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Abstract

This paper presents GMeta: a generic framework for first-order representations of
variable binding that provides once and for all many of the so-called infrastructure lemmas
and definitions required in mechanizations of formal metatheory. The key idea is to employ
datatype-generic programming (DGP) and modular programming techniques to deal with
the infrastructure overhead. Using a generic universe for representing a large family
of object languages we define datatype-generic libraries of infrastructure for first-order
representations such as locally nameless or de Bruijn indices. Modules are then used to
provide templates: a convenient interface between the datatype-generic libraries and the
end-users of GMeta. We conducted case studies based on the POPLmark challenge, and
showed that dealing with challenging binding constructs, like the ones found in System
F<:, is possible with GMeta. All of GMeta’s generic infrastructure is implemented in
the Coq theorem prover. Furthermore, due to GMeta’s modular design, the libraries can
be easily used, extended, and customized by users.

1 Introduction

A key issue in mechanical developments of formal metatheory for programming languages
concerns the representation and manipulation of terms with variable binding. There are two
main approaches to address this issue: first-order and higher-order approaches. In first-order
approaches variables are typically encoded using names or natural numbers, whereas higher-
order approaches such as higher-order abstract syntax (HOAS) use the function space in the
meta-language to encode binding of the object language. Higher-order approaches are appeal-
ing because issues like capture-avoidance and alpha-equivalence can be handled once and for
all by the meta-logic. This is why such approaches are used in logical frameworks such as
Abella (Gacek 2008), Hybrid (Momigliano et al. 2008) or Twelf (Pfenning and Schürmann
1999); and have also been advocated as an interesting alternative (Despeyroux et al. 1995;
Chlipala 2008) for formalizing metatheory in general-purpose theorem provers like Coq (Coq
Development Team 2009).

The main advantage of first-order approaches, and the reason why they are so popular in
theorem provers like Coq, is that they are close to pen-and-paper developments (based on the
nominal approach) and terms with binders are easy to manipulate.

However, the main drawback of first-order approaches is that the tedious infrastructure
required for handling variable binding has to be repeated each time for a new object language.
For each binding construct in the language, there is typically a set of infrastructure operations
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trm typ

trm
Variables bsubsttrm×trm bsubsttrm×typ

Parameters fsubsttrm×trm fsubsttrm×typ

typ
Variables bsubsttyp×trm bsubsttyp×typ

Parameters fsubsttyp×trm fsubsttyp×typ

Figure 1: Possible variations of substitutions for parameters and variables for a language with
two syntactic sorts (trm and typ) in the locally nameless style.

and associated lemmas that should be implemented. In the locally nameless style (Aydemir
et al. 2008) and locally named (Mckinna and Pollack 1993) styles, for example, we usually need
operations like substitutions for parameters (free variables) and for (bound) variables as well
some associated lemmas. For de Bruijn indices (de Bruijn 1972) we need similar infrastructure,
but for operations such as substitution and shifting instead.

The problem is that, in many cases, the majority of the total number of lemmas and
definitions in a formalization consists of basic infrastructure. Figure 1 illustrates the issue using
a simple language with two syntactic sorts (types and terms) supporting binding constructs for
both type and term variables and assuming a locally nameless style. In the worst case scenario,
8 different types of substitutions will be needed. Basically we need substitutions for parameters
and variables, and for each of these we need to consider all four combinations of substitutions
using types and terms. While not all operations are usually needed in formalizations, many
of them are. For example, System F<:, which is the language formalized in the POPLMark
challenge (Aydemir et al. 2005), requires 6 out of the 8 substitutions. Because for each operation
we need to also prove a number of associated lemmas, solutions to the POPLMark challenge
typically have a large percentage of lemmas and definitions just for infrastructure. In the
solution by Aydemir et al. (2008), infrastructure amounts to 65% of the total number of
definitions and lemmas (see also Figure 10).

Importantly, it is insufficient to consider only homogeneous operations like bsubsttrm×trm,
which perform substitutions of variables on terms of the same sort (trm). In the general case
we also have to consider heterogeneous operations, such as bsubsttyp×trm, in which the sort of
variables being substituted (typ) is not of the same sort as the terms which are being substituted
(trm). In languages of the System F family, operations like bsubsttyp×trm and fsubsttyp×trm are
needed because those languages support type abstractions in terms (ΛX.e) and, consequently,
we need to provide a way to substitute type variables in terms.

