
ROSAEC MEMO

2010-009

September 9, 2010

Semantics Preservation Proof of an Unstaging Translation

of Lisp-Like Multi-Staged Languages

Wontae Choi
Seoul National University
wtchoi@ropas.snu.ac.kr

Baris Aktemur
Ozyegin University

baris.aktemur@ozyegin.edu.tr

Kwangkeun Yi
Seoul National University
kwang@ropas.snu.ac.kr

September 9, 2010

Abstract

In this paper, we present an unstaging translation from multi-stage programs to record
calculus programs and prove that the translation preserves semantics. That is, a translated
program simulates every evaluation step of the original multi-staged program. Also, we
prove that a translated program can be inverse translated to the original program. Thanks
to those properties, the translation can serve as a basis of reasoning about multi-staged
programs.

1 Notation

Notation 1. The Kleene closure of a reduction a−→ is denoted as a∗−→.

Notation 2. We use
a;b−→ to denote sequential application of a−→ and b−→.

Notation 3. We use (a, b) = (a′, b′) to denote both a = a′ and b = b′ holds.

Notation 4. (Set Restriction) We are going to use A|−B to denote {a|a ∈ A ∧ a /∈ B}.

Notation 5. The function update operator (+) is defined as follows.

(f + {x : a})(y) =
{

a if y = x
f(y) o.w.

Notation 6. To distinguish record calculus expressions from staged calculus expressions when
necessary, we underline expression variables, as in e, to stand for record calculus expressions.

2 Languages

This section presents languages we are going to use.

2.1 Multi-Staged Language λS

The language λS is a typed, call-by-value λ-calculus with staging annotations and reference.

September 9, 2010 ROSAEC-2010-009 2

Syntax
Variable x, y, f ∈ VarS

Constant i ∈ Const

Location ` ∈ Loc

ExprS e ::= i | x | λx.e | e e | fix fx.e
| ref e | ! e | ` | e := e
| box e | unbox e | run e

The syntax of λS is given above. The language contains constants, variables, lambda abstrac-
tion, application, and fix-point operator fix. Syntactic constructs related to mutable references
are the referencing and dereferencing operators, locations, and assignment. Finally, there are
staging annotations: box is used to define code templates; a code template is said to be in the
next stage. unbox is the escape operator that defines a “hole” inside a code template which is
filled in with another code template. box and unbox operators can be arbitrarily nested. run
executes a code template.

Definition 1. (Depth and Stage) The depth of a λS expression e, denoted as depth(e), is the
maximum depth of nested unbox expressions that are not enclosed by box. An expression e is
said to be at stage n if depth(e) ≤ n.

Operational Semantics
λS has a small-step, call-by-value, operational semantics. Evaluation rules of the language are
presented in Figure 1 and substitution rules are given in Figure 2. The evaluation M, e

n−→
e′,M ′ has the meaning that “the expression e, under store M , evaluates to e′ and store M ′ at
stage n.”

Notice that operational semantics inhibit code templates with free variables from being
demoted. Only closed code templates are allowed to be demoted to stage-0 expressions. The
inhibition is reasonable in that every expressions pass staged type systems satisfy the condition.

2.2 The Record Calculus λR

The language λR is a λ-calculus with record operations and mutable references. For simplicity,
we do not allow arbitrary expressions to be used in record expressions; we allow variables and
values only.

Syntax

Variable ρ ∈ VarP record variables
h ∈ VarH hole variables
x, y, f ∈ VarX = VarS ordinary variables
w ∈ VarR = VarX ∪VarP ∪VarH

Constant i ∈ Const

Location ` ∈ Loc

Label x ∈ Label = {x|x ∈ VarX} tt-fonted ordinary variables

September 9, 2010 ROSAEC-2010-009 3

Definitions
Value0 v0 ::= i | λx.e | fix fx.e | box v1 | `
Valuen (n > 0) vn ::= i | x | λx.vn | vnvn | fix fx.vn

| ref vn | ! vn | ` | vn := vn

| box vn+1 | unbox vn−1 (n > 1)

StoreS M ∈ Label
fin→ Value0

Operational Semantics

(APP)
M, e1

n−→ e′1, M
′

M, e1 e2
n−→ e′1 e2, M

′

M, e
n−→ e′, M ′ v ∈ Valuen

M, v e
n−→ v e′, M ′

M, (λx.e) v
0−→ [x

07→v]e, M

M, (fix fx.e) v
0−→ [x

07→v][f
07→fix fx.e]e, M

(REF)
M, e

n−→ e′, M ′

M, ref e
n−→ ref e′, M ′

v ∈ Value0

M, ref v
0−→ `, M+{` :v}

new `

(DER)
M, e

n−→ e′, M ′

M, ! e
n−→ ! e′, M ′

M(`) = v

M, ! `
0−→ v, M

(ASG)
M, e1

n−→ e′1, M
′

M, e1 := e2
n−→ e′1 := e2, M

′

M, e
n−→ e′, M ′

M, v := e
n−→ v := e′, M ′

M, ` := v
n−→ v, M+{` :v}

(BOX)
M, e

n+1−→ e′, M ′

M, box e
n−→ box e′, M ′

(RUN)
M, e

n−→ e′, M ′

M, run e
n−→ run e′, M ′

v ∈ Value1 FV0(v) = ∅

M, run (box v)
0−→ v, M

(UNB)
M, e

n−→ e′, M ′

M, unbox e
n+1−→ unbox e′, M ′

v ∈ Value1

M, unbox (box v)
1−→ v, M

(ABS)
M, e

n+1−→ e′, M ′

M, λx.e
n+1−→ λx.e′, M ′

(FIX)
M, e

n+1−→ e′, M ′

M, fix fx.e
n+1−→ fix fx.e′, M ′

Figure 1: Operational Semantics of λS .

September 9, 2010 ROSAEC-2010-009 4

[x
n7→v]i = i

[x
07→v]y =

v if y = x
y o.w.

[x
n+17→ v]y = y

[x
07→v]λy.e =

(
λy.e if y = x

λy.[x
07→v]e o.w.

[x
n+17→ v]λy.e = λy.[x

n+17→ v]e

[x
07→v]fix fy.e =

(
fix fy.e if y = x ∨ f = x

fix fy.e[x
07→v]e o.w.

