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Abstract

In this paper, we propose a new semantic clone detection technique by comparing
programs’ abstract memory states, which are computed by a semantic-based static an-
alyzer. Our experimental study using three large-scale open source projects shows that
our technique can detect semantic clones that existing syntactic- or semantic-based clone
detectors miss. Our technique can help developers identify inconsistent clone changes,
find refactoring candidates, and understand software evolution related to semantic clones.

1 Introduction

Detecting code clones is useful for software development and maintenance tasks including iden-
tifying refactoring candidates [11], finding potential bugs [17, 15], and understanding software
evolution [21, 6].

Most clone detectors [13, 20, 25, 9, 23] are based on textual similarity. For example,
CCFinder [20] extracts and compares textual tokens from source code to determine code clones.
Deckard [13] compares characteristic vectors extracted from abstract syntax trees (ASTs).

Although these detectors are good at detecting syntactic clones, they are not effective to
detect semantic clones that are functionally similar but syntactically different.

A few existing approaches to detect semantic clones (e.g., those based on program depen-
dence graphs (PDGs)[23, 9, 26] or by observing program executions via random testing [14])
have limitations. PDGs can be affected by syntactic changes such as replacing statements with
a semantically equivalent procedure call. Hence, the PDG-based clone detectors miss some
semantic clones. The clone detectability of random testing-based approaches may depend on
the limited test coverage, covering only up to 60 ∼ 70% of software [28, 29, 36].

To detect semantic clones effectively, we propose a new clone detection technique: (1) we
first use a path-sensitive semantic-based static analyzer to estimate the memory states at each
procedure’s exit point; (2) then we compare the memory states to determine clones. Since the
abstract memory states have a collection of the memory effects (though approximated) along
the execution paths within procedures, our technique can effectively detect semantic clones,
and our clone detection ability is independent of syntactic similarity of clone candidates.

We implemented our technique as a clone detection tool, Memory Comparison-based Clone
detector (MeCC), by extending a semantic-based static analyzer[19, 18, 12]. The extension is
to support path-sensitivity and record abstract memory states. Our experiments with three
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large-scale open source projects, Python, Apache, and PostgreSQL (Section 4) show that MeCC
can identify semantic clones that other existing methods miss.

The semantic clones identified by MeCC can be used for software development and main-
tenance tasks such as identifying refactoring candidates, detecting inconsistencies for locating
potential bugs, and detecting software plagiarism (as discussed in Section 5.1).

This paper makes the following contributions:

• Abstract memory-based clone detection technique: We show that using abstract
memory states that are computed by semantic-based static analysis is effective to detect
semantic clones.

• Semantic clone detector MeCC: We implemented the proposed technique as a tool,
MeCC (http://ropas.snu.ac.kr/mecc). We show the effectiveness of the proposed
technique by experimentally evaluating MeCC.

• Clone benchmark: For our experimental study, we manually inspect and classify code
clones of three open source projects. We make this data publicly available, and it can serve
as a benchmark set for other clone related research (http://ropas.snu.ac.kr/mecc).

The rest of this paper is organized as follows: We first revisit and refine code clone definitions
in Section 2, and then propose our approach in Section 3. Section 4 evaluates our approach,
and Section 5 discusses our limitations and applications of our technique. Section 6 surveys
related work, and Section 7 concludes our paper.

2 Clone Types

Basically, clones are code pairs or groups that have the same or similar functionality [33, 31].
Some code clones are syntactically similar, but some are different.

Based on syntactic similarity, Roy et al. [31] classify clones into four types:

• Type 1 (Exact clones): Identical code fragments except for variations in whitespace,
layout, and comments.

• Type 2 (Renamed clones): Syntactically identical fragments except for variations in iden-
tifiers, literals, and variable types in addition to Type 1’s variations.

• Type 3 (Gapped clones): Copied fragments with further modifications such as changed,
added, or deleted statements in addition to Type 2’s variations.

• Type 4 (Semantic clones): Code fragments that perform similar functionality but are
implemented by different syntactic variants.

These definitions are widely used in the literature [33, 32, 17], and we also use them in this
paper.

The definitions of Type 1 and Type 2 clones are straightforward. Mostly, they are copies
(from other code) that remain unchanged (Type 1) or have a small variance (Type 2). These
clones can be easily detected by comparing syntactic features such as tokens in source code [20].

On the other hand, Type 4 (semantic) clones are syntactically different. Since there is
no clear consensus on Type 4 clones, some researchers define subtypes of Type 4 clones such
as statement reordering, control replacement, and unrelated statement insertion [33, 9, 26].
Similarly, we define subtypes of Type 4 clones as follows:

• Control replacement with semantically equivalent control structures (Refer to Figure 5.)

• Statement reordering without modifying the semantics (Refer to Figure 6.)

• Statement insertion without changing computation (Refer to Figure 9.)
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• Statement modification with preserving memory behavior (Refer to Figure 7.)

Like Type 4 clones, there is no consensus on Type 3 clones. Stefan Bellon et al. [1] define
Type 3 clones as all clones that are neither Type 1 nor Type 2. Similarly, in this paper, we
define Type 3 clones as all clones that are not Type 1, Type 2, and Type 4 clones.

This paper proposes an abstract memory comparison-based clone detector, which can iden-
tify all four clones discussed in this section.

3 Clone Detection Based on Memory Comparison

Our goal is to detect clones by comparing the functionality of code fragments regardless of their
syntactic similarity. A naive way to achieve this goal is to perform exhaustive testing on a given
set of clone candidates (programs). We may determine semantic similarities of programs by
generating all possible inputs for programs, observing all possible executions using the inputs,
and comparing their execution results. However, such exhaustive testing is often infeasible,
since there might be infinitive many numbers of inputs and/or execution paths.

