
ROSAEC MEMO

2010-007

January 17, 2010

Inferring Quantified Invariants via Algorithmic Learning,

Decision Procedures, and Predicate Abstraction

Cristina David Yungbum Jung
National University of Singapore Seoul National University
davidcri@comp.nus.edu.sg dreameye@ropas.snu.ac.kr

Soonho Kong Bow-Yaw Wang
Seoul National University Academia Sinica, INRIA,
soon@ropas.snu.ac.kr and Tsinghua University

bywang@iis.sinica.edu.tw

Kwangkeun Yi
Seoul National University
kwang@ropas.snu.ac.kr

January 17, 2010

Abstract

By combining algorithmic learning, decision procedures, predicate abstraction, and
simple templates, we present an automated technique for finding quantified loop invari-
ants. Our technique can find arbitrary first-order invariants (modulo a fixed set of atomic
propositions and an underlying SMT solver) in the form of the given template and exploits
the flexibility in invariants by a simple randomized mechanism. The proposed technique
is able to find quantified invariants for loops from the Linux source, as well as for the
benchmark code used in the previous works. Our contribution is a simpler technique than
the previous works yet with the same derivation power.

1 Introduction

Recently, algorithmic learning has been successfully applied to invariant generation [15]. It
has been shown that a combination of algorithmic learning, decision procedures, and predi-
cate abstraction can automatically generate invariants for realistic C loops (such as those in
Linux device drivers) within a practical cost bound. The work [15] has, however, one obvious
limitation; it can only generate propositional, quantifier-free formulae. Yet loops that iterate
over aggregate data structures (such as arrays and graphs) often have arbitrarily quantified
invariants over the aggregate elements.

This article is about our findings in generating quantified invariants with algorithmic learn-
ing:

• We show that a simple-minded combination of algorithmic learning, decision procedures,
predicate abstraction, and templates can automatically infer quantified loop invariants.
The technique is as powerful as the previous approaches [9, 19] yet is much simpler.

• The technique needs very simple templates. It is enough for the templates to specify
which variables are existentially or universally quantified, leaving the invariant body
part as a single hole (such as “∀k.[]” or “∀k.∃i.[]”).

Our technique finds arbitrary first-order invariants (modulo the underlying SMT solver
and a fixed set of atomic propositions) in the form of the given template. We deploy a
learning algorithm to infer quantifier-free formulae (as in [15]) that fill in the template’s
hole to give quantified formulae.

The hole-filling quantifier-free formulae can be in any form. This generality contrasts
with existing template-based approach [19] where only non-disjunctive formulae can fill
the holes.

• The technique works in realistic settings: The proposed technique can find quantified
invariants for some Linux library, kernel, and device driver sources, as well as for the
benchmark code used in the previous work [19].

• The technique’s future improvement is free. Since our algorithm uses the two key tech-
nologies (exact learning algorithm and decision procedures) as black boxes, future ad-
vances of these technologies will straightforwardly benefit our approach.

Our algorithm works as follows. For a given loop annotated with its pre- and post-
conditions, an exact learning algorithm for Boolean formulae searches for quantifier-free formu-
lae to fill into the given quantified template by asking queries. Because the learning algorithm
generates only Boolean formulae but decision procedures, which has to answer the queries,
should work in quantifier-free formula, we use predicate abstraction and concretization to
resolve queries with decision procedures. In reality, because knowledge (over/under approx-
imations of invariants) about loop invariants is incomplete, queries may not be resolvable.
When query resolution requires knowledge unavailable to decision procedures, we simply give
a random answer. We surely could use static analysis to compute soundly approximated infor-
mation other than random answers. Yet, because there are so many invariants for the given
annotated loop, providing random answers can make the algorithm deduce different invariants
or simply restart in the worst case. In contrast, traditional invariant generation techniques
do not have this flexibility; they are rather fixed (by their custom algorithms) to chase one
particular invariant.

Let us first illustrate these features with an example for generating propositional invariants.

Example 1. Consider the following code from [15]:

{i = 0} while i < 10 do b := nondet; if b then i := i+ 1 end {i = 10 ∧ b}

Observe that the variable bmust be true after the while loop. As under- and over-approximations
to invariants i = 0 and (i = 10 ∧ b) ∨ i < 10 are chosen respectively. A decision procedure
(an SMT solver) uses these approximations on invariants to resolve queries from the learning
algorithm. After a number of queries, the learning algorithm asks whether i 6= 0 ∧ i < 10 ∧ ¬b
should be included in the invariant. Because the query is neither stronger than the under-
approximation nor weaker than the over-approximation, the decision procedure fails to resolve
the query. At this point, we simply give a random answer. In case of an incorrect answer, the
learning algorithm will ask us to give a counterexample to its best guess i = 0 ∨ (i = 10 ∧ b).
Since the guess is not an invariant and coin tossing does not generate a counterexample, we
restart the learning process. On the other hand, if the coin tossing answered correctly, the
learning algorithm infers the invariant (i = 10∧ b)∨ i < 10 with after resolving two additional
queries.

The next example illustrates a quantified invariant case.