[x
n+17→ v]fix fy.e = fix fy.[x

n+17→ v]e

[x
n7→v](e1 e2) = [x

n7→v]e1 [x
n7→v]e2

[x
n7→v]ref e = ref [x

n7→v]e

[x
n7→v]! e = ! [x

n7→v]e

[x
n7→v]` = `

[x
n7→v](e1 := e2) = [x

n7→v]e1 := [x
n7→v]e2

[x
n7→v]box e = box [x

n+17→ v]e

[x
n7→v]run e = run [x

n7→v]e

[x
n+17→ v]unbox e = unbox [x

n7→v]e

Figure 2: Substitutions for λS .

ExprR e ::= i | w | λw.e | e e | fix fx.e
| ref e | ! e | ` | e := e
| r | r ·x | let w = e in e

ValueR v ::= i | λw.e | vr | `
Record ValueR vr ::= {} | vr+{x=v}

StoreR M ::= ∅ | M+{` :v}

RecordR r ::= {} | ρ | r+{x=x} | r+{x=v}

The record language λR has constants (i), variables (x), lambda abstractions, applications, a
fixpoint operator fix, and let-expressions. The constructs for mutable references are referenc-
ing (ref), dereferencing (!), locations (`), and assignment. As for the record operations there
is empty record ({}), record variables (ρ), and the record update operation r+{x= }. For field
names (or labels) in records, we use variables written in teletype font.

We separate variables into three disjoint sets: ordinary variables VarX (which are the same
as variables of λS), record variables VarP , and hole variables VarH . This syntactic distinction
makes our presentation of the inverse translation easier. The operational semantics does not
need to make a distinction; all variables are treated uniformly.

Operational Semantics
λR has a small-step, call-by-value operational semantics. The evaluation M, e

R−→ e′,M ′

means that “the expression e, under store M , evaluates to expression e′ and store M ′”. The
operational semantics of λR is mostly standard. Evaluation rules and the definition of values
are given in Figure 3.

September 9, 2010 ROSAEC-2010-009 5

Operational Semantics

(APP)R
M, e1

R−→ e′1, M
′

M, e1 e2
R−→ e′1 e2, M

′

M, e
R−→ e′, M ′

M, v e
R−→ v e′, M ′

M, (λw.e) v
R−→ [w 7→v]e, M

M, (fix fx.e) v
R−→ [x 7→v][f 7→fix fx.e]e, M

(LET)R
M, e1

R−→ e′1, M
′

M, let w = e1 in e2
R−→ let w = e′1 in e2, M

′

M, let w = v in e
R−→ [w 7→v]e, M

(ACC)R M, vr ·x
R−→ vr(x), M

(REF)R
M, e

R−→ e′, M ′

M, ref e
R−→ ref e′, M ′

v ∈ ValueR

M, ref v
R−→ `, M+{` :v}

new `

(DER)R
M, e

R−→ e′, M ′

M, ! e
R−→ ! e′, M ′

M(`) = v

M, ! `
R−→ v, M

(ASG)R
M, e1

R−→ e′1, M
′

M, e1 := e2
R−→ e′1 := e2, M

′

M, e
R−→ e′, M ′

M, v := e
R−→ v := e′, M ′

M, ` := v
R−→ v, M+{` :v}

Record Lookup

vr(x) =

v if vr = v′r+{x=v}
v′r(x) if vr = v′r+{y= } and x 6= y

Substitution
[w 7→e]i = i

[w1 7→e]w2 =

e if w1 = w2

w2 o.w.

[w1 7→e1]λw2.e2 =

λw2.e2 if w1 = w2

λw2.[w1 7→e1]e2 if w2 /∈ FV(e1)

[w1 7→e1]fix fw2.e2 =

fix fw2.e2 if w1 = w2

fix fw2.[w1 7→e1]e2 if w2 /∈ FV(e1)
[w 7→e](e1 e2) = [w 7→e]e1 [w 7→e]e2

[w 7→e1]ref e2 = ref [w 7→e1]e2

[w 7→e1]! e2 = ! [w 7→e1]e2

[w 7→e]` = `
[w 7→e](e1 := e2) = [w 7→e]e1 := [w 7→e]e2

[w1 7→e]let w2 = e1 in e2 =

let w2 = [w1 7→e]e1 in e2 if w1 = w2

let w2 = [w1 7→e]e1 in [w1 7→e]e2 if w2 /∈ FV(e1)
[w 7→e]{} = {}
[w 7→e](r+{x=x}) = [w 7→e]r+{x=[w 7→e]x}

Figure 3: Operational Semantics of λR.

September 9, 2010 ROSAEC-2010-009 6

Definitions
Environment r ::= {} | ρ | r+{x=x}
Environment Stack R ::= ⊥ | R, r

Context κ ::= ((λh.[·]) e) | ((λh.κ) e)
Context Stack K ::= ⊥ | K, κ

Environment Lookup

r(x) =

8<:
x if r = r′+{x=x}
r′(x) if r = r′+{y= } and x 6= y

ρ·x if r = ρ

Term Translation
(TCON) R ` i 7→ (i,⊥)

(TVAR) R, r ` x 7→ (r(x),⊥)

(TABS)
R, r+{x=x} ` e 7→ (e, K)

R, r ` λx.e 7→ (λx.e, K)

(TFIX)
R, r+{x=x}+{f=f} ` e 7→ (e, K)

R, r ` fix fx.e 7→ (fix fx.e, K)

(TAPP)
R ` e1 7→ (e1, K1) R ` e2 7→ (e2, K2)

R ` e1 e2 7→ (e1 e2, K1 ./ K2)

(TBOX)
R, ρ ` e 7→ (e, (K, κ))

R ` box e 7→ (κ[λρ.e], K)
new ρ

R, ρ ` e 7→ (e,⊥)

R ` box e 7→ (λρ.e,⊥)
new ρ

(TUNB)
R ` e 7→ (e, K)

R, r ` unbox e 7→ (h r, (K, (λh.[·]) e))
new h

(TRUN)
R ` e 7→ (e, K)

R ` run e 7→ (let h = e in (h{}), K)
new h

(TREF)
R ` e 7→ (e, K)

R ` ref e 7→ (ref e, K)

(TDRE)
R ` e 7→ (e, K)

R ` ! e 7→ (! e, K)

(TLOC) R ` ` 7→ (`,⊥)

(TASG)
R ` e1 7→ (e1, K1) R ` e2 7→ (e2, K2)

R ` e1 := e2 7→ (e1 := e2, K1 ./ K2)

Context Stack Merge Operator
⊥ ./ K = K
K ./ ⊥ = K

(K1, κ1) ./ (K2, κ2) = (K1 ./ K2), (κ1[κ2])

Figure 4: Translation from λS to λR.