As the number of syntactic sorts and binding constructs increases, there is a combinatorial
explosion of the number of infrastructure lemmas and operations. Indeed, reports from larger
formalizations confirm that the problem only gets worse with size: in a type-directed translation
from an ML-module language to System Fω using locally nameless style (Rossberg et al. 2010)
the authors report that “Out of a total of around 550 lemmas, approximately 400 were tedious
infrastructure lemmas”.

1.1 Our solution

To deal with the combinatorial explosion of infrastructure operations and lemmas we propose
the use of datatype-generic programming (DGP) and modular programming techniques. The
key idea is that, with DGP, we can define once and forall the tedious infrastructure lemmas
and operations in a generic way and, with modules, we can provide a convenient interface for
users to instantiate such generic infrastructure to their object languages.

Our realization of this idea is GMeta: a generic framework for first-order representa-
tions of variable binding, implemented in the Coq theorem prover1. In GMeta a DGP uni-

1We also have an experimental Agda implementation.
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(∗@Iso typ iso {
Parameter typ fvar ,
Variable typ bvar ,
Binder typ all
}∗)
Inductive typ :=
| typ fvar : N→ typ
| typ bvar : N→ typ
| typ top : typ
| typ arrow : typ → typ → typ
| typ all : typ → typ → typ.

(∗@Iso trm iso {
Parameter trm fvar ,
Variable trm bvar ,
Binder trm abs ,
Binder trm tabs binds typ
}∗)
Inductive trm :=
| trm fvar : N→ trm
| trm bvar : N→ trm
| trm app : trm → trm → trm
| trm abs : typ → trm → trm
| trm tapp : trm → typ → trm
| trm tabs : typ → trm → trm.

Figure 2: Syntax definitions and GMeta isomorphism annotations for a locally nameless style
version of System F<: in Coq.
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verse (Martin-Löf 1984) is used to represent a large family of object languages and includes
constructs for representing the binding structure of those languages. The universe itself is
independent of the particular choice of first-order representations: it can be instantiated, for
example, to locally nameless or de Bruijn representations. GMeta uses that universe to provide
libraries with the infrastructure operations and lemmas for the various first-order representa-
tions.

The infrastructure is reused by users through templates. Templates are functors parame-
terized by isomorphisms between the object language and the corresponding representation of
that language in the universe. By instantiating templates with isomorphisms, users get access
to a module that provides infrastructure tailored for a particular binding construct in their
own object language. For example, for System F<:, the required infrastructure is provided by
3 modules which instantiate GMeta’s locally nameless template:

Module Mtrm×trm := LNTemplate trm iso trm iso.
Module Mtyp×typ := LNTemplate typ iso typ iso.
Module Mtyp×trm := LNTemplate typ iso trm iso.

Essentially, each module corresponds to one of the 3 combinations needed in System F<:,
and contains the relevant lemmas and operations. By using this scheme we can deal with the
general case of object languages with N syntactic sorts, just by expressing the combinations
needed in that language. Moreover GMeta can also provide some more specialized templates
for additional reuse and it is easy for users to define their own types of infrastructure and
customized templates.

Since isomorphisms can be mechanically generated from the inductive definition of the
object language, provided a few annotations, GMeta also includes optional tool support for
generating such isomorphisms automatically. Figure 2 illustrates these annotations for System
F<:. Essentially, the keyword Iso introduces an isomorphism annotation, while the keywords
Parameter, Variable and Binder provide the generator with information about which con-
structors correspond, respectively, to the parameters, variables or binders. Therefore, at the
cost of just a few annotations or explicitly creating an isomorphism by hand, GMeta provides
much of the tedious infrastructure boilerplate that would constitute a large part of the whole
development otherwise.