For this reason, we use semantic-based static analysis [3, 4, 37, 19, 18, 12] to determine
semantic similarities of given programs, because static analysis soundly and finitely estimates
the dynamic semantics of programs. In our case, we use a path-sensitive semantic-based static
analyzer that symbolically estimates the memory effects of procedures.

Our overall approach is shown in Figure 1. We compute abstract memory states from given
programs via static analysis. Then we compare the abstract memory states to determine code
clones.

clone 
candidate

memory
comparison

abstract 
memory state

semantic-based
static analyzer

clone 
candidate

abstract 
memory state

semantic-based
static analyzer

while(y<n)
{
  bar()
}

if(x>0)
  bar()
else
  goto L;

Figure 1: Our clone detection approach: abstract memory states for each clone candidate are
computed by a path-sensitive semantic-based static analyzer. These abstract memory states
are compared for detecting code clones

We build a semantic-based static analyzer on top of Sparrow [19, 18, 12], which can
summarize each procedure after analyzing the procedure based on the abstract interpreta-
tion framework [3], and these procedural summaries have been carefully tuned to capture all
memory-related behaviors in real-world C programs [19]. However, Sparrow does not support
path-sensitive analysis. We extend Sparrow to be path-sensitive like [37] by adding guards
and guarded values to the abstract domain.

The path-sensitivity is crucial for semantic code clone detection. A path-insensitive analyzer
loses the relation between condition expressions and corresponding statements. For example,
a path-insensitive analyzer considers the following two different if-else codes as the same,
since it does not know which statements are belonging to which condition expressions. This
insensitivity leads to detecting false positive clones.

“if(a > 0) A else B” 6= “if(a > 0) B else A”



March 5, 2010 ROSAEC-2010-008 4

M ∈ Mem = Addr
fin−→ GV

GV ∈ GV = 2Guard×Value

g ∈ Guard = (Value× Rel× Value)
+ Guard ∧Guard+ Guard ∨Guard

v ∈ Value = N +Addr + (Uop× Value)
+(Value× Bop× Value) +>

x, α, ` ∈ Addr = Var + Symbol +AllocSite
+(Addr × Field)

Var = Global + Param+ Local

Figure 2: Abstract domains: the abstract semantics of procedure is estimated as abstract
memory state over domain Mem.

3.1 Collecting Abstract Memory States

We compute abstract memory states at every program point of a given procedure by the
conventional fixpoint iteration over abstract semantics (à la abstract interpretation [3]).
Memory State Representation Our abstract domains for memory states are presented in
Figure 2. Our analysis is flow- and path-sensitive; it summarizes possible abstract memory
states for each program point and all execution paths to the point. An abstract memory
state (M in Figure 2) is a finite mapping from abstract (symbolic) addresses to guarded
values. A guarded value (GV in Figure 2) is a set of pairs of a guard and a symbolic value,
where the guard is the accumulated symbolic condition that leads to the accompanying value.
The set of all variables (Var) consists of three disjoint sets, all global variables (Global),
all parameters (Param), and all local variables (Local) except procedure parameters. This
partitioning enables us to define three equivalence classes for variables when defining equivalent
addresses in Section 3.2. Symbols (Symbol) are used to indicate symbolic values or symbolic
addresses in global input memories of the current procedure. Allocated addresses (AllocSite)
denote all addresses allocated at each allocation site (a static call program point for allocations).
Field addresses (Addr × Field) represent field variables of structures.

A symbolic value can be a number (N ), an address (Addr), a binary value (Value× Bop×
Value), or a unary value (Uop×Value). Bop and Uop denote a set of binary and unary operation
symbols respectively. A guard (Guard) can be generated from the relations between values
(Value× Rel× Value), where Rel denotes the set of comparison operators (e.g., =, ≤). Some
guards can also be connected by logical operators (conjunction ∧ and disjunction ∨).

The next step is estimating the semantics of the program as elements in this domain.

Abstract Semantics Our analysis starts from the entry point of a procedure without
knowing the input memory states. The unknown input memory states are constructed by
observing which locations and values are accessed by the procedure [19]. Abstract memory
states are updated by evaluating each statement in the procedure, and the updates are decided
by the predefined abstract semantics of each statement. For example, one abstract semantics
of the assignment statement is defined as follows:

M ` e1 : {(g, x)} M ` e2 : {(gi, vi)}i
M ` ∗e1 := e2 :M

{
x 7→ {(g ∧ gi, vi)}i

}
M ` e : GV denotes that expression e evaluates to a guarded value GV given the memory
stateM. This abstract semantics illustrates the destructive update case, in which the previous
guarded values of the updated address is overwritten. The rule indicates the destructive update
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can happen only when the address value of e1 is a single variable (note that the singleton set
for the value inM ` e1 : {(g, x)}). As a result, the value of variable x is updated by the value
of e2 in memory M. The guards for the new values are the conjunctions of guard g of the
address and guards gi of the values.

1 int* foo(list *a,

2 int b){

3 int res = 0;

4 if (a->len > 5)

5 res = bar(b);

6 return res;

7 }

8 int* bar(int x){

9 int *m = 0;

10 if (x > 0)

11 m = malloc(x);

12 return m;

13 }

The abstract memory state at line 6
a {〈true, α〉}
α.len {〈true, β〉}
b {(true, γ)}

{〈β > 5 ∧ γ > 0, `〉,
res 〈β ≤ 5 ∨ (β > 5 ∧ γ ≤ 0), 0〉

}

The procedural summary of bar
x > 0 return alloc

x ≤ 0 return 0

Figure 3: Procedure bar with its procedural summary and procedure foo with its abstract
memory state at the exit point (line 6).