September 9, 2010 ROSAEC-2010-009 7

3 Translation

The translation is presented in Figure 4. A translation judgment has the form R ` e 7→ (e,K)
with the meaning that “a λS expression e, under environment stack R, translates to the λR
expression e and the context stack K.”

Also, the translation for stores are defined as follows.

Definition 2. (Store Translation)

∅ 7→ ∅
M 7→ M {} ` v 7→ (v,⊥)
M ∪ {` : v} 7→ M ∪ {` : v}

The translation preserves semantics of the programs. That is, translated programs simulate
original multi-staged programs. Specifically, one step reduction of a multi-staged program cor-
responds to one step reduction of the translated record calculus program followed by exhaustive
administrative reductions.

Recall that a translation yields a pair of an expression and a context stack. This pair can
be constructed into a single expression using a context closure operation:

Definition 3. (Context Closure) Let e be a λR expression and K be a context stack. The
context closure K(e) is defined as follows.

K(e) =
{

K ′(κ[e]) if K = (K ′, κ)
e if K = ⊥

Administrative reduction is defined as follows.

Definition 4. (Admin Reduction) Administrative reduction of an expression is a congruence
closure of the following two rules:

(APP) (λρ.e) r
A−→ [ρ 7→r]e

(ACC)
r 6= ρ

r ·x A−→ r(x)

Note that an administrative reduction may happen anywhere, even under lambdas. Also
note that an admin reduction is “safe” to perform, in the sense that no side-effecting or non-
terminating expression is eliminated by an admin reduction. It is also straightforward to check
that admin reductions terminate.

Definition 5. (Admin-normal form) An expression e is said to be in admin-normal form iff
there does not exist an e′ such that e

A−→ e′.

Theorem 1. (Simulation) Let e be a stage-n λS expression with no free variables and M be a
store that contains values with no free variables such that M, e

n−→ e′,M ′. Let R ` e 7→ (e,K)
and R ` e′ 7→ (e′,K ′). Also, M be the translation of M and M ′ be the translation of M ′. Then

M,K(e)
R;A∗

−→ K ′(e′),M ′.

Proof is given in Section 3.2.

3.1 Auxiliary Properties

Now we are going to introduce some basic properties of the translation and admin reduction,
which are useful in proving the Theorem 1.

September 9, 2010 ROSAEC-2010-009 8

Notation 7. (Abbreviations) We are going to omit ⊥ when a stack is not empty. Also, we
use a0 . . . an to denote sequence a0, . . . , an. For example, a0, a1 denotes stack ⊥, a0, a1 and
a0 . . . an denotes stack ⊥, a0, . . . , an. Also a, b0 . . . bn denotes ⊥, a, b0, . . . , bn and a0 . . . an, b
denotes ⊥, a0, . . . , an, b.

Notation 8. (Length) We use length(a) to denote the length of stack a. Notation max(a)(b)
denotes the largest number between a and b.

During the translation, the length of a context stack cannot exceed the length of a envi-
ronment stack.

Property 1. Let e be a λS expression. If r0 . . . rn ` e 7→ (e,K), then length(K) = depth(e).

Proof. Proof by structural induction on e.

3.1.1 Admin Normal Result

We first extend the definition of admin reductions to contexts.

Definition 6. (Admin reduction of contexts) Administrative reduction of contexts is defined
the same as administrative reduction of expressions.

Definition 7. (Admin reduction of context stacks) Exhaustive administrative reduction of
context stacks is defined as follows:

K
A∗

−→ K ′ κ
A∗

−→ κ′

K, κ
A∗

−→ K ′, κ′
⊥ A∗

−→ ⊥

The following lemma states that there are no admin-reducible terms in the result of a
translation.

Lemma 1. Assume e is a stage-n λS expression. If r0 . . . rn ` e 7→ (e,K), then context stack
K and λR expression e are admin-normal.

Proof. Proof by structural induction on expression e. We are going to show interesting cases
only. Other cases are straightforward inductions.

• Let e = x. By definition of the translation judgment, we have r0 . . . rn ` x 7→ (rn(x),⊥).
Depending on rn, rn(x) can be either variable x or record access ρ ·x for some record
variable ρ. In both cases, the expression is admin-normal. Hence we have the claim.

• Let e = e1 e2. Assume, R is an environment stack. Then, by definition of the translation
judgment, we have R ` e1 e2 7→ (e1 e2,K1 ./ K2) where R ` e1 7→ (e1,K1) and
R ` e2 7→ (e2,K2). By induction hypothesis, we have the fact that e1, e2, K1 and K2

are admin normal.

Now we are going to show that both e1 e2 and K1 ./ K2 are admin normal. Since ./
operator does not introduce additional reducible terms, context stack K1 ./ K2 is admin
normal by definition of administrative reduction. For expression e1 e2, an applicable

candidate is (λh.e) r
A−→ [h 7→ r]e. However, e2 cannot be a record by definition of

the translation judgment. Therefore, by definition of admin reductions, e1 e2 is admin-
normal. Hence we have the claim.

September 9, 2010 ROSAEC-2010-009 9

3.1.2 Value Preservation

Stage-0 values of λS are translated to values of λR.

Lemma 2. Assume v is a stage-0 λS expression such that v ∈ Value0. Then r ` v 7→ (v,⊥)
such that v ∈ ValueR for any environment r.

Proof. By a straightforward case analysis.

3.1.3 Coincidence

We first define the free variables of staged expressions.

Definition 8. Stage-0 free variables of stage-n λS expression e, FVn(e), is defined as follows.

FVn(i) = ∅

FVn(x) =
{
{x} if n = 0
∅ o.w.

FVn(λx.e) =
{

FVn(e) \ {x} if n = 0
FVn(e) o.w.

FVn(fix fx.e) =
{

FVn(e) \ {f, x} if n = 0
FVn(e) o.w.

FVn(e1 e2) = FVn(e1) ∪ FVn(e2)
FVn(ref e) = FVn(e)
FVn(! e) = FVn(e)
FVn(`) = {}
FVn(e1 := e2) = FVn(e1) ∪ FVn(e2)
FVn(box e) = FVn+1(e)
FVn+1(unbox e) = FVn(e)
FVn(run e) = FVn(e)

Given a λS expression e, there exists a set of environment stacks which yield the same
translation result.

