
FortressCheck: Automatic Testing for Generic Properties

Seonghoon Kang∗
KAIST

kang.seonghoon@mearie.org

Sukyoung Ryu∗
KAIST

sryu@cs.kaist.ac.kr

ABSTRACT
QuickCheck is a random testing library designed for the
purely functional programming language Haskell. Its main
features include a descriptive yet embedded domain-specific
testing language, a variety of test generators including a
generator for functions, and a set of operations for moni-
toring generated inputs. QuickCheck is limited to ad-hoc
testing, compared to more systematic testing methods such
as full coverage testing. However, experiences showed that
well-factored functions and properties make the QuickCheck
approach as effective as systematic testing while maintain-
ing its conciseness. QuickCheck and its variants are now
available in dozens of programming languages.

We present a version of QuickCheck for the Fortress pro-
gramming language in this paper. Fortress is an object-
oriented language with extensive support for functional pro-
gramming, with the strong emphasis on high-performance
computing, parallelism by default, and growability of the
language. While the main features of QuickCheck are straight-
forward to implement, we are extending them to support
unique features of Fortress and to support seamless integra-
tion to Fortress. We observed that the prevalent uses of im-
plicit parallelism in Fortress call for testing parallel language
constructs especially those using side effects. Also, because
Fortress provides both subtype polymorphism and paramet-
ric polymorphism unlike Haskell, testing both polymorphic
properties becomes interesting. We propose FortressCheck
to test implicit parallelism and to test parametric polymor-
phism via reflection, by generating first-class type objects
and using QuickCheck’s own implication checking as a safety
mechanism.

Categories and Subject Descriptors
D.3 [Programming Languages]: Language Constructs
and Features

* Supported in part by the Engineering Research Center of
Excellence Program of Korea Ministry of Education, Science
and Technology(MEST) / National Research Foundation of
Korea(NRF) (Grant 2010-0001723).”

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
SAC’11 March 21-25, 2011, TaiChung, Taiwan.
Copyright 2011 ACM X-XXXXX-XX-X/XX/XX ...$10.00.

General Terms
Languages

Keywords
Fortress, automatic testing, QuickCheck

1. INTRODUCTION
Fortress [4] is a new programming language developed

for quality-critical, high-performance computing, which pro-
vides extensive supports for functional, object-oriented, and
parallel features. To support high-performance computing
in the current multicore world, Fortress provides various lev-
els of implicit parallelism to take advantage of the inherent
parallelism underneath the multicore computers. To help
scientists and engineers develop quality-critical softwares,
Fortress provides both a static type system to check static
properties and built-in language supports such as contracts,
tests, and properties to check dynamic properties as a way
of machine-checkable specifications. The Fortress language
specification version 1.0 β [3] describes what properties such
language features describe but it does not describe how to
check or test the properties. An ideal way might be to pro-
vide a language support for verifying correctness of program
properties, but it is a time-consuming and difficult task. As
a stepping stone, we have developed an intensive testing
tool that is both practical and easy to use, inspired by the
QuickCheck [8] library in Haskell.

QuickCheck provides random and ad-hoc testing. By ran-
dom, we mean that QuickCheck generates random test cases
and uses them to find a counter-example of a given assertion,
if any. Users should provide both a machine-readable spec-
ification of an assertion and an appropriate test generator
for testing the assertion. QuickCheck takes full advantage
of Haskell to simplify these tasks: (1) to provide machine-
readable specifications, QuickCheck provides an embedded
domain-specific language that adapts to Haskell, and (2)
to provide appropriate test generators for given assertions,
QuickCheck uses the strong type system of Haskell to deter-
mine a test generator from the type of the specification.

By ad-hoc, we mean that QuickCheck is not a system-
atic testing tool. Unlike ad-hoc testing tools, systematic
testing tools provide a guarantee to find a counter-example
if it exists. Such a guarantee is provided with “a test ad-
equacy criterion”; a simple example criterion is that every
single branch has to be reached during a test. While system-
atic testing is more powerful than ad-hoc testing in general,
the authors of QuickCheck argued that ad-hoc tests at a

finer granularity could provide a test coverage comparable
to systematic tests; combined with a difficulty of adapting
such heavyweight methods to a highly functional language,
Haskell, their choice of ad-hoc testing has been shown rea-
sonable. In fact, some of the trickiest bugs the authors have
found have required test cases that exercise bits of the code
several times–they are bugs that QuickCheck can find, but
systematic approaches would not [12].