Consider the procedure foo in Figure 3. The abstract memory state at the exit point (line
6) is presented on the right side. At line 3, variable res has guarded value {〈true, 0〉} which
means variable res always has the value zero at the program point. Parameter a is accessed
in the condition expression at line 4, however the value of parameter a is unknown. Hence a
new symbol α is created to represent the value of parameter a. For the field value of a->len
which is also unknown, new symbol β is created. From the condition expression, guards β > 5
and β ≤ 5 are kept for true and false branches respectively.

Inter-procedural Analysis The procedural summary information enables the analyzer
to capture the semantics of procedure calls without analyzing the procedures again. At line
5, procedure bar is called. According to the procedural summary, the procedure returns an
allocated address ` when the value of parameter x is greater than 0, otherwise it returns 0. The
procedural summary keeps conditions (as extended from [19]) for memory behaviors of proce-
dure. This procedural summary is instantiated with the abstract memory state at the call site
(line 5). At line 5, the value of formal parameter x in procedure bar is instantiated with γ (the
value of actual parameter b). With this instantiation of the procedural summary, we obtain
the result memory state of the procedure call. Now, variable res points to the result guarded
value, {〈β > 5 ∧ γ > 0, `〉, 〈β > 5 ∧ γ ≤ 0, 0〉}. Here guard β > 5 comes from the condition on
true branch at line 4 and guards γ > 0 and γ ≤ 0 come from the procedural summary of bar.
At line 6, the abstract memory states on both true and false branches are joined. Variable res

points to a guarded value {〈β ≤ 5, 0〉} in the memory state from the false branch. The joined
memory state at the return point of foo (line 6) is shown as the table in Figure 3. The procedu-
ral summary of procedure foo is automatically generated from this abstract memory state [19].

Handling Loops The termination of the fixpoint iterations is guaranteed by a widen-
ing operator [3]. Without the widening operator, fixpoint iterations may diverge because the
heights of the number domain N and the symbolic-value domain Value × Bop × Value are
infinite. After five iterations (delayed widening [2]), changing values go into the special value
> (indicating an unknown value). When we compare memory states, the unknown values are
considered as not equivalent. Hence our clone detection may miss some clones.
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Example for Comparison The abstract memory states at the exit point of procedures
are compared for code clone detection. As an example, procedure foo2 in Figure 4 is a
semantic clone of procedure foo in Figure 3. If we disregard the names of variables, symbols,
field variables, and variable types then two memories are equivalent. Note that two guards
β ≤ 5 ∨ γ ≤ 0 and β ≤ 5 ∨ (β > 5 ∧ γ ≤ 0) are equivalent. This equivalence is attained by
function simplify [5] presented in Section 3.2.

1 int* foo2(list2 *x,

2 int y){

3 int ret = 0;

4 if (x->val > 5 && y > 0)

5 ret = malloc(y);

6 return ret;

7 }

The abstract memory state
at line 6

x {〈true, α〉}
α.val {〈true, β〉}
y {(true, γ)}

{〈β > 5 ∧ γ > 0, `〉,
ret 〈β ≤ 5 ∨ γ ≤ 0, 0〉

}

Figure 4: Procedure foo2 with its abstract memory state at the exit point (line 6).

3.2 Comparing Abstract Memory States

Algorithm 1: simM(M1,M2)

Input: abstract memory states M1 and M2

Output: similarity value of M1 and M2

1 S := {};
2 foreach address a1 ∈ dom(M1) do
3 foreach address a2 ∈ dom(M2) do

4 if a1
L
= a2 then v := simGV(M1(a1),M(a2));

5 else v := 0;
6 S := S{(a1, a2) 7→ v};
7 end

8 end
9 best = find best matching(S);

10 if | dom(M1) | + | dom(M2) |= 0 then return 0;

11 return
2 · best

| dom(M1) | + | dom(M2) |

Given estimated abstract memory states, we need to quantify their similarities. Algorithm 1
presents the quantification steps. First, we calculate the similarities between guarded value
pairs of all possible combinations on the given memoriesM1 andM2 (line 2 to 8). We compare

addresses using the equivalence relation
L
= on addresses (as defined below). If addresses are

equivalent, then we calculate the similarity of two guarded values by function simGV(GV1,GV2)
(line 4). If addresses are not equivalent, the similarity is zero (line 5). For all combinations,
the similarities of pairs are recorded in map S (line 6). Then function find best matching(S)
finds a subset of S that exclusively spans the two memories such that the total similarities of
matched pairs becomes the biggest (line 9). Finally, the algorithm returns the ratio of similar-
ity to the total size of memories. If both memories are empty (the denominator becomes zero),
then the similarity is zero (line 10 to 11).
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Equivalent Addresses Two addresses are equivalent with the relation
L
= if one of the

following conditions is satisfied:

x
L
= y if x, y ∈ Global ∨ x, y ∈ Param ∨ x, y ∈ Local

`
L
= `′ if `, `′ ∈ AllocSite

a.f
L
= a′.f ′ if a

L
= a′

α
L
= β if origin(α)

L
= origin(β)

When two variables are compared, the names and types of the variables are ignored (Var).
We only check if the both variables are parameters, global variables, or non-parameter local
variables. All dynamically allocated addresses ` are considered as equivalent regardless of their
allocation sites (AllocSite). For field addresses (Addr × Field), the names of field variables

are ignored and only structural equivalences are considered. For example, x.val
L
= x.len

holds even if the address uses different field names. However, (x.next).len
L
= x.len is not

true because the former one has an additional field dereference. All symbolic addresses are
equivalent only when their origins are the same (Symbol). The origin address origin(α) is
the address pointing to symbolic address α. As an example, the following origin(α) = a and
origin(β) = α.len hold in Figure 3.