Lemma 3. Assume e is a stage-n λS expression with FVn(e) = {x1, . . . xm}. Also r, r1 . . . rn `
e 7→ (e1,K1) and r′, r1 . . . rn ` e 7→ (e2,K2). If r(xi) = r′(xi) for all xi ∈ {x1 . . . xm}, then
(e1,K1) = (e2,K2).

Proof. By structural induction on the expression e.

Lemma 4. Assume e is a λS expression such that e ∈ Valuen+1. For any R,R′, r1, . . . , rn+1:

R, r1 . . . rn+1 ` e 7→ (e,K) ⇐⇒ R′, r1 . . . rn+1 ` e 7→ (e,K)

Proof. By structural induction on the expression e.

3.1.4 Free Variable Preservation

Lemma 5. Assume e is a stage-n λS expression. If r0 . . . rn ` e 7→ (e, κp . . . κ1), then
FV(e)|−VarH

⊆ FV(rn) and ∀1 ≤ i ≤ p : FV(κi)|−VarH
⊆ FV(rn−i).

Proof. By structural induction on e. We are going to show the interesting cases only. Other
cases follow from the induction hypothesis.

• Let e = x. Assume r0 . . . rn ` x 7→ (rn(x),⊥). We have two cases, depending on whether
rn(x) is equal to x or ρ·x. In both cases, the claim holds by definition of bound.

September 9, 2010 ROSAEC-2010-009 10

• Let e = λx.e. Assume r0 . . . rn ` λx.e 7→ (λx.e, κp . . . κ1) where r0 . . . rn +{x = x} `
e 7→ (e, κp . . . κ1). By induction hypothesis, we have FV(e)|−VarH

⊆ FV(rn +{x = x}).
Then, we have FV(e)|−VarH

\ {x} ⊆ FV(rn). Also, we have FV(λx.e) = FV(e) \ {x} and
FV(e) \ {x}|−VarH

= FV(e)|−VarH
\ {x}. Therefore, FV(λx.e)|−VarH

⊆ FV(rn). The other
condition follows from I.H. Hence we have the claim.

• Let e = box e with depth(e) = 0. Assume r0 . . . rn ` box e 7→ (λρ.e,⊥) where r0 . . . rn, ρ `
e 7→ (e,⊥) and ρ is a fresh variable. Since box e is a stage-n expression, e is a stage-
(n+1) expression. We have FV(λρ.e)|−VarH

= FV(e)\{ρ}|−VarH
. By induction hypothesis,

FV(e)|−VarH
⊆ FV(ρ) = {ρ}. Hence, FV(λρ.e)|−VarH

= ∅ ⊆ FV(rn). The other condition
is trivial. Hence we have the claim.

• Let e = box e with depth(e) > 0. Assume r0 . . . rn ` box e 7→ (κ1[λρ.e], κp . . . κ2)
where r0 . . . rn, ρ ` e 7→ (e, κp . . . κ1) and ρ is a fresh variable. Since box e is a stage-
n expression, e is a stage-(n + 1) expression. We have, by definition of free vari-
ables, FV(κ1[λρ.e])|−VarH

⊆ (FV(κ1) ∪ FV(λρ.e))|−VarH
, which is FV(κ1)|−VarH

∪ (FV(e) \
{ρ})|−VarH

. By induction hypothesis, we have FV(κ1)|−VarH
⊆ FV(rn) and FV(e)|−VarH

⊆
FV(ρ) = {ρ}. Therefore, FV(κ1[λρ.e])|−VarH

⊆ FV(rn). The other condition follows from
I.H. Hence we have the claim.

• Let e = unbox e. Assume r0 . . . rn+1 ` unbox e 7→ (h rn+1, (κp . . . κ1, (λh.[·]) e)) where
r0 . . . rn ` e 7→ (e, κp . . . κ1) and h is a fresh variable.

We have to show (i)FV(h rn+1)|−VarH
⊆ FV(rn+1) (ii) FV((λh.[·]) e)|−VarH

⊆ FV(rn)
(iii)∀1 ≤ i ≤ p : FV(κi)|−VarH

⊆ FV(rn−i). Item (i) trivially holds. By induction hy-
pothesis, we have FV(e)|−VarH

⊆ FV(rn). By definition of free variables, FV((λh.[·]) e) =
FV(e). Thus, we have FV((λh.[·]) e)|−VarH

⊆ FV(rn), giving us item (ii). Finally, item
(iii) is straightforward from the induction hypothesis. Hence we have the claim.

3.2 Proof of the Theorem 1

We first prove several lemmas regarding substitution and variable capturing preservation.
Then, we show a lemma corresponding to the simulation property, which leads to the proof of
Theorem 1.

Lemma 6. (Substitution Preservation) Assume e1 is a stage-n λS expression, e2 is a stage-0
λS expression with FV0(e2) = ∅. Let r0 . . . rn ` e1 7→ (e1, κp . . . κ1) for p ≤ n and {} ` e2 7→
(e2,⊥) and x be a variables such that x ∈ FV(r0). Then

• If n = 0, then r0 ` [x 07→e2]e1 7→ ([x 7→e2]e1,⊥).

• If n > 0 and n > p, then r0 . . . rn ` [x n7→e2]e1 7→ (e1, κp . . . κ1).

• If n > 0 and n = p, then r0 . . . rn ` [x n7→ e2]e1 7→ (e1, (κ′p, κp−1 . . . κ1)) where κ′p = [x 7→
e2]κp.

Proof. By structural induction on expression e1. We are going to show interesting cases only.
Other cases are straightforward inductions.

• Let e1 = y with n > 0. Assume r0 . . . rn ` y 7→ (rn(y),⊥). Since resulting context stack
is empty, we have to show that the second claim holds. We have [x n7→ e2]y = y. Thus,
r0 . . . rn ` [x n7→e2]y 7→ (rn(y),⊥). Hence we have the claim.

September 9, 2010 ROSAEC-2010-009 11

• Let e1 = box e with n = 0 with depth(e) = 0. Assume r ` box e 7→ (λρ.e,⊥) where
r, ρ ` e 7→ (e,⊥) and ρ is a fresh variable. Since box e is a stage-0 expression, e is a
stage-1 expression. Then, by induction hypothesis, we have r, ρ ` [x 17→ e2]e 7→ (e,⊥).
By definition of translation judgment, we have r ` box ([x 17→ e2]e) 7→ (λρ.e,⊥). Also,
by definition of substitution, we have box ([x 17→ e2]e) = [x 07→ e2](box e). Therefore,
r ` [x 07→e2](box e) 7→ (λρ.e,⊥). . . . (1)

Recall that r, ρ ` e 7→ (e,⊥). By Lemma 5, FV(e)|−VarH
⊆ FV(ρ). Because x 6∈ FV(ρ),

we have [x 7→e2]e = e. Therefore, [x 7→e2]λρ.e = λρ.e. . . . (2)

From (1) and (2), we have r ` [x 07→ e2]box e 7→ ([x 7→ e2]λρ.e2,⊥). Hence, we have the
claim.