Since the initial release in 2000, QuickCheck has gained
much interests from the various language communities, and
has been ported to dozens of other languages; a partial list
of them is available [7, 2]. While most of them capture the
key ideas of QuickCheck, many of them reflect a feature set
and characteristics of the target language, not Haskell. For
example, most languages with dynamic type systems cannot
infer the most adequate generator from the type of a prop-
erty, and object-oriented languages have different notions for
the adequacy of generators.

We have designed and developed FortressCheck, a ver-
sion of QuickCheck in Fortress, which supports testing of
unique features in Fortress such as subtype polymorphism
and parametric polymorphism. Unlike other QuickCheck
ports, FortressCheck introduces a new idea of testing generic
properties using reflection. Our implementation of Fortress-
Check also gives us an opportunity to evaluate the expres-
siveness of Fortress.

This paper consists of three parts. In the first part, we
discuss the issues that we have encountered and tried to
solve via FortressCheck. We introduce FortressCheck in
the second part and compare other ports and extensions
of QuickCheck with Fortress in the third part.

2. MOTIVATION AND BACKGROUND
In this section, we present Fortress language features which

call for automated testing, a QuickCheck-like solution in
Fortress: side effects inside parallel evaluation and generic
properties.

2.1 Side Effects inside Parallel Evaluation
Fortress programs using two seemingly conflicting features,

implicit parallelism and side effects, often result in unex-
pected results. While most language constructs in Fortress
are purely functional, Fortress provides also a set of imper-
ative features which makes the results of parallel programs
surprising to the programmers.

For example, while developing a prototype of Fortress-
Check, we found an unexpected result from a parallelly-
evaluated expression:

generateZ64(g: AnyRandomGen): Z64 =`
widen(generateZ32(g)) LSHIFT 32

´
∨∨

widen
`
generateZ32(g)

´
The instance generator function, generate Z64, generates
one random 64-bit integer from two random 32-bit inte-
gers generated by a given random generator g . In Fortress,
function arguments may be evaluated in parallel, thus, two
operands of the BITOR operator ∨∨ may be evaluated in
any order. Because a random generator is inherently state-
ful, repeated evaluations of generate Z64 may not produce
the same random number, which breaks our need for repro-
ducibility of the test data. A correct version, which makes
the ordering of the random number generation explicitly se-
quential, is as follows:

generateZ64(g: AnyRandomGen): Z64 = do

hi = widen
`
generateZ32(g)

´
lo = widen

`
generateZ32(g)

´
(hi LSHIFT 32) ∨∨ lo

end

As another example, the following code shows a bug we
found in our own Fortress String library implementation,
which involves a parallel evaluation of a for loop:

object SubString(basestring : String, range: Range)

extends String

. . .

writeOn(stream: WriteStream): () =

. . .

for (start , str)← basestring .splitWithOffsets() do

subrange =
`
start # |str |

´
∩ range

substr = str .uncheckedSubstring(subrange)

substr .writeOn stream

end

. . .

end

In Fortress, a for loop is a special kind of generators, which
is not necessarily sequential. The loop body may be evalu-
ated in parallel unless explicitly stated as sequential by the
call of seq or sequential . If a programmer omits seq or
sequential by accident, however, the execution order of the
generator becomes nondeterministic. In this case, the or-
der of writing each piece is nondeterministic and the entire
string appears mangled.

This experience shows that implicit parallelism combined
with side effects can be one of the major sources of bugs
invisible to the programmers and a tool to detect such bugs
would be greatly helpful. The first bug was actually caught
by FortressCheck itself during an unrelated test, presenting
an ability of FortressCheck to find such bugs.

Note that FortressCheck does not provide any specific
mechanisms to test implicit parallelism; instead it highly
depends upon the nondeterministic behavior of such bugs,
which often invalidates expected results. While it is possible
for a particular Fortress implementation to fix the execution
order of parallel constructs to hide some bugs, FortressCheck
ignores this issue to simplify the design.

2.2 Generic Properties
There are two kinds of polymorphisms in Fortress: sub-

type polymorphism and parametric polymorphism. Specify-
ing and testing both kinds of polymorphic properties impose
various challenges in FortressCheck.