Similarity Between Guarded Values A guarded value GV is a set of pairs which consist
of a guard and a value. Function simGV(GV1,GV2) compares all guards and values in GV1 with
those in GV2, and then counts the number of matched pairs n. Finally, the similarity of two
guarded values are computed as follows:

simGV(GV1,GV2) =
2 · n

| GV1 | + | GV2 |

n = maximum of |M | s.t. M ⊆ S and
∀〈(g1, v1), (g2, v2)〉 ∈M, (g1, v1) and (g2, v2) appear only once

S =
⋃

(g1,v1)∈GV1,(g2,v2)∈GV2

{〈(g1, v1), (g2, v2)〉 | g1
G
= g2 ∧ v1

V
= v2}

The similarity is the ratio of the number of matched pairs to the total size of two guarded
values. We seek for the maximum number of matched pairs trying to match all possible com-
binations (| GV1 | × | GV2 |).

Equivalent Values Relation
V
= establishes the equivalence on values:

n1
V
= n2 if n1 = n2

v1 ⊕ v2
V
= v3 ⊕′ v4 if v1

V
= v3 ∧ (⊕ = ⊕′) ∧ v2

V
= v4

	v1
V
= 	′v2 if v1

V
= v2 ∧ 	 = 	′

`
V
= `′ if `

L
= `′

Equivalence of numbers is determined by numerical equivalence (N ). Binary values are equiv-
alent when both the pair of values and the operators are equivalent (Value × Bop × Value).
From our definition of

V
=, we may miss semantically equivalent values due to their syntactic

expression differences. For example, x > 0 and 0 < x should be regarded as equivalent, but

it is regarded as not equivalent because of x
V
6= 0, >6=<, and 0

V
6= x. To address this problem,

we canonicalize the symbolic values. The canonicalization gives certain partial orders on both
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operators and values then sorts the binary values by the orders. Hence all semantically equiv-
alent binary values have their unique representations.

Equivalent Guards Relation
G
= determines equivalent guards:

v1 ∼ v2
G
= v3 ∼′ v4 if v1

V
= v3 ∧ (∼=∼′) ∧ v2

V
= v4

g1
G
= g2 if unify(simplify(g1), simplify(g2))

true
G
= true

false
G
= false

Two relation guards v1 ∼ v2 and v3 ∼′ v4 in domain (Value×Rel×Value) are equivalent when
their value pairs are the same and their relations (e.g., <,=) are the same. However, one for-
mula can be presented as several different forms. For example, formulas x > 5∧(x < 10∨x > 0)
and x > 5 look different, but are actually equivalent because x > 5 implies x > 0. To rem-
edy this, we use a function simplify [5] that simplifies guards so that they do not contain
any redundant sub-formulas using a decision procedure [7]. Furthermore, we want to assume

x > 5 and z > 5 are equivalent if x
L
= z holds. This process is done by unification algorithm

unify, which is widely used in type systems [27]. The algorithm returns true if there exists a

substitution which makes two different structures the same while preserving relations
L
= and

V
=.

Best Matching Function find best matching(S) at line 9 in Algorithm 1 finds the best
matching (i.e. the matching that maximizes the sum of similarities), and then returns the
maximum sum of similarities. Consider this similarity table as an example.

XXXXXXXM2

M1 (a1
1,GV

1
1) (a2

1,GV
2
1) (a3

1,GV
3
1) (a4

1,GV
4
1)

(a1
2,GV

1
2) 0.8

1
0.1 0.5 0.2

(a2
2,GV

2
2) 0.7 0.7

2
0.6 0.4

(a3
2,GV

3
2) 0.6 0.5 0.5

3
0.3

The boxed ones represent the best matching, since it maximizes the sum of similarities. Suppose
our matching function finds this best matching. The value of best at line 9 in Algorithm 1
is the sum of similarities, 2 = 0.8 + 0.7 + 0.5 of all matched pairs. Hence the similarity,
0.55 + 2 · 2/(4 + 3) of these two memories is returned at line 11 in Algorithm 1.

We develop a lightweight greedy algorithm to heuristically try finding the best matching
which runs in O(n2), where n is the number of elements. After calculating the similarities
of all pairs, the pair which has the maximum similarity is chosen as a matched one. Then
the algorithm continues to choose another maximum pair among the remaining pairs until
all addresses in either M1 or M2 are matched. The order of choices for the above table is
annotated over the boxes. The algorithm is not guaranteed to find the best matching, but
has the advantage of running in linear time. There is a combinatorial optimization algorithm
called the Hungarian method [24] which is guaranteed to find the best matching but runs in
O(n3), much slower than ours. In our experiments, we found that our algorithm yields the
same results as the Hungarian method. This is because similarities of pairs are usually near 1
or 0.

3.3 Judgement of Clones

We allow parametrization by MinEntry to filter small clones such as a procedure containing
just one line as its body. Though the similarity function simM(M1,M2) gives high values to
similar memories, this function does not reflect the size of memories. So we give a penalty to
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small size memories. Note that the value of the similarity function ranges over [0, 1].

simM(M1,M2)

log MinEntry

log(| dom(M1) | + | dom(M2) |)

The above formula is proportional to the size of memories and inversely proportional to
MinEntry. Log function is used to smoothen the amount of the penalty. Here parameter
MinEntry is given by users depending on target program size. The parameter is similar to
parameter minT which determines the minimum number of tokens for clone candidates in
Deckard [13].