• Let e = box e with n = 0 and depth(e) = 1. Assume r ` box e 7→ (κ[λρ.e],⊥) where
r, ρ ` e 7→ (e, κ) and ρ is a fresh variable. Since box e is a stage-0 expression, e is a
stage-1 expression. Then, by induction hypothesis, we have r, ρ ` [x 17→ e2]e 7→ (e, κ′)
where κ′ = [x 7→ e2]κ. By definition of translation judgment, we have r ` box ([x 17→
e2]e) 7→ (κ′[λρ.e],⊥). Also, we have [x 07→ e2](box e) = box ([x 17→ e2]e). Thus, we have
r ` [x 07→e2](box e) 7→ (κ′[λρ.e],⊥). . . . (1)

Recall that r, ρ ` e 7→ (e, κ). By Lemma 5, FV(e)|−VarH
⊆ FV(ρ). Because x 6∈ FV(ρ),

we have [x 7→e2]e = e. Therefore, [x 7→e2](κ[λρ.e]) = κ′[λρ.e]. . . . (2)

From (1) and (2), we have r ` [x 07→e2]box e 7→ ([x 7→e2](κ[λρ.e]),⊥). Hence we have the
claim.

Lemma 7. Assume r and r′ are environments. Then, [ρ 7→r′](r(x)) A∗

−→ ([ρ 7→r′]r)(x).

Proof. By structural induction on r.

• Let r = {}. We have [ρ 7→r′]({}(x)) = error and ([ρ 7→r′]{})(x) = error by definition.

• Let r = ρ′. If ρ = ρ′, then [ρ 7→ r′](ρ(x)) = r′ ·x and (([ρ 7→ r′]ρ))(x) = r′(x). By the
definition of admin reductions, r′ ·x A−→ r′(x). If ρ 6= ρ′, then [ρ 7→ r′]ρ′(x) = ρ′ ·x and
([ρ 7→r′]ρ′)(x) = ρ′ ·x. Hence we have the claim.

• Let r = r′′+ {y = y}. If x = y, then [ρ 7→ r′]((r′′+ {x = x})(x)) = x and ([ρ 7→
r′](r′′+{x = x}))(x) = x. If x 6= y, then [ρ 7→ r′]((r′′+{x = x})(x)) = [ρ 7→ r′](r′′(x))
and ([ρ 7→ r′](r′′+{x = x}))(x) = ([ρ 7→ r′]r′′)(x). By induction hypothesis, we have

[ρ 7→r′](r′′(x)) A∗

−→ ([ρ 7→r′]r′′)(x). Hence we have the claim.

Definition 9. (Substitution in Environment Stacks)

[x 7→e]R =
{

([x 7→e]R′), ([x 7→e]r) if R = R′, r
⊥ if R = ⊥

Definition 10. (Substitution in Contexts and Context Stacks)

[x 7→e]K =
{

([x 7→e]K ′), ([x 7→e]κ) if K = K ′, κ
⊥ if K = ⊥

[x 7→e]κ =
{

(λh.([x 7→e]κ′)) ([x 7→e]e′) if κ = (λh.κ′) e′

(λh.[·]) ([x 7→e]e′) if κ = (λh.[·]) e′

Lemma 8. (Variable Capturing Preservation) Assume e is a stage-n λS expression and S is a
substitution such that S = [ρ 7→r]. Let r0 . . . rn ` e 7→ (e,K). Then, S(r0 . . . rn) ` e 7→ (e′,K ′)

such that Se
A∗

−→ e′ and SK
A∗

−→ K ′.

September 9, 2010 ROSAEC-2010-009 12

Proof. By structural induction on e. We are going to show interesting cases only. Other cases
are straightforward inductions.

• Let e = x. We have r0 . . . rn ` x 7→ (rn(x),⊥). Also, we have S(r0 . . . rn) ` x 7→
((Srn)(x),⊥) since S(r0 . . . rn) = Sr0 . . . Srn. Then, by Lemma 7, we have S(rn(x)) A∗

−→
(Srn)(x). Hence we have the claim.

• Let e = box e with depth(e) = 0. Assume r0 . . . rn ` box e 7→ (λρ′.e,⊥) where
r0 . . . rn, ρ′ ` e 7→ (e,⊥) and ρ′ is a fresh variable. By induction hypothesis, we have

S(r0 . . . rn, ρ′) ` e 7→ (e′,⊥) such that Se
A∗

−→ e′. Since ρ′ is a fresh variable, we have
S(λρ′.e) = λρ′.Se and S(r0 . . . rn) ` box e 7→ (λρ′.e′,⊥). Because admin reduction is a

congruence closure, we have S(λρ′.e) A∗

−→ λρ′.e′. Hence we have the claim.

• Let e = box e with depth(e) > 0. Assume r0 . . . rn ` box e 7→ (κ1[λρ′.e], κp . . . κ2) where
r0 . . . rn, ρ′ ` e 7→ (e, κp . . . κ1), p ≤ n and ρ′ is a fresh variable. By induction hypothesis,

we have S(r0 . . . rn, ρ′) ` e 7→ (e′, κ′p . . . κ′1) such that Se
A∗

−→ e′ and S(κp . . . κ1)
A∗

−→
κ′p . . . κ′1. Since ρ′ is a fresh variable, we have S(λρ′.e) = λρ′.Se and S(κ1[λρ′.e]) =
(Sκ1)[λρ′.Se] and S(r0 . . . rn) ` box e 7→ (κ′1[λρ′.e′], κ′p . . . κ′2). Because admin reduction

is a congruence closure, we have S(κ1[λρ′.e]) A∗

−→ κ′1[λρ′.e′]. Hence we have the claim.

Lemma 9. (Simulation) Assume e is a stage-n λS expression with FVn(e) = ∅ and M is a
store that contains values with no free variables such that M, e

n−→ e′,M ′. Also r0 . . . rn ` e 7→
(e,K) and r0 . . . rn ` e′ 7→ (e′,K ′). Let M be the translation of M and M ′ be the translation
of M ′.