1.2 Contributions

Our main contribution is to investigate how DGP techniques can deal with the infrastructure
overhead required by formalizations using first-order representations. GMeta shows that DGP
is a viable approach to address the problem and that it has some important advantages over
alternatives like LNGen (Aydemir and Weirich 2009) (see Section 7). Nevertheless, GMeta is
still a proof-of-concept tool and, as discussed in Section 6.4, a bit more support from theorem
provers is desirable for improving the usability of the tool.
More concretely, the contributions of this paper are:

• Sound, generic, reusable and extensible infrastructure for first-order representations: The
main advantages of using DGP are that it allows a library-based approach in which 1)
the infrastructure can be defined and verified once and for all within the meta-logic itself;
and 2) extending the infrastructure is easy since it just amounts to extending the library.
Approaches based on code generation can only provide reuse, but they do not guarantee
soundness and they are hard to extend.

• Heterogeneous generic operations and lemmas: Of particular interest is the ability of
GMeta to deal with challenging binding constructs, involving multiple syntactic sorts
(such as binders found in the System F family of languages), using heterogeneous generic
operations and lemmas.
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• Case studies using the POPLmark challenge: To validate our approach in practice, we
conducted case studies using the POPLmark challenge. Compared to other solutions,
our approach shows significant savings in the number of definitions and lemmas required
by formalizations.

• Coq implementation and other resources: The GMeta framework Coq implementation
is available online2 along with other resources such as tutorials and more case studies.

2 Different Types of Infrastructure in GMeta

The purpose of this section is to define what should be considered infrastructure lemmas and
definitions and to distinguish between the different varieties of these lemmas and definitions.
A classification of infrastructure is desirable for two reasons:

1. Some infrastructure is easier to reuse than other in GMeta. Also some infrastructure is
more general than other.

2. There is an informal understanding of what infrastructure is, but the existing literature
is not very clear as to what actually constitutes infrastructure (Aydemir et al. 2008;
Aydemir and Weirich 2009).

To help with the characterization of infrastructure, we propose two classifications, by diffi-
culty to reuse and by generality of the infrastructure.

2.1 Classification by difficulty to reuse

Type 1. Common operations and lemmas: Operations such as free and bound variables,
term size or substitution-like operations (such as substitutions for parameters and variables in
the locally nameless style; or shifting in the de Bruijn style) are of this type. For example:

fsubsttrm×trm : N→ trm→ trm→ trm
bsubsttrm×trm : N→ trm→ trm→ trm
bsubsttyp×trm : N→ typ→ trm→ trm

Also, basic lemmas about the operations (such as several forms of permutation lemmas
about substitutions, or lemmas involving some simple conditions about variables) fall in this
category. For example:

tfsubst lemma : ∀(T U V : trm) (a b : N),
a 6= b ⇒
a /∈ (fvtrm×trm V )⇒
fsubsttrm×trm (fsubsttrm×trm T a U ) b V =
fsubsttrm×trm (fsubsttrm×trm T b V ) a (fsubsttrm×trm U b V )

Type 2. Lemmas involving unary inductive relations (predicates): When formalizing
metatheory it is common to use inductive relations. For example several different forms of
well-formedness are usually described in this way. For unary inductive relations, which are
essentially predicates, we can use the predicate form instead to provide the associated lemmas
in GMeta. An example is the closed terms predicate:

closedtrm×trm : trm→ Prop

2http://ropas.snu.ac.kr/gmeta/
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There are many permutations that only hold for closed terms. For example:

tbsubst var twice wf : ∀(T : trm) k (U V : trm),
closedtrm×trm V ⇒
bsubsttrm×trm T k V = bsubsttrm×trm (bsubsttrm×trm T k V ) k U

Type 3. Lemmas involving general inductive relations: General inductive relations
can be dealt in GMeta with a corresponding generic inductive relation. However, there is
a cost in using these generic inductive relations because they require a mapping between the
concrete relation defined directly over the object language and the generic relation. This
mapping requires additional work from the user as well as some basic knowledge about DGP,
so they are not as easy to reuse as type 1 and 2. The typical example is well-formed terms in
an environment:

envTtyp×trm : (env typ)→ trm→ Prop

For which there are many interesting lemmas that are useful in formalizations. For example:

envT Twf : ∀(E : env typ) (T : trm),
envTtyp×trm E T ⇒
∀(k : N) (U : trm),T = bsubsttrm×trm T k U

In short, it is easy to reuse infrastructure of types 1 and 2 in GMeta, but reusing infras-
tructure of type 3 requires a bit more work.