Example 2.

while i < n do if a[m] < a[i] then m = i fi; i = i+ 1 end

2

This simple loop is annotated with the precondition m = 0 ∧ i = 0 and postcondition ∀k.0 ≤
k < n ⇒ a[k] ≤ a[m]. It examines a[0] through a[n − 1] and finds the index of the maximal
element in the array. We give template ∀k.[] and the following set of atomic propositions
(building blocks):

{i < n,m = 0, i = 0, k < n, a[m] < a[i], a[k] ≤ a[m], k = i, k < i}.

Note that all atomic propositions except k = i and k < i are extracted from the annotated
loop. The template introduces a new variable k. It is natural to relate k and the program
variables i and n by adding atomic propositions k = i, k < i and k < n. With these inputs, our
technique looks for an invariant ι of the form ∀k.[] such that (1) (m = 0 ∧ i = 0)⇒ ι; and (2)
(ι ∧ ¬(i < n))⇒ ∀k.0 ≤ k < n⇒ a[k] ≤ a[m]. That is, we would like to find a quantifier-free
formula θ such that (1) (m = 0 ∧ i = 0) ⇒ ∀k.θ; and (2) ∀k.θ ⇒ (i < n ∨ ∀k.0 ≤ k < n ⇒
a[k] ≤ a[m]).

Applying algorithmic learning with coin tossing from time to time, our technique success-
fully generates an invariant : ∀k.(k 6< i) ∨ (a[k] ≤ a[m]). This is of course not the only
invariant that our algorithm can generate. Indeed, another separate run of our algorithm
generates ∀k.(i = 0 ∧ k 6< n) ∨ (a[k] ≤ a[m]) ∨ (k 6< i) which is another valid loop invariant.

We organize this paper as follows. After preliminaries in Section 2, we present an overview
of our framework in Section 3. The details of our technique are described in Section 4. We
report experiments in Section 5, discuss related work in Section 6, then conclude in Section 7.

2 Preliminaries

The abstract syntax of our simple imperative language is given below:

Stmt
4
= nop | Stmt; Stmt | x := Exp | b := Prop | a[Exp] := Exp |

a[Exp] := nondet | x := nondet | b := nondet |
if Prop then Stmt else Stmt | { Pred } while Prop do Stmt { Pred }

Exp
4
= n | x | a[Exp] | Exp + Exp | Exp− Exp

Prop
4
= F | b | ¬Prop | Prop ∧ Prop | Exp < Exp | Exp = Exp

Pred
4
= Prop | ∀x.Pred | ∃x.Pred | Pred ∧ Pred | ¬Pred

The language has two basic types: Boolean and natural numbers. A term in Exp is a natural
number; a term in Prop is of Boolean type. A variable is assigned to an arbitrary value in its
type by the keyword nondet. In an annotated loop {δ} while κ do S {ε}, κ is its guard, δ and
ε are its precondition and postcondition respectively. Pre- and post-conditions of annotated
loops are terms in Pred, first-order formula. Propositional formulae of the forms b, π0 < π1,
and π0 = π1 are called atomic propositions. If A is a set of atomic propositions, then PropA and
PredA denote the set of quantifier-free and first-order formulae generated from A, respectively.

A template t[] ∈ τ is a finite sequence of quantifiers with a hole to be filled with a quantifier-
free formula in PropA.

τ
4
= [] | ∀I.τ | ∃I.τ.

Let θ ∈ PropA be a quantifier-free formula. We write t[θ] to denote the first-order formula
obtained by replacing the hole in t[] with θ. Observe that any first-order formula can be
transformed into prenex normal form. Any first-order formula can be expressed by filling the
hole in a proper template.

Let {δ} while κ do S {ε} be an annotated loop and t[] ∈ τ be a template. A precondition
Pre(ρ, S) for ρ ∈ Pred with respect to a statement S is a first-order formula that guarantees
ρ after the execution of the statement S. The invariant generation problem with template t[]

3

/ 79

Overview

31

Query

Answer

...

Query

Answer

Formula

SAT with CE
or UNSAT

Under/Over
Approximation

SMT
Solver

Static
 Analyzer

Algorithmic Learning

Boolean Formula

Teacher

Quantified Formula
Predicate

Abstraction
with TemplateUnder Approximation

An Invariant

Over Approximation

bk≤i ∨ ba[k]≤a[m]∀k.(k ≤ i ∨ a[k] ≤ a[m])

Figure 1: Our framework

is to compute a first-order formula t[θ] such that (1) δ ⇒ t[θ]; (2) ¬κ ∧ t[θ] ⇒ ε; and (3)
κ ∧ t[θ]⇒ Pre(t[θ], S).

A valuation ν is an assignment of natural numbers to integer variables and truth values
to Boolean variables. If A is a set of atomic propositions and Var(A) is the set of variables
occurred in A, ValVar(A) denotes the set of valuations for Var(A). A valuation ν is a model of
a first-order formula ρ (written ν |= ρ) if ρ evaluates to T under ν. Let B be a set of Boolean
variables. We write BoolB for the class of Boolean formulae over Boolean variables B. A
Boolean valuation µ is an assignment of truth values to Boolean variables. The set of Boolean
valuations for B is denoted by ValB . A Boolean valuation µ is a Boolean model of the Boolean
formula β (written µ |= β) if β evaluates to T under µ.