• If K = ⊥, then M, e
R;A∗

−→ e′,M ′ and K ′ = ⊥.

• If K = κn . . . κ1, where n > 0, we have four cases depending on κn.

– If κn = (λh.κ) eh for some h, κ and eh where eh ∈ ValueR, then [h 7→ eh]e A∗

−→ e′

and M = M ′, and [h 7→eh](κκn−1 . . . κ1)
A∗

−→ K ′.

– If κn = (λh.[·]) eh for some h and eh where eh ∈ ValueR, then [h 7→eh]e A∗

−→ e′ and

M = M ′, and [h 7→eh](κn−1 . . . κ1)
A∗

−→ K ′.

– If κn = (λh.κ) eh for some h, κ and eh where eh 6∈ ValueR, then e = e′ and ∃e′h
such that M, eh

R;A∗

−→ e′h,M ′ and K ′ = (λh.κ) e′h, κn−1 . . . κ1.

– If κn = (λh.[·]) eh for some h and eh where eh 6∈ ValueR, then e = e′ and ∃e′h such

that M, eh
R;A∗

−→ e′h,M ′ and K ′ = (λh.[·]) e′h, κn−1 . . . κ1.

Proof. By induction on evaluation of e
n−→ e′. For given evaluation, we proceed by cases on

the finally used evaluation. We are going to show interesting cases; other cases are either
straightforward inductions or very similar to given cases. We write “assump.” for assumption,
“adm.” for administrative reduction, “ctx.” for context closure.

• Case (APP) (1) : Let e = e1 e2.

We have
M, e1

n−→ e′1,M
′

M, e1 e2
n−→ e′1 e2,M

′ and
r0 . . . rn ` e1 7→ (e1,K1) r0 . . . rn ` e2 7→ (e2,K2)

r0 . . . rn ` e1 e2 7→ (e1 e2,K1 ./ K2)

This case follows from the I.H. The following facts are used:

September 9, 2010 ROSAEC-2010-009 13

– Note that length(κ1) = depth(e1) and length(κ2) = depth(e2). Also, depth(e1 e2) =
max(depth(e1))(depth(e2)) and length(K1 ./ K2) = max(length(e1))(length(e2))
by definition. Hence length(e1 e2) = depth(K1 ./ K2).

– Assume K1 and K2 are context stacks. If K1
A∗

−→ K ′
1 and K2

A∗

−→ K ′
2, then K1 ./

K2
A∗

−→ K1′ ./ K ′
2.

– The outermost context in K1 is also the outermost context in K1 ./ K2.

• Case (APP) (3) :

We have
v ∈ Value0

M, (λx.e) v
0−→ [x 07→v]e,M

and

r+{x=x} ` e 7→ (e,⊥)
r ` λx.e 7→ (λx.v,⊥)

r ` v 7→ (v,⊥)

r ` (λx.e) v 7→ ((λx.e) v,⊥)

Let r ` [x 07→v]e 7→ (e′,⊥). (Since n = 0, the context stack must be ⊥.) We want to show

that M, (λx.e) v
R;A∗

−→ e′,M .

Also, FV0((λx.e)v) = ∅ implies FV0(e) ⊆ {x} because FV0(λx.e) = FV0(e) \ {x}.

1. v ∈ ValueR by v ∈ Value0 and Lemma 2.

2. M, (λx.e) v
R−→ [x 7→v]e,M by (1) and (APP)R

3. r ` v 7→ (v,⊥) by assump.

4. FV0(v) = ∅, by assump.

5. {} ` v 7→ (v,⊥) by (3),(4) and Lemma 3

6. r+{x=x} ` e 7→ (e,⊥) by assump.

7. r+{x=x} ` [x 07→v]e 7→ ([x 7→v]e,⊥). by (5), (6) and Lemma 6

8. FV0(e) ⊆ {x} by assump.

9. FV0([x 7→v]e) = ∅ by (8)

10. r ` [x 07→v]e 7→ ([x 7→v]e,⊥) by (7), (9) and Lemma 3

So, we want to show that M, (λx.e) v
R;A∗

−→ [x 7→v]e,M . This is immediately obtained

from (2) and the fact that [x 7→v]e A∗

−→ [x 7→v]e.

• Case (BOX), n = 0.

We have
M, e

1−→ e′,M ′

M, box e
0−→ box e′,M ′

Expression e is at stage 1, since box e is a stage 0 expression. Because e reduces, its
depth is 1; otherwise it would be a value and no reduction could be taken. So, for some
κ1, the translation is

r, ρ ` e 7→ (e, κ1)
r ` box e 7→ (κ1[λρ.e],⊥)

fresh ρ

Let r, ρ ` e′ 7→ (e′,K) and r ` box e′ 7→ (eb,Kb). (Subscript b refers to box.) So, we

want to show that Kb = ⊥ and M,κ1[λρ.e]
R;A∗

−→ eb,M
′.

We now consider sub-cases depending on the outermost context κ1.

– Let κ1 = (λh.κ) eh where eh ∈ ValueR. Also, S = [h 7→eh]. Then,

September 9, 2010 ROSAEC-2010-009 14

1. M = M ′ by I.H.

2. Se
A∗

−→ e′ by I.H.

3. Sκ
A∗

−→ K by I.H.

4. Length of K is 1. Let κ = κ′. by (3)

5. eb = κ′[λρ.e′] by (4) and assump.

6. Kb = ⊥ by (4) and assump.

So, we want to show M, (λh.κ[λρ.e]) eh
R;A∗

−→ κ′[λρ.e′],M .

7. M, (λh.κ[λρ.e]) eh
R−→ S(κ[λρ.e]),M because eh ∈ ValueR

8. S(κ[λρ.e]) = (Sκ)[λρ.Se] because h is unique

9. (Sκ)[λρ.Se] A∗

−→ κ′[λρ.e′] by (2), (3), (4), and adm.

10. S(κ[λρ.e]) A∗

−→ κ′[λρ.e′] by (8) and (9)

11. M, (λh.κ[λρ.e]) eh
R;A∗

−→ κ′[λρ.e′],M by (7) and (10).

Thus, by (1), (5), and (11), we have M,κ1[λρ.e]
R;A∗

−→ eb,M
′.

– Let κ1 = (λh.κ) eh where eh /∈ ValueR. Then,

1. e = e′ by I.H.

∃e′h such that

2. M, eh
R;A∗

−→ e′h,M ′ by I.H.