In Fortress, the subtype hierarchy allows programmers to
express subtype-polymorphic properties. For example, if we
add a property commutativeAddition to a trait Number,
every subtype of Number should satisfy the property:

trait Number

opr +(self, other : Number): Number

opr =(self, other : Number): Boolean

. . .

property commutativeAddition =

∀(x: Number, y: Number) (x+ y = y + x)

end

property doubleReversalJT K =

∀
`
g: GeneratorJT K

´
(list g.reverse.reverse = list g)

property mapSizeInvariant1JKey,ValK =

∀
`
map: MapJKey,ValK, k: Key, v: Val

´`
0 ≤

˛̨
map.add(k, v)

˛̨
− |map| ≤ 1

´
property mapSizeInvariant2JKey,Val,ResK =

∀
`
map: MapJKey,ValK, f : (Key,Val)→ MaybeJResK

´`˛̨
map.mapFilterJResK(f)

˛̨
≤ |map|

´
Figure 1: Properties parameterized over types

The property commutativeAddition takes two value param-
eters x and y and specifies that addition of them are com-
mutative. There are two ways to test this property: an
obvious way is to have a single generator for Number, but
it means that we have to update the generator whenever we
add or remove a subtype in the Number hierarchy, which is
generally not possible. Instead, we may automatically cre-
ate a generator for Number from the current type hierarchy,
provided that we can build and inspect types at run time.

Using generic types, Fortress programmers can express
properties parameterized over types. Consider that we want
to express three invariants on containers of any types as
shown in Figure 1: reversing a container twice produces
an identical container (doubleReversal), adding a key-value
pair to a map increases the size of the map by at most
one (mapSizeInvariant1), and applying mapFilter on a map
does not increase the size of the map (mapSizeInvariant2).
Since the containers are generic to the types of its elements,
the corresponding properties are also generic to the types,
and they can be described as the following (hypothetical)
code: The property doubleReversal takes a type parameter
T where white square brackets delimit the declaration of
the type parameter.

Unlike the commutativeAddition property in the first ex-
ample, the properties in the second example are parame-
terized over types, which are not provided by the current
Fortress language. As a workaround, the doubleReversal
property could be rewritten to a non-generic property by
adding a non-generic AnyGenerator trait as a supertype of
GeneratorJT K:

trait AnyGenerator

getter reverse(): AnyGenerator

end

trait GeneratorJT K extends AnyGenerator

getter reverse(): GeneratorJT K
. . .

end

property doubleReversal =

∀(g: AnyGenerator) (list g.reverse.reverse = list g)

However, this workaround cannot be applied to the other
properties, because the other properties include some pa-
rameters whose types include the type parameters. For ex-
ample, the two parameters of mapSizeInvariant1, k and v ,
have types Key and Val, respectively. As another workaround,
mapSizeInvariant1 could be moved into the corresponding
trait parameterized by the type parameters Key and Val:

trait MapJKey,ValK extends Generator
ˆ̂
(Key,Val)

˜̃
property mapSizeInvariant1 =

∀
`
map: MapJKey,ValK, k: Key, v: Val

´`
0 ≤

˛̨
map.add(k, v)

˛̨
− |map| ≤ 1

´
. . .

end

Because Key and Val are now the type parameters of the
enclosing trait of the property, the property does not need
to be parameterized over types.

However, this workaround does not work well for the third
property, with mapSizeInvariant2:

trait Map′JKey,Val,ResK extends MapJKey,ValK
property mapSizeInvariant2 =

∀
`
map: MapJKey,ValK, f : (Key,Val)→ MaybeJResK

´`˛̨
map.mapFilterJResK(f)

˛̨
≤ |map|

´
end

Adding a trait to include the extraneous type parameter Res
produces an extraneous type in the type hierarchy.

Therefore, we propose to use reflection for testing generic
properties. Because generic properties may have arbitrary
type parameters, we should be able to test any type param-
eters in addition to any value parameters. We describe how
FortressCheck tests generic properties in the next section.

3. FORTRESSCHECK
To address the issues we discussed in Section 2, we have

implemented FortressCheck, a version of QuickCheck for
Fortress. At the moment, it runs only on the Fortress in-
terpreter because the Fortress compiler is not yet fully de-
veloped. A notable characteristic of FortressCheck is that it
heavily uses reflection, or a run-time type inspection.