Given a first-order formula ρ, a satisfiability modulo theories (SMT) solver [5, 16] returns
a (potential) model of ν if it exists (written SMT (ρ) → ν). In general SMT solver is not
complete over quantified formulae and therefore returns a potential model. It returns UNSAT
(written SMT (ρ)→ UNSAT) if the solver proves the formula unsatisfiable.

2.0.1 CDNF Learning Algorithm

[3] The CDNF (Conjunctive Disjunctive Normal Form) algorithm is an exact algorithm that
computes a representation for any Boolean formula λ ∈ BoolB by interacting with a teacher.
Teacher should resolve two types of queries:

• Membership query MEM (µ) where µ ∈ ValB . If the valuation µ is a Boolean model of
the target Boolean formula λ, the teacher answers YES . Otherwise, the teacher answers
NO ;

• Equivalence query EQ(β) where β ∈ BoolB . If the target Boolean formula λ is equivalent
to β, the teacher answers YES . Otherwise, the teacher gives a counterexample. A
counterexample is a valuation µ ∈ ValB such that β and λ evaluate to different truth
values under µ.

For a Boolean formula λ ∈ BoolB , define |λ|CNF and |λ|DNF to be the sizes of minimal Boolean
formulae equivalent to λ in conjunctive and disjunctive normal forms respectively. The CDNF
algorithm infers any target Boolean formula λ ∈ BoolB with a polynomial number of queries
in |λ|CNF , |λ|DNF , and |B| [3].

3 Framework Overview

We combine algorithmic learning [3], decision procedures [5], predicate abstraction [8], and
templates in our framework. Figure 1 illustrates the relation among these technologies. The

4

left side (teacher, SMT solver, and static analyzer) represents the concrete domain working
with quantified formulae, whereas the right side (algorithmic learning) denotes the abstract
domain manipulating Boolean formulae.

Given an annotated loop and a template, our goal is to apply the algorithmic learning to
find an invariant in the form of the given template. To achieve this goal, we need to address
two problems. First, the CDNF algorithm is a learning algorithm for Boolean formula, not
quantified formula. Second, the CDNF algorithm assumes a teacher who knows the target in its
learning model. In order to automatically compute invariants, we have to design a mechanical
procedure to play the role of a teacher.

For the first problem, we use the predicate abstraction and a template to relate Boolean
formulae with quantified formulae. In predicate abstraction, an atomic proposition corresponds
to a Boolean variable. Instead of inferring a proper quantifier-free formula for the hole in the
template, we will use the CDNF algorithm to deduce a proper Boolean formula λ in the abstract
domain. The corresponding first-order invariant t[γ(λ)] is obtained by concretizing the found
formula λ and filling the hole in the template t[].

For the second problem, we need to design algorithms to resolve queries about the Boolean
formula λ in the previous paragraph. There are two types of queries: membership queries
ask whether a Boolean valuation is a model of an invariant; equivalence queries ask whether a
Boolean formula is an invariant and demand a counterexample if it is not. Without knowing
an invariant, the teacher should answer queries. With under/over approximations provided by
static analyzers or derived from the pre- and post-conditions of the annotated loop, the teacher
resolves queries by resorting to these under/over approximations. An SMT solver is deployed
to prove satisfiability of formulae.

If a query cannot be resolved by invariant approximations, our algorithm simply gives a
random answer to the CDNF algorithm. For equivalence query, we check if the guess is an
invariant. If the concretization is not weaker than the under-approximation or not stronger
than the over-approximation, a counterexample can be generated by an SMT solver. Otherwise,
the learning process gives a random counterexample. For a membership query, we check if its
concretization is in the under-approximation or outside the over-approximation by an SMT
solver. If it is in the under-approximation, the answer is affirmative; if it is out of the over-
approximation, the answer is negative. Otherwise, we simply give a random answer. If there
are sufficiently many invariants, our simple randomized resolution algorithms will guide the
CDNF algorithm to one of them.

4 Learning Quantified Invariants

Our goal is to infer quantified invariants through algorithmic learning with templates. For this
goal, we will (1) identify correspondences between the three domains of interest (Section 4.1);
(2) present the main loop of our framework (Section 4.2); (3) design query resolution algorithms
for algorithmic learning (Section 4.3 and Section 4.4). (4) develop the technical lemmas for
the sound membership query resolution (Section 4.5).

4.1 Predicate Abstraction with Templates

Let A be a set of atomic propositions and B(A)
4
= {bp : p ∈ A} the set of corresponding

Boolean variables. Figure 2 shows the domains used in our algorithm. The left box represents
the class PredA of first-order formulae generated from A. Here, we are interested in the class

of first-order formulae in the form of a given template t[] ∈ τ . Thus, the subclass St[]
4
=

{t[θ] : θ ∈ PropA} ⊆ PredA forms the solution space of the invariant generation problem with
the template t[]. The middle box corresponds to the class PropA of quantifier-free formulae
generated from A. Since the solution space St[] is generated by the fixed template t[], PropA is

5

ValVar(A)

PropAPredA

ValB(A)

BoolB(A)

λθ.t[θ]

α∗

γ∗

γ

α

Figure 2: The domains PredA, PropA, and BoolB(A)

in fact the essence of St[]. The right box contains the class BoolB(A) of Boolean formulae over
the Boolean variables B(A). The CDNF algorithm infers a target Boolean formula by posing
queries in this domain.