3. K = (λh.κ) e′h by I.H.

4. eb = (λh.κ[λρ.e′]) e′h by (3) and assump.

5. Kb = ⊥ by (3) and assump.

So, we want to show

M, (λh.κ[λρ.e]) eh
R;A∗

−→ (λh.κ[λρ.e′]) e′h,M ′

which is straightforward from (1) and (2).

– Proof for sub-cases with κ1 = (λh.[·]) eh are similar to previous cases.

• Case (UNB) (1) : Let current stage be n + 1. We have

M, e
n−→ e′,M ′

M, unbox e
n+1−→ unbox e′,M ′

,
R ` e 7→ (e,K)

R, rn+1 ` unbox e 7→ (h rn+1, (K, (λh.[·]) e))

and
R ` e′ 7→ (e′,K ′)

R, rn+1 ` unbox e′ 7→ (h rn+1, (K ′, (λh.[·]) e′))
.

where h is a fresh variable and R = r0 . . . rn.

Since e reduces, its depth is n (otherwise it would be a value and no reduction could
take place). Thus, let K = κn . . . κ1. Also, because e /∈ Valuen, we have e /∈ ValueR by
Lemma 2.

We have two cases depending on the stage number n.

September 9, 2010 ROSAEC-2010-009 15

– Let n = 0.

By I.H., we have M, e
R;A∗

−→ e′,M ′. We also have K = ⊥ and K ′ = ⊥. Therefore,
(λh.[·]) e becomes the outermost context in the translation of unbox e. Since e /∈ ValueR
and n + 1 > 0, we have to show ∃e′h such that the following conditions hold:

(i) h r1 = h r1

(ii) M, e
R;A∗

−→ e′h,M ′

(iii) (λh.[·]) e′ = (λh.[·]) e′h

Taking e′ as the witness, i.e. taking e′h = e′, satisfies the conditions trivially.

– For the case n > 0, the proof follows from the induction hypothesis.

• Case (UNB) (2) : We have

e ∈ Value1

M, unbox box e
1−→ e,M

and

r0, ρ ` e 7→ (e,⊥)
r0 ` box e 7→ (λρ.e,⊥)

r0, r1 ` unbox box e 7→ (h r1, (λh.[·]) λρ.e)

where ρ and h are fresh variables. Also let r0, r1 ` e 7→ (e′,⊥).

Let S = [h 7→λρ.e]. Since λρ.e ∈ ValueR and n = 1, we have to show

(i) S(h r1)
A∗

−→ e′

(ii) S(⊥) = ⊥
(iii) M = M

Items (ii) and (iii) are trivial. We now show that item (i) holds.

1. S(h r1) = (λρ.e) r1

2. (λρ.e) r1
A∗

−→ [ρ 7→r1]e by adm.

3. r0, ρ ` e 7→ (e,⊥) by assump.

4. r0, r1 ` e 7→ (e′,⊥) by assump.

5. [ρ 7→r1](r0, ρ) = r0, r1 by def. of substitution and uniqueness of ρ

6. [ρ 7→r1]e
A∗

−→ e′ by (3),(4),(5) and Lemma 8

7. S(h r1)
A∗

−→ e′ by (1) and (6)

• Case (RUN) (2) : We have

e ∈ Value1 FV0(e) = ∅

M, run box e
0−→ e,M

and

r, ρ ` e 7→ (e,⊥)
r ` box e 7→ (λρ.e,⊥)

r ` run box e 7→ (let h = λρ.e in h r,⊥)

where ρ and h are fresh variables.

1. M, let h = λρ.e in h {} R−→ (λρ.e) {},M by (LET)R

2. (λρ.e) {} A−→ [ρ 7→{}]e by adm.

3. r, ρ ` e 7→ (e,⊥) by assump.

September 9, 2010 ROSAEC-2010-009 16

4. r, {} ` e 7→ (e′,⊥) such that [ρ 7→{}]e A∗

−→ e′ by (3) and Lemma 8

5. {} ` e 7→ (e′,⊥) by (4) and Lemma 4, because e ∈ Value1

6. (λρ.e) {} A∗

−→ e′ by (2) and (4)

7. FV0(e) = ∅ by assump.

8. r ` e 7→ (e′,⊥) by (5), (7) and Lemma 3

Since n = 0, what we have to show is M, let h = λρ.e in h {} R;A∗

−→ e′,M . This is
obtained from (1) and (6). Hence we have the claim.

Proof of Theorem 1. By a case analysis on K. Recall that M, e
n−→ e′,M ′, and we have

R ` e 7→ (e,K) and R ` e′ 7→ (e′,K ′). What we want to show is M,K(e)
R;A∗

−→ K ′(e′),M ′.

• Case K = ⊥:

By Lemma 9, we have K = K ′ = ⊥. Therefore, K(e) = e and K ′(e′) = e′. By Lemma

9, we also have M, e
R;A∗

−→ e′,M ′. Hence we have the claim.

• Case K = κn . . . κ1 where n > 0. We have four subcases based on κn. Then

– Let κn = (λh.κ) eh for some h, κ and eh where eh ∈ ValueR.

1. [h 7→eh]e A∗

−→ e′ by Lemma 9
2. M = M ′ by Lemma 9

3. [h 7→eh](κκn−1 . . . κ1)
A∗

−→ K ′ by Lemma 9

Let K ′ = κ′n . . . κ′1. Then K ′(e′) = κ′n[κ′n−1[. . . κ
′
1[e

′]]] and K(e) = (λh.κ[κn−1[. . . κ1[e]]])eh.

4. M, (λh.κ[κn−1[. . . κ1[e]]])eh
R−→ [h 7→eh](κ[κn−1[. . . κ1[e]]]),M ′ by (APP)

5. [h 7→eh](κ[κn−1[. . . κ1[e]]])
A∗

−→ κ′n[κ′n−1[. . . κ
′
1[e

′]]]
by (1), (3) and uniqueness of h

6. M, (λh.κ[κn−1[. . . κ1[e]]])eh
R;A∗

−→ κ′n[κ′n−1[. . . κ
′
1[e

′]]],M ′ by (4) and (5)

Hence we have M,K(e)
R;A∗

−→ K ′(e′),M ′.

– Let κn = (λh.[·]) eh for some h and eh where eh ∈ ValueR. This case is similar to
the previous case.