We evaluate similarities for all possible pairs of abstract memories. There is a high proba-
bility that procedures with high similarity are true clones. Hence we sort all pairs according
to their similarities. We allow another parameter Similarity, which determines the threshold
of similarities of clones to be reported. If Similarity is set to 80% then pairs with similarity
less than 0.8 are not reported.

Sometimes the similarity of two memoriesM1 andM2 never exceeds the given Similarity

if there are a big difference in the entry numbers of the two memories. Hence we can skip the
comparison of two memories where,

2× min(| dom(M1) |, | dom(M2) |)
| dom(M1) | + | dom(M2) |

≤ Similarity.

This strategy significantly reduces the memory comparison time.
Users can choose parameters MinEntry and Similarity to pick thresholds to determine

clones. One could set MinEntry high, if the one wants to ignore small clones. One could set
Similarity high, if the one wants less false positives.

4 Experiments

In this section, we evaluate our code clone detector MeCC. We apply MeCC to detect clones
in large-scale open source projects, Python, Apache, and PostgreSQL as shown in Table 1.

Projects KLOC Procedures Application
Python 435 7,657 interpreter
Apache 343 9,483 web server
PostgreSQL 937 10,469 database

Table 1: Properties of the subject projects.

We design our experiments to address the following research questions:

RQ1 (detectability): How many Type 3 and Type 4 clones can be detected by MeCC?

RQ2 (accuracy): How accurately (in terms of false positives and negatives) can MeCC detect
clones?

RQ3 (scalability): How does MeCC scale (in terms of detection time and detectable program
size)?

RQ4 (comparison): How many gapped and semantic clones identified by MeCC can be
detected by previous clone detectors, CCFinder [20], Deckard [13], and a PDG-based
detector [9]?
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4.1 Detectability

We apply MeCC to detect clones to evaluate the detectability. In our experiments, we set
Similarity=80% and MinEntry =50. Then the detected clones by MeCC are manually in-
spected and categorized into four clone types as discussed in Section 2 by one author who
has experience with C/C++ development in industry more than eight years. The other two
authors review and confirm the inspected clones.

Type 1 Type 2 Type 3 Type 4
Python 3 128 81 13
Apache 2 85 70 10
PostgreSQL 9 120 88 14

Table 2: The distribution of detected clone types by MeCC.

The numbers of detected and classified clones are shown in Table 2. MeCC can detect all
four types of clones. Type 4 (semantic) and some Type 3 (gapped) clones in Table 2 have
noticeable syntactic differences. Nevertheless, MeCC can detect these clones because it only
compares abstract memory states. MeCC also detects Type 1 (exact) and Type 2 (renamed)
clones since syntactic similarity is usually accompanied by semantic similarity.

Figure 5 shows one Type 4 clone detected by MeCC. This is a typical example of control
replacement. The if-else statements in Figure 5(a) are replaced by semantically equivalent
statement using the ternary conditional ‘? :’operator in Figure 5(b). MeCC detects this clone,
since their functionalities are the same and thus the abstract memory states are the same.

1 PyObject *PyBool_FromLong(long ok)

2 {
3 PyObject *result;

4 if (ok)

5 result = Py_True;

6 else

7 result = Py_False;

8 Py_INCREF(result);

9 return result;

10 }

(a)

1 static PyObject *

2 get_pybool(int istrue)

3 {
4 PyObject *result = istrue? Py_True : Py_False;

5 Py_INCREF(result);

6 return result;

7 }

(b)

Figure 5: Type 4 clone, control replacement from Python. The statement if-else is changed
by using the ternary conditional ? : operator. Syntactical differences are underlined.

A more complex Type 4 clone detected by MeCC is presented in Figure 6. The clone has
two syntactic differences. One difference is statement reordering. Two statements from line 5
to 9 in Figure 6(a) are reordered into the statements from line 4 to 8 in Figure 6(b). The second
difference comes from using intermediate variables. The local variable sconf is introduced at
line 4 in Figure 6(a) and then used as a parameter of the ap get module config function call
at line 6. The local variable proto is introduced at line 10 in Figure 6(b). The return value
of the apr pstrdup function call at line 16 in Figure 6(b) is assigned to this variable. This
value is assigned to a field address at line 18 in Figure 6 via the local variable. These syntactic
changes make it difficult for textual-based clone detectors to identify such clones [20].
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1 static const char *set_access_name(cmd_parms *cmd, void *dummy,

2 const char *arg)

3 {
4 void *sconf = cmd->server->module_config;

5 core_server_config *conf = ap_get_module_config(

6 sconf, &core_module);

7

8 const char *err = ap_check_cmd_context(cmd,

9 NOT_IN_DIR_LOC_FILE | NOT_IN_LIMIT);

10 if (err != NULL) {
11 return err;

12 }
13 conf->access_name = apr_pstrdup(cmd->pool, arg);

14 return NULL;

15 }

(a)

1 static const char *set_protocol(cmd_parms *cmd, void *dummy,

2 const char *arg)

3 {
4 const char *err = ap_check_cmd_context(cmd,

5 NOT_IN_DIR_LOC_FILE | NOT_IN_LIMIT);

6

7 core_server_config *conf = ap_get_module_config(

8 cmd->server->module_config, &core_module);

9

10 char *proto;

11

12 if (err != NULL) {
13 return err;

14 }
15

16 proto = apr_pstrdup(cmd->pool, arg);

17 ap_str_tolower(proto);

18 conf->protocol = proto;

19

20 return NULL;

21 }

(b)

Figure 6: Type 4 clone, statement reordering from Apache

Understanding the semantics of procedure calls is one advantage of MeCC. An interesting
Type 4 clone detected by MeCC in Figure 7 highlights this strength. The major syntactic
difference between the two procedures is that the assignment statement at line 8 in Figure 7(a)
is substituted by the procedure memcpy call at line 9 Figure 7(b). Most previous clone detec-
tion techniques cannot capture this semantic similarity between a procedure call and similar
assignment statements.