The pair (γ, α) gives the correspondence between the domains BoolB(A) and PropA. Let
us call a Boolean formula β ∈ BoolB(A) a canonical monomial if it is a conjunction of literals,
where each variable appears exactly once. Define

γ : BoolB(A) → PropA α : PropA → BoolB(A)

γ(β) = β[bp 7→ p]
α(θ) =

∨{β ∈ BoolB(A) : β is a canonical monomial and θ ∧ γ(β) is satisfiable}.

Concretization function γ(β) ∈ PropA simply replaces Boolean variables in B(A) by corre-
sponding atomic propositions in A. On the other hand, α(θ) ∈ BoolB(A) is the abstraction for
any quantifier-free formula θ ∈ PropA.

To answer membership queries (Section 4.4), we relate a Boolean valuation µ ∈ ValB(A)

with a quantifier-free formula γ∗(µ) and a first order formula t[γ∗(µ)]. A valuation ν ∈ Var(A)
moreover induces a natural Boolean valuation α∗(ν) ∈ ValB(A). It is useful in finding coun-
terexamples for equivalence queries (Section 4.3).

γ∗(µ) =
∧

p∈A
{p : µ(bp) = T} ∧ ∧

p∈A
{¬p : µ(bp) = F}

(α∗(ν))(bp) =

{
T if ν |= p
F otherwise

The following lemmas characterize relations between these functions:

Lemma 4.1 ([15]). Let A be a set of atomic propositions, θ ∈ PropA, β ∈ BoolB(A), and ν a
valuation for Var(A). Then

1. ν |= θ if and only if α∗(ν) |= α(θ); and

2. ν |= γ(β) if and only if α∗(ν) |= β.

Lemma 4.2 ([15]). Let A be a set of atomic propositions, θ ∈ PropA, and µ a Boolean valuation
for B(A). Then γ∗(µ)⇒ θ if and only if µ |= α(θ).

4.2 Main Loop

Given an annotated loop {δ} while κ do S {ε} and a template t[] ∈ τ , we want to find an
invariant ι ∈ PredA. We say ι ∈ PredA is an under-approximation to the invariant ι if δ ⇒ ι
and ι ⇒ ι. Similarly, ι ∈ PredA is an over-approximation to the invariant ι if ι ⇒ ι and

6

Algorithm 1: Main Loop

Input: {δ} while κ do S {ε} : an annotated loop; t[] : a template
Output: an invariant in the form of t[]
ι := δ;1

ι := κ ∨ ε;2

repeat3

try4

λ := call CDNF with query resolution algorithms (Algorithm 2 and 3)5

when abort → continue6

until λ is defined ;7

return t[γ(λ)];8

ι ⇒ ε ∨ κ. The strongest (δ) and weakest (ε ∨ κ) approximations are trivial under- and over-
approximations to any invariant respectively. In the following discussion, λ is the unknown
target Boolean formula. We assume ι = t[γ(λ)] is a first-order invariant.

Algorithm 1 shows our invariant generation algorithm. The target Boolean function λ is
unknown. In order to design query resolution algorithms without knowing λ, we resort to
invariant approximations. We use the under-approximation δ and over-approximation κ∨ ε to
resolve queries from the CDNF algorithm. If the CDNF algorithm infers a Boolean formula
λ ∈ BoolB(A), the first-order formula t[γ(λ)] is an invariant for the annotated loop in the form
of the template t[] (Algorithm 1).

The CDNF algorithm uses the equivalence query resolution algorithm (Algorithm 2) and
the membership query resolution algorithm (Algorithm 3) to resolve queries. When a query
cannot be resolved decisively, our query resolution algorithm may give a random answer. Since
the equivalence query resolution algorithm uses an SMT solver to verify the found first-order
formula is indeed an invariant. Random answers do not yield incorrect results. On the other
hand, random answers allow our algorithm to explore the multitude of invariants. If there
are numerous first-order invariants in the form of the given template, random answers will
not prevent our algorithm from hitting one of them. Indeed, our experiments suggest that
our simple randomized algorithm can find different first-order invariants in different runs.
However our algorithm may fail when conflicts occur as too many wrong random answers are
accumulated. Then CDNF algorithm is restarted.

Our algorithm does not guarantee its termination. If invariants cannot be expressed in the
form of provided template, the algorithm goes into an infinite loop. The algorithm fails to
find an invariant if a given set of atomic propositions is not sufficient to compose an invariant.
Due to the incompleteness of SMT solvers over quantified formulae, our algorithm could fail
to recognize an invariant and leads to non-termination as a result.

4.3 Equivalence Queries

An equivalence query EQ(β) with β ∈ BoolB(A) asks if β is equivalent to λ. To answer an
equivalence query EQ(β), we check if t[γ(β)] is indeed an invariant of the annotated loop. If it
is, we are done. Otherwise, our equivalence query resolution algorithm finds a counterexample
to distinguish λ from β by comparing t[γ(β)] with invariant approximations.

