW, 2007.

[3] L. Liu, C. Pu, and W. Han, “Xwrap: An xml-enabled wrapper construc-
tion system for web information sources,” in ICDE, 2000.

[4] K. Simon and G. Lausen, “Viper: augmenting automatic information
extraction with visual perceptions,” in CIKM, 2005.

[5] J. Wong and J. I. Hong, “Making mashups with marmite: towards end-
user programming for the web,” in CHI, 2007.

[6] J. F. Allen, “Maintaining knowledge about temporal intervals,” Commun.
ACM, vol. 26, no. 11, pp. 832–843, 1983.

[7] P. Balbiani, J.-F. Condotta, and L. F. nas del Cerro, “A model for
reasoning about bidimensional temporal relations,” in KR, 1998.

[8] M. Kowalkiewicz, T. Kaczmarek, and W. Abramowicz, “Myportal:
robust extraction and aggregation of web content,” in VLDB, 2006.

[9] “Stanford SOURCE,” http://smd.stanford.edu.
[10] G. Graefe, “Query evaluation techniques for large databases,” ACM

Comput. Surv., vol. 25, no. 2, pp. 73–170, 1993.