4.2 Accuracy

The next question is how accurately MeCC can detect clones. We manually inspected the
detected clones and identified false positives, which are not real clones, but are detected as
clones by MeCC.

Total FP FP ratio
Python 264 39 14.7%
Apache 191 24 12.5%
PostgreSQL 278 47 16.9%

Table 3: Detected clones and false positives. Total: total number of detected clones, FP:
number of false positive clones, and FP ratio: false positive ratio.
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1 void

2 appendPQExpBufferChar(PQExpBuffer str, char ch)

3 {
4 /* Make more room if needed */

5 if (!enlargePQExpBuffer(str, 1))

6 return;

7 /* OK, append the data */

8 str->data[str->len] = ch;

9 str->len++;

10 str->data[str->len] = ’\0’;
11 }

(a)

1 void

2 appendBinaryPQExpBuffer(PQExpBuffer str, const char *data,

3 size_t datalen)

4 {
5 /* Make more room if needed */

6 if(!enlargePQExpBuffer(str, datalen))

7 return;

8 /* OK, append the data */

9 memcpy(str->data + str->len, data, datalen);

10 str->len += datalen;

11 str->data[str->len] = ’\0’;
12 }

(b)

Figure 7: Type 4 clone, preserving memory behavior from PostgreSQL

Table 3 presents the false positive clones and their ratio from three subjects (when Similarity=80%

and MinEntry=50). In Python, the total number of found clones is 264, the number of false
positive clones is 39, and hence the false positive ratio is around 14.7%. Similarly, the false
positive ratio for Apache is 12.5%, and for PostgreSQL is around 16.9%.

The most common case of false positive clones is data structure initialization. In those
clones, a structure is allocated and then field variables are initialized according to the structure
type. Some of them can be viewed as clones, but we scrupulously mark these initialization
code pairs as false positives.

These false positive ratios look slightly higher than previous approaches [20, 13, 9]. However,
one could set Similarity higher to reduce the false positive ratio. As an example, the false
positive ratio is only 3% for Python when we set Similarity=90%.

In the next step, we measure the ratio of false negative clones — real clones, but missed by
MeCC. For this experiment, since we need an oracle clone set, we use the benchmark provided
by Roy et al. [33]. This benchmark includes three Type 1, four Type 2, five Type 3, and four
Type 4 clones. We apply MeCC on the benchmark with Similarity=80%. Since the sizes of
procedures in the benchmark are small, we set MinEntry=2.

Type 1 Type 2 Type 3* Type 4
Benchmark 3 4 5 4
MeCC 3 4 4 4

Table 4: False negatives on the benchmark set [33]. * MeCC misses only one clone.

Table 4 shows that MeCC has almost no false negatives. MeCC misses only one Type 3
clone, which has an insertion of an if statement that is related to a procedure call, and it
changes the memory state. However, if we set Similarity=79%, MeCC detects this clone.

Overall, our experimental results in this section show that MeCC can detect clones accu-
rately, with almost no false negatives and with a reasonable false positive ratio.
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4.3 Scalability

In this section, we measure scalability of MeCC. We already showed that MeCC can detect
clones in large-scale open source projects accurately in Section 4.1 and Section 4.2.

We measure the time spent to detect the clones for three subjects. Our experiments were
conducted on an Ubuntu 64-bit machine with a 2.4 GHz Intel Core 2 Quad CPU and 8 GB
RAM.

KLOC Analysis Comparison
Python 435 63m32s 1m54s
Apache 343 308m58s 1m36s
PostgreSQL 937 422m04s 6m28s

Table 5: Time spent for the detection process.

Table 5 shows the results. Static analysis took about 63 minutes for Python and 422 minutes
for PostgreSQL. Since our static analysis includes preprocessing, summarization/instantiation
of procedural summaries, and fixpoint iterations for collecting memory states, it is computa-
tionally expensive. However, this is usually one-time cost. When software changes, we can
incrementally recompute memory states of the changed parts including impacted parts accord-
ing to the call relationship.

4.4 Comparison

Section 4.1 shows that MeCC can detect all four types of clones including Type 3 (gapped) and
Type 4 (semantic) clones. In this section, we discuss if other clone detectors also can identify
these clones.

Python Apache PostgreSQL

Type 3

MeCC 81 70 88
Deckard 21 12 25
CCFinder 0 0 0
PDG-based 10 8 11

Type 4

MeCC 13 10 14
Deckard 0 0 2
CCFinder 0 0 0
PDG-based 1 0 1

Table 6: The numbers of detected Type 3 and Type 4 clones by MeCC, Deckard, CCFinder,
and a PDG-based detector [9].

For the comparison, we use two publicly available syntactic clone detectors, Deckard, a
AST-based detector, and CCFinder, a token-based detector. We also use a result set from a
PDG-based semantic clone detector [9].