Algorithm 2 gives our equivalence resolution algorithm. It first checks if ρ = t[γ(β)] is
indeed an invariant for the annotated loop by verifying ι ⇒ ρ, ρ ⇒ ι, and κ ∧ ρ ⇒ Pre(ρ, S)
with an SMT solver (line 2 and 3 in Algorithm 2). If the candidate ρ is not an invariant, we
need to provide a counterexample. Figure 3 describes the process of counterexample discovery.
The algorithm first tries to generate a counterexample inside of under-approximation (a) or
outside of over-approximation (b). If it fails to find such counterexamples, the algorithm tries

7

Algorithm 2: Resolving Equivalence Queries

Input: β ∈ BoolB(A)

Output: YES , or a counterexample ν s.t. α∗(ν) |= β ⊕ λ
ρ := t[γ(β)];1

if SMT (ι ∧ ¬ρ)→ UNSAT and SMT (ρ ∧ ¬ι)→ UNSAT and2

SMT (θ ∧ ρ ∧ ¬Pre(ρ, S))→ UNSAT then return YES ;3

if SMT (ι ∧ ¬ρ)→ ν then return α∗(ν);4

if SMT (ρ ∧ ¬ι)→ ν then return α∗(ν);5

if SMT (ρ ∧ ¬ι)→ ν0 or SMT (ι ∧ ¬ρ)→ ν1 then6

return α∗(ν0) or α∗(ν1) randomly ;7

abort;8

ιρ

ν

ρ

ν

ι ι

ι

ρ

ν0 ν1

(a) (b) (c)

Figure 3: Finding a counterexample in equivalence query resolution: (a) SMT solver finds
a counterexample which is a model for the under-approximation ι but not for an invariant
candidate ρ (line 4 in Algorithm 2); (b) SMT solver finds a counterexample which is a model
for an invariant candidate ρ but not for the over-approximation ι (line 5 in Algorithm 2);
(c) Otherwise, the algorithm guesses a counterexample ν0 (or ν1) which is a model for the
candidate ρ (or over-approximation ι) but not for under-approximation ι (or candidate ρ),
respectively (line 6 and 7 in Algorithm 2).

to return a valuation distinguishing ρ from invariant approximations as a random answer (c).
However, it is possible to have UNSAT results for all the SMT queries through lines 4 - 6.
Then we abort the equivalence query resolution (line 8 in Algorithm 2). This failure will make
the main function restart the CDNF algorithm.

4.4 Membership Queries

In a membership query MEM (µ), our membership query resolution algorithm (Algorithm 3)
should answer whether µ |= λ. Note that any relation between atomic propositions A is lost in
the abstract domain BoolB(A). A valuation may not correspond to a consistent quantifier-free
formula (e.g., x = 0 ∧ x < 0). If the valuation µ ∈ ValB(A) corresponds to an inconsistent
quantifier-free formula (that is, γ∗(µ) is unsatisfiable), we simply answer NO to the mem-
bership query (line 1 in Algorithm 3). Otherwise, we compare ρ = t[γ∗(µ)] with invariant
approximations.

Figure 4 shows the two cases when the queries can be answered by comparing ρ with
approximations. In case (a), if ρ⇒ ι does not hold, the algorithm returns NO . The soundness
of this answer is guaranteed by Lemma 4.3. In case (b), we check if ρ ⇒ ι holds. If it holds
then we want to answer Yes. However soundness of this answer requires another condition.

8

Algorithm 3: Resolving Membership Queries

Input: a valuation µ for B(A)
Output: YES or NO
if SMT (γ∗(µ))→ UNSAT then return NO ;1

ρ := t[γ∗(µ)];2

if SMT (ρ ∧ ¬ι)→ ν then return NO ;3

if isWellFormed(t[], γ∗(µ)) and SMT (ρ ∧ ¬ι)→ UNSAT then return YES ;4

return YES or NO randomly5

ρ

ν

ι
ι

ρ

(a) (b)

Figure 4: The membership query resolution can be resolved by invariant approximations: (a)
the guess ρ is not included in the over-approximation ι (line 3 in Algorithm 3); (b) the guess
ρ is included in the under-approximation ι (line 4 in Algorithm 3).

The inclusion relation in concrete domain does not always guarantee the inclusion relation in
abstract domain. For example, consider the template ∀i.[], θ1 = i < 10, and θ2 = i < 1. We
have ∀i.i < 10 ⇒ ∀i.i < 1 but i < 10 ⇒ i < 1 does not hold. Indeed the soundness of this
answer is established by Lemma 4.4 and well-formedness check is defined in Section 4.5. Note
that Algorithm 3 will give a random answer if a membership query cannot be resolved.

Since answers to equivalence queries and to membership queries are generated indepen-
dently, inconsistencies between these two types of answers can occur. Our invariant generation
algorithm simply restarts when an inconsistent answer is observed.

4.5 Template Properties

Let t[] ∈ τ be a template and θ ∈ PropA a quantifier-free formula. If t[θ] is stronger than under-
approximation, we would like to relax t[θ] by changing θ. This motivates our investigations
on properties about templates. First, templates are monotonic. More precisely, they have the
following property.

Lemma 4.3. Let t[] ∈ τ be a template. For any θ1, θ2 ∈ PropA, θ1 ⇒ θ2 implies t[θ1]⇒ t[θ2].

The contraposition of this Lemma 4.3 shows the soundness of our membership query reso-
lution (line 3 in Algorithm 3). We can answer NO in the membership query resolution because
t[θ1] 6⇒ t[θ2] implies θ1 6⇒ θ2. For the other resolution (line 4 in Algorithm 3), we need to
check well-formedness of template t[] and quantifier-free formula θ:

Definition Let θ ∈ PropA be a quantifier-free formula over A. A well-formed template t[]
with respect to θ is defined as follows.