3.1 GenJT K Trait
A test instance generator GenJT K provides three methods:

trait GenJT K
generate(c: TestContext):T

perturb(obj :T, g: AnySeededRandomGen) :

AnySeededRandomGen

shrink(obj :T): GeneratorJT K
end

The generate method generates a test instance of type T
from a random generator included in a given TestContext.
The TestContext type contains a random number generator
and various utility functions. To support test generation of
functions in a similar way to the Coarbitrary type class in
QuickCheck, the perturb method returns a random number
generator which depends only on its two parameters. The
shrink method returns similar instances but smaller than a
given test instance and it is used to“shrink”failing instances.
For example, the following generator:

object genBoolean extends GenJBooleanK
generate(c: TestContext): Boolean =

c.oneOf JBooleanK
`
〈 false, true 〉

´
perturb(obj : Boolean, g: AnySeededRandomGen) =

if obj then g.perturbed(1) else g.perturbed(2) end

shrink(obj : Boolean) = NothingJBooleanK
end

shows an instance of GenJT K, which generates test instances
of type Boolean. Because Boolean values can have only one
of two values, true and false , the shrink method does not
generate any smaller instances.

Since most of the collection libraries in Fortress are sub-
types of the Generator trait, a single test instance generator,
GenGenerator, serves for most collection libraries:

trait GenGenerator
ˆ̂
E, T extends GeneratorJEK

˜̃
extends GenJT K

genE : GenJEK
abstract fromGenerator

`
obj : GeneratorJEK

´
:T

generate(c: TestContext): GeneratorJEK =

fromGenerator RandomGeneratorJEK(self.genE , c)

shrink(obj :T): GeneratorJT K =

ShrinkingGeneratorJE, T K(obj , self.genE ,

fromGenerator)

end

and the job for writing a test instance generator for each
collection library requires only modest cost. For example, a
test generator for String, which is a generator for Char, is
implemented as follows:

object genString extends GenGeneratorJChar, StringK
genE : GenJCharK = genChar

fromGenerator
`
obj : GeneratorJCharK

´
: String = ‖ obj

perturb(obj : String, g: AnySeededRandomGen) =

g.perturbed
`
|obj |

´
.perturbed(obj .indices.

mapJZ32K(fn i⇒ obj i.codePoint))

end

The perturb method reduces the number of perturb calls,
which can be expensive for some random number generators.

3.2 Choosing Test Generator
The GenJT K trait is analogous to the Arbitrary type class

in the original QuickCheck, but, unlike Arbitrary, defining
GenJT K does not immediately make its test functions avail-
able. While QuickCheck chooses the most appropriate in-
stance of a given type from its current scope, FortressCheck
defines the Arbitrary trait which knows how to choose the
best GenJT K instance from a given type T :

trait Arbitrary

genJT K(): GenJT K
end

FortressCheck also provides the DefaultArbitrary trait
and the defaultArbitrary instance to map from types to their
default generators. Programmers can add more generators
by extending DefaultArbitrary:

object myArbitrary extends DefaultArbitrary

genJT K(): GenJT K = do

f = fn (:T) :T ⇒ throw FobiddenException

typecase f of

MyType→ MyType⇒ genMyType

else⇒ (self asif DefaultArbitrary).genJT K()

end

end

end

Note that while the typecase expression in Fortress selects
the first clause that its type is a supertype of the type of
a given expression, the body of the genJT K method uses a
function expression to get an exact match for a given type T .
The FortressCheck library uses an exact matching because
GenJT K is not covariant: T <: U does not imply that GenJT K
is usable in place of GenJUK.

Supporting subtyping instead of exact matching in the
genJT K method may have the following issues (We write U\T
for types that are subtypes of U but not of T .):

1. An automatic lifting from GenJT K to GenJUK may un-
intentionally omit generation of values of type U\T, if
any. Therefore, any lifting of GenJT K should be ex-
plicit.

2. The shrink method in GenJT K cannot handle values of
type U\T , so it is not even type-compatible.

3. Supporting subtyping requires both covariant and con-
travariant matchings because of arrow types, which re-
quires significant duplication of code.