For Deckard, we set the options as used in [13], mint=30 (minimum token size), stride=2
(size of the sliding window), and Similarity=0.9. For CCFinder, we also use the default op-
tions, Minimum Clone Length=30, Minimum TKS=12 (token set size), and Shaper Level=Soft

shaper. For the PDG-based detector [9], we directly used the clone detection results provided
by the authors of the detector, since the tool is not publicly available at the time of this writing.

Table 6 compares Type 3 and Type 4 clone detectability of Deckard, CCFinder, the
PDG-based detector. We assume these detectors can detect all Type 1 and Type 2 clones,
since these clones are syntactically almost the same.

CCFinder is a scalable and fast tool which detects Type 1 and Type 2 clones accurately.
However, CCFinder could not identify any Type 3 and Type 4 clones. The main reason is
that CCFinder extracts and compares syntactic tokens, but usually Type 3 and Type 4 clones
are significantly different in the token level.
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Deckard detects about 25% of Type 3 clones. Since Deckard uses the characteristic
vectors of AST, it can detect clones with small syntactic variations. Surprisingly, Deckard
identifies two Type 4 clones in PostgreSQL. The two detected Type 4 clones are classified as
the statement reordering subtype shown in Figure 6. Since Deckard extracts characteristic
vectors of these reordered ASTs, the vector only captures the number of elements in AST.
However, Deckard still misses a large portion of Type 3 and Type 4 clones.

The PDG-based detector identifies about 12% of Type 3 clones. Only one Type 4 clone
is identified in each Python and PostgreSQL. The detected Type 4 clones are statement re-
ordering. Since PDGs capture program semantics using data dependency and control flows,
the PDG-based detector can detect some Type 4 clones like statement reordered ones.

However, these PDG-based approaches [9, 23, 26] have some limitations. (1) First, inter-
procedural semantics via procedure calls cannot be supported, which means that semantic
clones that differ in respect to procedure calls (e.g., function inlining) are missed. MeCC
captures memory behavior of procedure calls by procedural summaries as described in Section 3.
(2) Second, PDGs cannot be completely free from changes on syntactic structures, while our
technique reliably determines the semantic similarity of code because we use purely semantic
information (path-sensitive abstract memory effects) of programs.

Consider the semantic clone in Figure 7. We draw the PDGs of the two procedures in
Figure 8 as described in the PDG-based approach [9]. The PDGs are significantly different
due to following reasons: first, replacing the assignment statement at line 8 in Figure 7(a) by
the procedure call at line 9 in Figure 7(b) affects the PDG, because it introduces an additional
call-site node memcpy, which consequently introduces several child nodes. Second, adding a
formal parameter datalen introduces new dependency flows which affect the PDG.

From this observation, the PDG-based approach can miss clones made by procedure call
additions or new parameter introductions, since these differences directly affect the PDG struc-
tures.

Overall, the comparison results in this section suggest that MeCC, an abstract memory-
based clone detector is effective in detecting all four types (including Type 3 and Type 4) of
clones.

5 Discussion

We discuss potential applications and limitations of our approach. We also identify threats to
validity of our experimental results.

5.1 Applications

Detecting code clones is useful for software development and maintenance tasks such as finding
inconsistencies [17, 15] and identifying potential bugs or code smells [10].

We used MeCC to identify potential bugs and code smells caused by inconsistencies. Fig-
ure 9 shows one example of Type 4 clones identified by MeCC. This clone was not detected
by other clone detectors (e.g. [20, 13, 9]). It clearly shows an inconsistency: the procedure
PQparameterStatus in Figure 9 (b) checks whether the second parameter paramName is not
null, but the procedure GetVariable in (a) does not check. This inconsistency shows an
exploitable bugs, which manifests when null is passed as the second parameter, name.

We manually inspected all Type 3 and Type 4 clones identified by MeCC to check if they
were caused by inconsistencies, and if these inconsistencies lead to potential problems. When we
identified problems caused by inconsistencies, we classified them in two categories, exploitable
bugs and code smells: A bug is exploitable if it causes unexpected behaviors, for example
when a particular variable is used as procedure input as shown in Figure 9 (a). Conversely,
a code smell occurs when an inconsistency has no demonstrated unexpected behaviors, but
refactorings or consistent changes (with other clone pairs) are highly recommended.
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Figure 8: Two PDGs of semantic clones in Figure 7. The graphs look significantly different
even though two clones are semantically similar. Grey-colored nodes are newly introduced due
to changes between the two procedures.

1 const char *

2 GetVariable(VariableSpace space, const char *name)

3 {
4 struct _variable *current;

5 if (!space)

6 return NULL;

7 for (current = space->next; current; current = current->next)

8 {
9 if (strcmp(current->name, name) == 0)

10 {
11 return current->value;

12 }
13 }
14 return NULL;

15 }

(a)

1 const char *

2 PQparameterStatus(const PGconn *conn, const char *paramName)

3 {
4 const pgParameterStatus *pstatus;

5 if(!conn || !paramName)

6 return NULL;

7 for (pstatus = conn->pstatus; pstatus != NULL; pstatus = pstatus->next)

8 {
9 if (strcmp(pstatus->name, paramName) == 0)

10 return pstatus->value;

11 }
12 return NULL;

13 }

(b)

Figure 9: One Type 4 clone, statement insertion without changing computation from Post-
greSQL. It includes an exploitable bug due to an inconsistency.