• [] is well-formed with respect to θ;

9

case Template AP MEM EQ MEMR EQR RESTART Time (sec)
max ∀k.[] 7 15 9 0 1 2 0.05

selection sort ∀k1.∃k2.[] 6 12021 7396 12021 223 2158 11.11
devres ∀k.[] 7 1854 1078 1693 232 275 0.84
rm pkey ∀k.[] 8 2477 1034 1661 202 121 2.72

tracepoint1 ∃k.[] 4 260 209 158 53 33 0.266
tracepoint2 ∀k1.∃k2.[] 7 35239 13538 24359 642 2168 167.59

Table 1: Experimental Results.
AP : # of atomic propositions, MEM : # of membership queries, EQ : # of equivalence queries,
MEMR : # of randomly resolved membership queries, EQR # of randomly resolved equivalence queries,
and RESTART : # of the CDNF algorithm invocations.

• ∀I.t′[] is well-formed with respect to θ if t′[] is well-formed with respect to θ and t′[θ]⇒
∀I.t′[θ];

• ∃I.t′[] is well-formed with respect to θ if t′[] is well-formed with respect to θ and ¬t′[θ].

The intuition behind the well-formed templates is to give a sufficient condition to infer prop-
erties about a quantifier-free formula from the corresponding first-order formula in the form of
well-formed templates.

Lemma 4.4. Let A be a set of atomic propositions, θ1 ∈ PropA and t[] ∈ τ a well-formed
template with respect to θ1. For any θ2 ∈ PropA, t[θ1]⇒ t[θ2] implies θ1 ⇒ θ2.

Proof. By induction on t[]. For the basis (t[] ≡ []), this is trivial.
Assume t[]∀I.t′[] and ∀I.t[θ1] ⇒ ∀I.t′[θ2]. Let ν |= t′[θ1]. By the definition of well-

formedness, ν |= ∀I.t′[θ1]. By assumption, ν |= ∀I.t′[θ2]. Hence ν |= t′[θ2]. That is,
t′[θ1]⇒ t′[θ2]. We have θ1 ⇒ θ2 by inductive hypothesis.

Assume t[] ≡ ∃I.t′[] and ∃I.t′[θ1]⇒ ∃I.t′[θ2]. By the definition of well-formedness, t′[θ1] is
not satisfiable and thus t′[θ1]⇒ t′[θ2]. Hence θ1 ⇒ θ2 by inductive hypothesis.

5 Experiments

We have implemented a prototype1 in OCaml. In our implementation, we use Yices as the
SMT solver to resolve queries (Algorithm 2 and 3). Table 1 shows experimental results. We took
two cases from the benchmark in [19] with the same annotation (max and selection sort). We
also chose four for statements from Linux 2.6.28. We translated them into our language and
annotated pre- and post-conditions manually. Sets of atomic proposition are manually chosen
from the program texts. Benchmark devres is from library, tracepoint1 and tracepoint2

are from kernel, and rm pkey is from InfiniBand device driver. The data are the average of
500 runs and collected on a 2.66GHz Intel Core2 Quad CPU with 8GB memory running Linux
2.6.28.

5.0.1 devres from Linux Library

Figure 5.(A) shows an annotated loop extracted from a Linux library.2 In the postcondition,
we assert that ret implies tbl [i] = 0, and every element in the array tbl [] is not equal to addr

1Available at http://ropas.snu.ac.kr/sas10/qinv-learn-released.tar.gz
2The source code can be found in function devres of lib/devres.c in Linux 2.6.28

10

http://ropas.snu.ac.kr/sas10/qinv-learn-released.tar.gz

(A) devres (B) selection sort (C) rm pkey

{ i = 0 ∧ ¬ret }
1 while i < n ∧ ¬ret do

2 if tbl [i] = addr then

3 tbl [i]:=0; ret :=true

4 else

5 i:=i+ 1
6 end

{ (¬ret ⇒ ∀k. k < n⇒ tbl [k] 6= addr)

∧(ret ⇒ tbl [i] = 0) }

{ i = 0 }
1 while i < n− 1 do

2 min:=i;
3 j :=i+ 1;

4 while j < n do

5 if a[j] < a[min] then min:=j;
6 j:=j + 1;

7 if i 6=min then

8 tmp:=a[i]; a[i]:=a[min]; a[min]:=tmp;
9 i:=i+ 1;

{ i ≥ (n− 1)∧
∀k1.k1 < n⇒ ∃k2.k2 < n ∧ a[k1] = ′a[k2] }

{ i = 0 ∧ key 6= 0 ∧ ¬ret ∧ ¬break}
1 while(i < n ∧ ¬break) do
2 if(pkeys[i] = key) then

3 pkeyrefs[i]:=pkeyrefs[i]− 1;
4 if(pkeyrefs[i] = 0) then

5 pkeys[i]:=0; ret :=true;

6 break :=true;
7 else i :=i + 1;

8 done

{(¬ret ∧ ¬break ⇒ (∀k.(k < n)⇒ pkeys[k] 6= key))

∧(¬ret ∧ break ⇒ pkeys[i] = key ∧ pkeyrefs[i] 6= 0)

∧(ret ⇒ pkeyrefs[i] = 0 ∧ pkeys[i] = 0) }

Figure 5: Benchmark Examples: (A) devres from Linux library, (B) selection sort from [19],
and (C) rm pkey from Linux InfiniBand driver

otherwise. Using the set of atomic propositions {tbl [k] = addr , i < n, i = n, k < i, tbl [i] = 0,
ret} and the simple template ∀k.[], our algorithm finds the following quantified invariant:

∀k.(k < i⇒ tbl [k] 6= addr) ∧ (ret ⇒ tbl [i] = 0).