Note that QuickCheck does not have this problem because
Haskell does not provide subtype polymorphism. While ex-
act matching implies that we cannot easily make test gen-
erators for open types, we discuss how we alleviate this re-
striction in later sections.

3.3 Property Specification
As in QuickCheck, FortressCheck uses an embedded domain-

specific language to specify properties. Every property is
represented as an instance of the TestableJT K trait, which
is paired with a GenJT K test generator from the Arbitrary
trait in order to perform actual testing:

trait TestableJT K
run(arg :T): TestResult

end

The FortressCheck library also provides a number of oper-
ations that generate TestableJT K instances. It also allows
filtering test data by a certain condition (“tagging”), cat-
egorizing test data by a given criterion (“classifying”) and
collecting test data for the later inspection (“collecting”) as
supported by QuickCheck. Some example operations are
shown in Figure 2.

Given a TestableJT K instance, a checkResult function ac-
tually performs testing:

checkResultJT K
`
t: TestableJT K, g: GenJT K, c: TestContext

´
:

TestResult

The checkResult method repeatedly runs the given property
t with the arguments generated by the test generator g and
the test context c , and returns its result as another test
result. Because default generators and contexts work rea-
sonably for most cases, the FortressCheck library provides
various wrapper functions, all of which named check , for
convenience. Therefore, the actual testing is as simple as
follows:

test runTests(): () =

p = forAll
`
fn (a: Z32, b: Z32)⇒ (a+ b = b+ a)

´
check(p)

end

(* Make a property from a given function *)

p = forAll
`
fn (a: Z32, b: Z32)⇒ (a+ b = b+ a)

´
q = forAll

`
fn (a: Z32, b: Z32)⇒ (a− b = b− a)

´
(* Conjunction *)

pandq = forAll
`
fn (a: Z32, b: Z32)⇒ p(a, b) ∧ q(a, b)

´
(* Conjunction with tagging *)

pandq ′ = forAll
`
fn (a: Z32, b: Z32)⇒`

“add” |: p(a, b)) ∧ (“subtract” |: q(a, b)
´´

(* Disjunction *)

porq = forAll
`
fn (a: Z32, b: Z32)⇒ p(a, b) ∨ q(a, b)

´
(* Implication *)

pthenq = forAll
`
fn (a: Z32, b: Z32)⇒ p(a, b)→ q(a, b)

´
(* Collecting the test data *)

p′ = forAll
`
fn (a: Z32, b: Z32)⇒

collect
`
b log(a b)/ log(10) c

´
p(a, b)

´
(* Classifying the test data *)

q′ = forAll (fn (a: Z32, b: Z32)⇒
classify(a < b, “a<b”) classify(a = b, “a=b”)

classify(a > b, “a>b”) p(a, b))

Figure 2: Example operations generating testable
instances of type TestableJZ32K

As with QuickCheck, successful results do not necessarily
mean that the test is indeed true; it just shows an inability
to find a counterexample in a given limit.

3.4 Reflection in FortressCheck
A major difference between QuickCheck and FortressCheck

is the use of reflection. FortressCheck uses reflection to solve
two problems: testing subtype polymorphism by construct-
ing new generators from existing generators, and testing
parametric polymorphism by desugaring generic properties.
We chose the reflection technique over other metaprogram-
ming techniques because both problems involve generation
of first-class type objects, for which the reflection technique
is very well suited.

We have implemented a reflection library for the Fortress
interpreter, Reflect. The Reflect library provides ways to
inspect static types of expressions, dynamic types of values,
and fields and methods of traits and objects. It also pro-
vides ways to (partially) manipulate generic types. Due to
the current status of the Fortress interpreter, the Reflect
library supports only the types whose subtypes are known
at compile time, that is, object types and trait types with
comprises clauses. This limitation is not inherent in the
FortressCheck design but a limitation of the current imple-
mentation; this limitation will go away when the interpreter
has an ability to inspect the list of subtypes of a given dy-
namic type.