Table 7 shows the manual inspection results1. Among 278 Type 3 and 4 clones, 55 ex-

1More detailed data is available at http://ropas.snu.ac.kr/mecc
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# Type 3 Exploitable Code
& Type 4 bugs (%) smells (%)

Python 95 26 (27.4%) 23 (24.2%)
Apache 81 8 (9.9%) 27 (33.3%)
PostgreSQL 102 21 (20.6%) 20 (19.6%)
Total 278 55 (19.8%) 70 (25.2%)

Table 7: Exploitable bugs and code smells in Type 3 and Type 4 clones found by MeCC.

ploitable bugs and 70 code smells were found. About 45% of Type 3 and Type 4 clones are
either exploitable bugs or code smells. These bugs and code smells would be missed by previous
approaches (e.g. [20, 13, 9]), since most of these Type 3 and type 4 clones were not detected
by them as discussed in Section 4.4.

Overall, Table 7 implies that MeCC and its identified Type 3 and Type 4 clones are very
useful for detecting inconsistencies, exploitable bugs, and code smells.

MeCC can be used for plagiarism detection and common bug pattern identification. Syn-
tactic plagiarism detection tools (e.g. Moss [35] and JPlag [30]) cannot detect plagiarism if
code is copied and intentionally changed with some syntactic obfuscations. MeCC is able to
detect plagiarism as long as the semantics of the copied code remains similar regardless of
its syntactic changes. Similarly, MeCC can help identify common bug patterns. Kim et al.
proposed BugMem [22], which identifies common bug fix patterns and locates similar bugs in
other code. However, they only capture syntactic bug patterns using tokens of code. MeCC
can improve their work by identifying common semantic bug patterns.

5.2 Limitations

Since our current implementation compares abstract memory states at the exit points of pro-
cedures, MeCC detects only procedure-level clones. However it is possible to extend MeCC to
find clones with a finer granularity such as basic blocks adapting a code fragments generation
technique [14] to prepare code clone candidates of finer granularity. Then we can calculate
every abstract memory state for each candidate and compare them to identify clones.

Collecting abstract memory states from programs is a computationally expensive task in
both time and memory. Analyzing the semantics of programs takes longer than syntactic
comparison. However, the current implementation of MeCC showed that MeCC scales to
detect clones in PostgreSQL, which is around 1M LOC.

Similar abstract memory states do not always imply similar concrete behaviors, which may
cause false positives. In the abstract interpretation framework [3], one element in an abstract
domain can represent several concrete elements. Procedural summaries record memory related
behaviors [19], but do not capture all concrete procedure behaviors. This limitation is inevitable
since determining semantic equivalence between two programs is generally undecidable [8].

5.3 Threats to Validity

We identify the following threats to validity to our work:

Projects are open source and may not be representative. The three projects used in
this paper are all open source and not representative of all software systems, and hence
we cannot currently generalize the results of our study across all projects. However, these
projects are chosen because they are commonly used in other code clone related research.

Manually inspected and classified clones. One author manually inspected and classified
clones, and they are used to evaluate MeCC. Since there is no consensus about Type 3
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and Type 4 clones, there is ambiguity in the classified clones. However, two other authors
confirmed the classified clones, and we made this data publicly available.

Default options are used. Deckard, CCFinder, and the PDG-based detector have vari-
ous options to tune their clone detectability. In this paper, we use their default options.
However, careful option tuning may allow these tools to detect more Type 3 or Type 4
clones.

6 Related Work

Most clone detection techniques are syntactic clone detectors ones [33, 31, 13, 20, 25, 34, 9, 32, 1]
leveraging line-based [34], token-based [20, 25], or tree-based [13] approaches. These detectors
are good at identifying Type 1 and Type 2 clones, but they miss most of the Type 4 and some
of the Type 3 clones as discussed in Section 4.4.

Existing semantic clone detectors have limitations. For example, as we discussed in Sec-
tion 4.4, PDG-based detectors [9, 23, 26] miss some semantic clones due to, for example,
ignorance of inter-procedural semantics. A PDG-based technique [9] maps slices of PDGs to
syntax subtrees and applies DECKARD [13] to detect similar subtrees. Although slicing en-
ables one to detect more gapped clones, clones in each clone cluster still need to be syntactically
similar. Jiang et al. [14] proposed a clone detector using random testing techniques. They con-
clude two code fragments are clones when their outputs are the same just for a number of
randomly generated inputs. Since random testing cannot cover all program paths or inputs -
usually around up to 60 ∼ 70% [28, 29, 36], false positives are inevitable. Furthermore, the
inter-procedural behaviors are not considered in their approach.

7 Conclusions and Future Work

We proposed an abstract memory-based code clone detection technique, presented its imple-
mentation, MeCC, and discussed its applications. Since MeCC compares abstract semantics
(as embodied in abstract memory states), its clone detection ability is independent of syntactic
similarity. Our empirical study shows that MeCC can accurately detect all four types of code
clones. We also show that most of Type 4 and some of Type 3 clones identified by MeCC
cannot be detected by previous approaches [20, 13, 9].

We anticipate that MeCC will allow developers to find inconsistencies as shown in Sec-
tion 5.1, identify refactoring candidates, and understand software evolution related to semantic
clones which would be neglected by previous approaches.

Even so, we still see room for improvement. Since MeCC uses static analysis, it requires
some time to analyze the entire source code prior to our clone detection process. Our static
analyzer can only collect memory states in the procedure level, and thus MeCC can detect
only procedure level clones. To detect block level clones, we plan to adapt our static analyzer
to collect memory states for any arbitrary code blocks.

Overall, we expect that future clone detection approaches will exploit more deep semantics
of code via static analysis program logic, and/or other program verification technologies. MeCC
is one step forward in this direction.
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