Observe that our algorithm is able to infer an arbitrary quantifier-free formula (over a fixed
set of atomic propositions) to fill the hole in the given template. A simple template such as
∀k.[] suffices to serve as a hint in our approach.

5.0.2 selection sort from [19]

Consider the selection sort algorithm in Figure 5.(B). Let ′a[] denote the content of the array a[]
before the algorithm is executed. The postcondition states that the array a[] is a permutation
of its old content. In this example, we apply our invariant generation algorithm to compute
an invariant to establish the postcondition of the outer loop. For computing the invariant of
the outer loop, we make use of the inner loop’s specification.

We use the following set of atomic propositions: {k1 ≥ 0, k1 < i, k1 = i, k2 < n, k2 = n,
a[k1] = ′a[k2], i < n − 1, i = min}. Using the template ∀k1.∃k2.[], our algorithm infers the
following invariant:

∀k1.(∃k2.[(k2 < n ∧ a[k1] = ′a[k2]) ∨ k1 ≥ i]).
Note that all membership queries are resolved randomly. In spite of more than 12,000 coin

tosses, our algorithm is still able to derive invariants in each of 500 runs. This suggests that
invariants are abundant. A simple random walk suffices to find invariants in this example.
Moreover, templates allow us to infer not only universally quantified invariants but also first-
order invariants with alternating quantifications. Inferring arbitrary quantifier-free formulae
over a fixed set of atomic propositions again greatly simplify the form of templates used in this
example.

5.0.3 rm pkey from Linux InfiniBand Driver

Figure 5.(C) is a while statement extracted from Linux InfiniBand driver.3 The conjuncts in
the postcondition P represent (1) if the loop terminates without break, all elements of pkeys

3The source code can be found in function rm pkey of drivers/infiniband/hw/ ipath/ipath mad.c in Linux
2.6.28

11

are not equal to key (line 2); (2) if the loop terminates with break but ret is false, then pkeys[i]
is equal to key (line 2) but pkeyrefs[i] is not equal to zero (line 4); (3) if ret is true after the
loop, then both pkeyrefs[i] (line 4) and pkeys[i] (line 5) are equal to zero.

From the postcondition, we guess that an invariant can be universally quantified with k.
Using the simple template ∀k.[] and the set of atomic propositions {ret , break , i < n, k < i ,
pkeys[i] = 0, pkeys[i] = key , pkeyrefs[i] = 0, pkeyrefs[k] = key}, our algorithm finds the
following quantified invariant:

(∀k.(k < i)⇒ pkeys[k] 6= key) ∧ (¬ret ∧ break ⇒ pkeys[i] = key ∧ pkeyrefs[i] 6= 0)
∧(ret ⇒ pkeyrefs[i] = 0 ∧ pkeys[i] = 0)

The generality of our learning-based approach is again observed in this example. Our
algorithm is able to infer a quantified invariant with very little help from the user. Our
solution can be more applicable than other template based approaches in practice.

Our algorithm does not guarantee its termination. If invariants cannot be expressed in the
form of provided template, the algorithm goes infinite. The algorithm fails to find an invariant
if a given set of atomic propositions is not sufficient to compose an invariant. Due to the
incompleteness of SMT solvers over quantified formulae, our algorithm could fail to recognize
an invariant and leads to non-termination as a result.

6 Related Work

In contrast to previous template based approaches [19, 9], our template is more general as
it supports arbitrary hole-filling quantifier-free formulae. The technique introduced in [19]
handles templates whose holes are restricted to formulae over conjunctions of predicates from
a given set, while disjunctions must be explicitly specified by the templates. Gulwani et al. [9]
consider invariants restricted to E ∧∧n

j=1 ∀Uj(Fj ⇒ ej), where E,Fj and ej are quantifier free
facts.

Existing technologies can strengthen our framework. Firstly, its completeness can be in-
creased by powerful decision procedures [5, 7, 20] and theorem provers [17, 1, 18]. Moreover,
our approach can be sped up when using more accurate approximations provided by existing
invariant generation techniques. Gupta et al. [11] devised a tool InvGen. This tool collects
reached states satisfying the program invariants, and also computes a collection of invariants
for efficient invariant generation. These two results can be used by our framework as under
and over approximations, respectively.

Regarding the generation of unquantified invariants, Gulwani et al. [10] proposed an ap-
proach based on constraint analysis. Invariants in the combined theory of linear arithmetic and
uninterpreted functions are synthesized in [2], while InvGen [11] presents an efficient approach
to generation of linear arithmetic invariants. In the area of quantified loop invariants genera-
tion, Flanagan et al. [6] use Skolemization for generating universally quantified invariants. In
[17] a paramodulation-based saturation prover is extended to an interpolating prover that is
complete for universally quantified interpolants. As opposed to our proposal, other approaches
[6, 17] only generate universally quantified invariants.