3.4.1 Making Generators from Other Generators
The commutativeAddition property described in Section 2.2

is an example of subtype-polymorphic properties:

property commutativeAddition =

∀(x: Number, y: Number) (x+ y = y + x)

because the Number trait has many subtypes including R64,
R32, Q, Z, Z64 and Z32. Assuming that we have generators

for those subtypes but not for Number itself, we can define
a non-polymorphic property using commutativeAddition as
follows:

property commutativeAddition ′ =

∀(xtype: Type, ytype: Type)``
xtype SUBTYPEOF theTypeJNumberK()

´
∧`

ytype SUBTYPEOF theTypeJNumberK()
´´
→

commutativeAddition(

genFromType(xtype).generate(),

genFromType(ytype).generate())

The SUBTYPEOF operator checks whether the first argument
is a subtype of the second argument, and theTypeJNumberK()
returns a type object for the Number trait. If two given
types to the property commutativeAddition ′ are subtypes
of Number, we can look up the generators for the types us-
ing genFromType and feed the resulting test instances to the
original property, commutativeAddition . In the actual im-
plementation, instead of testing commutativeAddition ′ for
arbitrary two types, Type, we test it only for subtypes of the
Number trait, theTypeJNumberK(), to reduce the number of
ignored tests.

Another way to describe the property is to use a generic
property:

property commutativeAddition ′′

JX extends Number, Y extends NumberK =

∀(x :X, y :Y) (x+ y = y + x)

In this property, type variables X and Y in the type param-
eter list denote the exact types of X and Y instead of their
subtypes. Applying the desugaring process of generic prop-
erties described in Section 3.4.2 to commutativeAddition ′′

yields an equivalent result to commutativeAddition ′.

3.4.2 Desugaring Generic Properties
As an example of parametric-polymorphic properties, con-

sider mapLengthInvariant2 described in Section 2.2:

property mapLengthInvariant2JKey,Val,ResK =

∀
`
map: MapJKey,ValK, f : (Key,Val)→ MaybeJResK

´`˛̨
map.mapFilterJResK(f)

˛̨
≤ |map|

´
Similarly to the subtype-polymorphic properties, we can de-
fine a non-polymorphic property by generating correspond-
ing type parameters and applying them to the parametric-
polymorphic property:

property mapLengthInvariant ′2 =

∀(keytype: Type, valtype: Type, restype: Type) (do

prop = applyStaticParams(mapLengthInvariant2,

(keytype, valtype, restype))

keygen = genFromType(keytype)

valgen = genFromType(valtype)

resgen = genFromType(restype)

prop(genMap(keygen, valgen).generate(),

genArrow(genTuple2(keygen, valgen),

genMaybe(resgen)).generate())

end)

Assuming that we have a function applyStaticParams , which
applies given type parameters to a generic property to ob-
tain a non-generic property, we get a non-generic property
prop from the generic property mapLengthInvariant2.

This approach also applies to generic properties with bounded
type parameters. The commutativeAddition ′′ property, a
generic version of commutativeAddition, has such type pa-
rameters and can be desugared as follows:

property commutativeAddition ′′′ =

∀(xtype: Type, ytype: Type)``
xtype SUBTYPEOF theTypeJNumberK()

´
∧`

ytype SUBTYPEOF theTypeJNumberK()
´´
→ (do

prop = applyStaticParams(commutativeAddition ′′,

(xtype, ytype))

prop(genFromType(xtype).generate(),

genFromType(ytype).generate())

end)

Note that inlining the call to applyStaticParams produces
the same result as one by the subtype-polymorphic property,
commutativeAddition ′ , described in Section 3.4.1.

Moreover, this approach is general enough to allow more
complex type parameters. For example, we can test the
LexicographicOrderJT,EK trait defined in the Fortress stan-
dard library, which has a type parameter whose bound is
the trait being defined:

(* If x is lexicographically less than y and x is not
shorter than y , there is at least one pair of elements
a and b at the same position such that a < b . *)

property lexico
ˆ̂
T extends LexicographicOrderJT,EK, E

˜̃
=

∀(x :T, y :T)
`
(x < y) ∧ (|x| ≥ |y|)

´
→0@ _

(a,b)←x.zipJEK(y)

a < b

1A
Assuming that genericLO is a type object for the generic
type LexicographicOrderJT,EK and its method applyArgs
applies given types as its type arguments, the corresponding
non-generic property would be simply like the following:

property lexico′ = ∀(ttype: Type, etype: Type)`
ttype SUBTYPEOF genericLO .applyArgs(ttype, etype)

´
→

. . .