– Let κn = (λh.κ) eh for some h, κ and eh where eh 6∈ ValueR. Then, ∃e′h such that

1. M, eh
R;A∗

−→ e′h,M ′ by Lemma 9
2. K ′ = (λh.κ) e′h, κn−1 . . . κ1 by Lemma 9
3. e = e′ by Lemma 9
4. K(e) = (λh.κ[κn−1[. . . κ1[e]]])eh by assump.
5. K(e′) = (λh.κ[κn−1[. . . κ1[e]]])e′h by (2) and (3)

6. M, (λh.κ[κn−1[. . . κ1[e]]])eh
R;A∗

−→ (λh.κ[κn−1[. . . κ1[e]]])e′h,M ′ by (1) and (6)

Hence we have M,K(e)
R;A∗

−→ K ′(e′),M ′ by (4), (5) and (6).

– Let κn = (λh.[·]) eh for some h and eh where eh 6∈ ValueR. This case is similar to
the previous case.

September 9, 2010 ROSAEC-2010-009 17

Definitions
Hole Environment H : VarH → ExprR

Term Translation
(IVAR) H ` x�x

(IACC) H ` e·x�x

(IABS)
H ` e�e

H ` λx.e�λx.e

(IABS)
H ` e�e

H ` fix fx.e�fix fx.e

(IAPP)
H ` e1�e1 H ` e2�e2 e1 6= λh.e e2 /∈ Record

H ` e1 e2�e1 e2

(IREF)
H ` e�e

H ` ref e�ref e

(IDER)
H ` e�e

H ` ! e�! e

(ILOC) H ` `�`

(IASG)
H ` e1�e1 H ` e2�e2

H ` e1 := e2�e1 := e2

(ICTX)
H ∪ {h : e′} ` e�e

H ` ((λh.e) e′)�e

(IBOX)
H ` e�e

H ` λρ.e�box e

(IUNB)
H ` H(h)�e

H ` h r�unbox e

(IRUN)
H ` e�e

H ` let h = e in (h {})�run e

Figure 5: Inverse Translation from λR to λS .

September 9, 2010 ROSAEC-2010-009 18

4 Inverse Translation

The definition of the inverse translation is in Figure 5. An inverse translation judgment is in
the form H ` e�e with the meaning that “under the hole environment H, the λR expression
e translates to the λS expression e.” A hole environment is a function from hole variables to
expressions.

To make the connection between forward translation and inverse translation, we first define
how to interpret context stacks as hole environments.

Definition 11. (From Contexts to Hole Environments) Let K be a context stack. The opera-
tion K defines a hole environment in the following way:

K =
{

∅ if K = ⊥
K ′ ∪ κ if K = K ′, κ

κ =
{
{h : e} if κ = (λh.[·]) e
κ′ ∪ {h : e} if κ = (λh.κ′) e

Lemma 10. Assume e is a λR expression, κ is a context and H is a hole environment. If
H ∪ κ ` e�e, then H ` κ[e]�e.

Proof. Proof by induction on κ.

• Let κ = (λh.[·]) eh.

Assume, H ∪ (λh.[·]) eh ` e�e and H ∪ {h : eh} ` e�e′. We have (λh.[·]) eh = {h : eh}.
Therefore, we have e′ = e. Also, by definition of the inverse translation, we have H `
(λh.e) eh�e′. Hence, we have the claim.

• Let κ = (λh.κ) eh.

Let H ∪ (λh.κ) eh ` e�e. We have (λh.κ) eh = {h : eh} ∪ κ. Therefore, we have
H ∪ {h : eh} ∪ κ ` e�e. Let H ∪ {h : eh} ` κ[e]�e′. Then, by induction hypothesis, we
have e′ = e. Also, by definition of the inverse translation, we have H ` (λh.κ[e]) eh�e′.
Therefore, H ` (λh.κ[e]) eh�e. Hence we have the claim.

Theorem 2. (Inversion) Let e be a λS expression and R be an environment stack. If R ` e 7→
(e,K), then H ` e�e for any H such that K ⊆ H.

Proof. Proof by structural induction of e. We are going to show only the interesting cases;
other cases follow straightforward from the induction hypothesis.

• Let e = x.

Assume R, r ` x 7→ (r(x),⊥). We have two cases on r(x), whether it is equal to x or ρ·x
for some ρ. For both cases, we have H ` r(x)�x by definition of the inverse translation
judgment. Hence we have the claim.

• Let e = box e.

Assume R, ρ ` e 7→ (e,K), where ρ is fresh in e and K.

We have two cases on translation of box e, depending on whether K is equal to ⊥ or not.

– Assume K = ⊥.

We have
R, ρ ` e 7→ (e,⊥)

R ` box e 7→ (λρ.e,⊥)
.

September 9, 2010 ROSAEC-2010-009 19

Note that resulting context stack is empty. Since ⊥ = ∅, we have H ` e�e for any
H by induction hypothesis. Then, by definition of the translation judgment, we have
H ` λρ.e�box e. Hence we have the claim.

– Assume K = K ′, κ.

We have
R, ρ ` e 7→ (e, (K ′, κ))

R ` box e 7→ (κ[λρ.e],K ′)
.

Assume K ′ ⊆ H. We have K ′, κ = K ′ ∪ κ ⊆ H ∪ κ. Thus, we have H ∪ κ ` e�e by
induction hypothesis. Then, by definition of the inverse translation, we have H ∪ κ `
λρ.e�box e. By Lemma 10, H ` κ[λρ.e]�box e. Hence we have the claim.

• Let e = unbox e.

Assume
R ` e 7→ (e,K)

R, r ` unbox e 7→ (h r, (K, (λh.[·]) e))

where h is fresh in e and K. Also, (K, (λh.[·]) e) ⊆ H.

We have K, (λh.[·]) eh = K ∪{h : eh}. Then, we have K ⊆ (K, (λh.[·]) e) ⊆ H. Together
with the assumption, we have K ⊆ H. Then, H ` e�e by induction hypothesis. Also,
we have H(h) = e. Therefore, H ` h r�unbox e by definition of the inverse translation.
Hence we have the claim.

5 Conclusion

We have proved that a multi-staged program can be translated to a record calculus program
which simulates evaluation of the original program. We have also showed that a translated
program can be inverse translated to the original multi-staged program.

The proof dependency graph is as follows :

Lemma 3

Lemma 5

Lemma 6

Lemma 7

Lemma 8

Lemma 9

Lemma 10

Theorem 1
(Simulation)

Theorem 2
(Inversion)

Lemma 1 Lemma 2 Lemma 4