With respect to the analysis of properties of array contents, Halbwachs et al. [12] handle
programs which manipulate arrays by sequential traversal, incrementing (or decrementing)
their index at each iteration, and which access arrays by simple expressions of the loop index. A
loop property generation method for loops iterating over multi-dimensional arrays is introduced
in [13]. For inferring range predicates, Jhala and Mcmillan [14] described a framework that
uses infeasible counterexample paths. As a deficiency, the prover may find proofs refuting short
paths, but which do not generalize to longer paths. Due to this problem, this approach [14]
fails to prove that an implementation of insertion sort correctly sorts an array.

12

7 Conclusions

By combining algorithmic learning, decision procedures, predicate abstraction, and templates
we presented a technique for generating quantified invariants. The new technique searches
for invariants in the given template form guided by query resolution algorithms. Algorithmic
learning gives a platform to integrate various techniques for invariant generation; with simple
templates for quantified invariants it suffices to design new query resolution algorithms based
on existing techniques.

Our technique shows that the flexibility of algorithmic learning over plentiful invariants
works in finding real-world quantified invariants of a given template form. We exploit the
flexibility by deploying a randomized query resolution algorithm. When a query cannot be
resolved, a random answer is given to the learning algorithm. Since the learning algorithm
does not commit to any specific invariant beforehand, it always finds a solution consistent
with query results. Our experiments show that algorithmic learning is able to infer non-trivial
quantified invariants with this näıve randomized resolution. In experiments, templates just
need to specify which variables are universally or existentially quantified.

Acknowledgment We are grateful to Wontae Choi, Suwon Jang, Will Klieber, Wonchan
Lee, Bruno Oliveira, Sungwoo Park for their detailed comments and helpful suggestions. We
also thank Heejae Shin for implementing OCaml binding for Yices.

References

[1] Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development.
Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer Sci-
ence. Springer Verlag (2004)

[2] Beyer, D., Henzinger, T.A., Majumdar, R., Rybalchenko, A.: Invariant synthesis for
combined theories. In: VMCAI. (2007) 378–394

[3] Bshouty, N.H.: Exact learning boolean functions via the monotone theory. Information
and Computation 123 (1995) 146–153

[4] Dutertre, B., Moura, L.D.: The Yices SMT solver. Technical report, SRI International
(2006)

[5] Flanagan, C., Qadeer, S.: Predicate abstraction for software verification. In: POPL, ACM
(2002) 191–202

[6] Ge, Y., Moura, L.: Complete instantiation for quantified formulas in satisfiabiliby modulo
theories. In: CAV ’09: Proceedings of the 21st International Conference on Computer
Aided Verification, Berlin, Heidelberg, Springer-Verlag (2009) 306–320

[7] Graf, S., Säıdi, H.: Construction of abstract state graphs with pvs. In: CAV. Volume
1254 of LNCS., Springer (1997) 72–83

[8] Gulwani, S., McCloskey, B., Tiwari, A.: Lifting abstract interpreters to quantified logical
domains. In: POPL, ACM (2008) 235–246

[9] Gulwani, S., Srivastava, S., Venkatesan, R.: Constraint-based invariant inference over
predicate abstraction. In: VMCAI. Volume 5403 of LNCS., Springer (2009) 120–135

[10] Gupta, A., Rybalchenko, A.: Invgen: An efficient invariant generator. In: CAV. Volume
5643 of LNCS., Springer (2009) 634–640

13

[11] Halbwachs, N., Péron, M.: Discovering properties about arrays in simple programs. In:
PLDI. (2008) 339–348

[12] Henzinger, T.A., Hottelier, T., Kovács, L., Voronkov, A.: Invariant and type inference for
matrices. In: VMCAI. (2010) 163–179

[13] Jhala, R., Mcmillan, K.L.: Array abstractions from proofs. In: CAV, volume 4590 of
LNCS, Springer (2007)

[14] Jung, Y., Kong, S., Wang, B.Y., Yi, K.: Deriving invariants in propositional logic by
algorithmic learning, decision procedure, and predicate abstraction. In: VMCAI. LNCS,
Springer (2010)

[15] Kroening, D., Strichman, O.: Decision Procedures an algorithmic point of view. EATCS.
Springer (2008)

[16] McMillan, K.L.: Quantified invariant generation using an interpolating saturation prover.
In: TACAS, Springer (2008) 413–427

[17] Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL — A Proof Assistant for Higher-
Order Logic. Volume 2283 of LNCS. Springer (2002)

[18] Srivastava, S., Gulwani, S.: Program verification using templates over predicate abstrac-
tion. In: PLDI, ACM (2009) 223–234

[19] Srivastava, S., Gulwani, S., Foster, J.S.: Vs3: Smt solvers for program verification. In:
CAV ’09: Proceedings of Computer Aided Verification 2009. (2009)

14

	Introduction
	Preliminaries
	CDNF Learning Algorithm

	Framework Overview
	Learning Quantified Invariants
	Predicate Abstraction with Templates
	Main Loop
	Equivalence Queries
	Membership Queries
	Template Properties

	Experiments
	devres from Linux Library
	selection_sort from PLDI09
	rm_pkey from Linux InfiniBand Driver

	Related Work
	Conclusions