In the actual implementation, we implemented the generic
properties as generic methods in a dedicated object, so that
we can inspect the object to determine generators for in-
dividual properties. While top-level generic functions can
be also used, the current implementation does not support
them due to the current status of the Fortress interpreter.

3.5 Implementation
The current FortressCheck implementation is available from

the Fortress source repository: http://projectfortress.

sun.com. It consists of two components, QuickCheck and
ReflectiveQuickCheck, to simplify a future port to the Fortress
compiler, which needs additional support for reflection.

4. RELATED WORK
The QuickCheck library has been ported to dozens of pro-

gramming languages, and the random testing technique has
been integrated with systematic testing in various ways.

4.1 Comparison with Other QuickCheck Ports
While dozens of languages have ported QuickCheck, most

of them merely implemented the basic features of QuickCheck.

We divided the QuickCheck ports into a few (possibly over-
lapping) categories to compare:

Dynamically-typed languages:.
One of the biggest limitations of the QuickCheck ports

in dynamically-typed languages is that they cannot infer
generators from the types of given properties. Instead, pro-
grammers should specify the generators manually, as shown
in the following Python code written for the qc library [6]:

from qc import *

@forall(x=an_integer(low=-999, high=999),

y=an_integer(low=-999, high=999))

def test_commutative_addition(x, y):

assert x + y == y + x

where the code explicitly specifies the generator an_integer.
Due to this limitation, QuickCheck is often used in con-

junction with an existing unit testing facility. For example,
qc extensively uses the“functional decorator”of Python such
as the @forall decorator in the above example to automati-
cally generate test functions, and it uses naming conventions
for test functions such as the test_ prefix, which makes it
compatible to other unit testing libraries looking for such
names. Besides this limitation, most ports implement the
full features of QuickCheck; generation of random functions,
for example, is supported by RushCheck [13] for Ruby and
Scheme-Check [17] for Scheme.

Statically-typed languages:.
Even with QuickCheck ports in statically-typed languages,

some port does not offer automatic inference of generators,
and some port does not offer any concise specification lan-
guage; the examples include quickcheck for JavaTM [14] for
the former and QuickCheck++ [1] for C++ for the latter.
The latter, verbose interface, is mostly due to the lack of
concise syntax for anonymous functions.

QuickCheck ports in functional programming languages
provide better functionality. Moreover, some ports provide
limited uses of reflection such as FsCheck [18] for F# and
ScalaCheck [15] for Scala. Both ports use reflection as a
mechanism of retrieving lists of properties, but FsCheck also
uses it for constructing generators for compound types; the
generator for record types in FsCheck, for example, is almost
impossible to construct without metaprogramming. Indeed,
the overall design of FortressCheck has been heavily inspired
by them. However, their use of reflection is much simpler
than that of FortressCheck. While both F# and Scala pro-
vide both subtype polymorphism and parametric polymor-
phism, they do not use reflection for testing them.

Parallel languages:.
Among the various QuickCheck ports, Quviq QuickCheck

[9] for Erlang is the only one which specifically tests its par-
allel feature. It once used a linear temporal logic to specify
parallel behaviors of programs without requiring any exten-
sion or modification to the QuickCheck library. However,
due to the difficulties in specifying concurrent programs,
Quviq QuickCheck now describes the behavior of a concur-
rent program as a sequential specification. It then tests the
atomicity of the program by checking the equivalence be-
tween the program and its specification with the help of
pulse, a user-level scheduler for Erlang.

4.2 Other Extensions to QuickCheck
Recent research have integrated random testing and sys-

tematic testing in two ways: one way is to use random test-
ing primarily while altering the distribution of test cases sys-
tematically, and the other way is to use systematic testing
primarily while using random testing for the initial direction
or for secondary choices. Randoop [16] falls into the for-
mer, and DART [11] and its successor, CUTE [19], are rep-
resentative examples of the latter. These approaches require
heavyweight instrumentations and inspection facilities, but
they are considerably more powerful than undirected ran-
dom testing.

JCrasher [10] is an automatic random testing tool for Java,
which uses reflection to inspect the methods and their pa-
rameter types declared by a given class. It also shows a
practical implementation of testing imperative features.

5. CONCLUSION AND FUTURE WORK
We presented FortressCheck, a version of QuickCheck ran-

dom testing tool for the Fortress programming language,
which was extended to support unique features of Fortress.
Unlike Haskell, Fortress provides both subtype polymor-
phism and parametric polymorphism, and we proposed to
use reflection for testing such polymorphic properties. We
described our approach to handle polymorphic properties
and implemented the proposed approach in the Fortress in-
terpreter.

To improve the conciseness of the generators and proper-
ties in FortressCheck, we plan to support an embedded test-
ing language using the extensible syntax system described
in [5]. In addition to the basic testing facilities in Fortress-
Check, we plan to provide better supports for testing im-
plicit parallelism, one of the main features of Fortress, more
thoroughly.

6. REFERENCES
[1] QuickCheck++.

http://software.legiasoft.com/quickcheck/.

[2] QuickCheck — Wikipedia, The Free Encyclopedia.
http://en.wikipedia.org/w/index.php?title=

QuickCheck.

[3] E. Allen, D. Chase, J. Hallett, V. Luchangco, J.-W.
Maessen, S. Ryu, G. L. Steele Jr., and
S. Tobin-Hochstadt. The Fortress Language
Specification Version 1.0 β, March 2007.

[4] E. Allen, D. Chase, J. Hallett, V. Luchangco, J.-W.
Maessen, S. Ryu, G. L. Steele Jr., and
S. Tobin-Hochstadt. The Fortress Language
Specification Version 1.0, March 2008.

[5] E. Allen, R. Culpepper, J. D. Nielsen, J. Rafkind, and
S. Ryu. Growing a syntax. In Foundations of
Object-Oriented Languages, 2009, Jan. 2009.

[6] D. Bravender. qc: A Quickcheck implementation for
Python. http://github.com/dbravender/qc.

[7] K. Claessen and J. Hughes. QuickCheck: An
Automatic Testing Tool for Haskell.
http://www.cse.chalmers.se/~rjmh/QuickCheck/.

[8] K. Claessen and J. Hughes. QuickCheck: a lightweight
tool for random testing of Haskell programs. In ICFP
’00: Proceedings of the fifth ACM SIGPLAN
international conference on Functional programming,
pages 268–279, New York, NY, USA, 2000. ACM.

[9] K. Claessen, M. Palka, N. Smallbone, J. Hughes,
H. Svensson, T. Arts, and U. Wiger. Finding race
conditions in Erlang with QuickCheck and PULSE. In
ICFP ’09: Proceedings of the 14th ACM SIGPLAN
international conference on Functional programming,
pages 149–160, New York, NY, USA, 2009. ACM.

[10] C. Csallner and Y. Smaragdakis. Jcrasher: an
automatic robustness tester for java. Softw. Pract.
Exper., 34(11):1025–1050, 2004.

[11] P. Godefroid, N. Klarlund, and K. Sen. DART:
directed automated random testing. SIGPLAN Not.,
40(6):213–223, 2005.

[12] J. Hughes. personal communication, Nov. 2010.

[13] D. Ikegami. RushCheck: a lightweight random testing
tool for Ruby. http://rushcheck.rubyforge.org/.

[14] T. Jung. quickcheck: Java implementation of
QuickCheck. https://quickcheck.dev.java.net/.

[15] R. Nilsson. ScalaCheck.
http://code.google.com/p/scalacheck/.

[16] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball.
Feedback-directed random test generation. In ICSE
’07: Proceedings of the 29th international conference
on Software Engineering, pages 75–84, Washington,
DC, USA, 2007. IEEE Computer Society.

[17] C. E. Scheidegger. Scheme-Check: Randomized Unit
Testing for PLT Scheme. http:
//www.inf.ufrgs.br/~carlossch/scheme-check/.
Currently only available via Wayback Machine:
http://web.archive.org/web/20050212183945/www.

inf.ufrgs.br/~carlossch/scheme-check/.

[18] K. Schelfthout. FsCheck: A random testing
framework. http://fscheck.codeplex.com/.

[19] K. Sen, D. Marinov, and G. Agha. CUTE: a concolic
unit testing engine for C. In ESEC/FSE-13:
Proceedings of the 10th European software engineering
conference held jointly with 13th ACM SIGSOFT
international symposium on Foundations of software
engineering, pages 263–272, New York, NY, USA,
2005. ACM.