2.2 Classification by generality

Some infrastructure is general whereas other is domain-specific (that is, only exist for particular
types of languages). We propose the following classification to distinguish between these two
types of infrastructure:

Type A. General infrastructure Lemmas and definitions involving only one binder and a
single combination of sorts are pervasive: they are definable for any object language with some
binding structure. The examples that we gave for infrastructure of type 1 and 2 in Section 2.1
are of this type.

Type B. Domain-specific infrastructure Lemmas and definitions involving multiple binders
or multiple combinations of sorts tend to be specific to particular languages. For example the
lemma envT Twf uses two different combinations (trm × trm and typ × trm). This lemma
makes sense when we are talking about some typed languages, but it does not make sense for
many other languages. Another example is:

fbfsubst perm coretyp×trm : ∀(t : trm) (u, v : typ) (m k : N),
closedtyp×typ u ⇒
bsubsttyp×trm k (fsubsttyp×typ m u v) (fsubsttyp×trm m u t)
= fsubsttyp×trm m u (bsubsttyp×trm k v t)

This lemma involves substitutions on different kind of binders (fsubsttyp×typ and fsubsttyp×trm)
and it makes sense when the language has 2 different binders on 2 sorts.

The 2 classifications proposed by us are mostly orthogonal. We will use a combination
between the letter A or B and the numbers 1, 2 and 3 to refer to a particular type on which a
lemma or definition falls into. For example, tfsubst lemma is of type A1 (that is, it is a general
common lemma), whereas fbfsubst perm coretyp×trm is of type B2 (that is, it is a domain-specific
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Figure 3: A simplified modular structure overview of GMeta.

lemma using a predicate). As a remark, we noticed that in practice lemmas that fall in the
category A3 are rare and we do not have any examples of these in GMeta.

3 GMeta Design

This section gives a general overview of GMeta’s design and discusses the techniques used by
us to make GMeta convenient to use. The GMeta framework is structured into 5 layers. In
this paper we will discuss two layers in detail in Sections 4 and 5. These layers are related to
DGP and are the most interesting from a technical point of view. The other layers will not
be introduced in detail due to the lack of space, although the key ideas are discussed in this
section. These other layers are important because of the convenience aspect of GMeta, but
they are less interesting from a technical point of view. More information about these layers
is available in GMeta’s webpage.

3.1 GMeta’s modular structure

Figure 3 shows an overview of the modular structure of GMeta. The structure is hierarchical,
with the more general modules at the top and the more specific modules at the bottom.

• DGP Layer: The core DGP infrastructure is defined at the top-most layer. The main
component is a universe that acts as a generic language that the lower-level modules use
to define the infrastructure lemmas and definitions.

• Representation Layer: This layer is where the generic infrastructure lemmas and def-
initions for particular first-order representations are defined. GMeta currently supports
locally nameless and de Bruijn representations, and we are planning to support more
representations in the future.

• Isomorphism Layer: This layer provides simple module signatures for isomorphisms
that serve as interfaces between the object language and its representation in the generic
language. The adequacy of the object language representation follows from the isomor-
phism laws.

• Templates Layer: This layer provides templates for the basic infrastructure lemmas and
definitions required by particular meta-theoretical developments. Templates are ML-style
functors parameterized by isomorphisms between the syntactic sorts of object language
and their corresponding representations in the generic language. In the Figure 3 we show
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only LNTemplate and dBTemplate, which are the foundamental templates providing reuse
for the general infrastructure (type A). In GMeta there are also other templates which
can be optionally used for reusing additional infrastructure. However, those templates
tend to be more domain-specific (that is they cover type B infrastructure).

• End User Layer: End users will use GMeta’s libraries to develop metatheory for par-
ticular object languages such as for example, the simply typed lambda calculus (STLC)
or System F<: used in our case studies.

3.2 Making GMeta Convenient to Use

The main design goal of GMeta is to make it useful for users wishing to conduct formaliza-
tions of metatheory in Coq using conventional first-order representations, without significantly
increasing the cost-of-entry to users. Importantly, although DGP plays a fundamental role
in the definition of the core libraries of GMeta (at the DGP and representation layers), end
users should not need knowledge about DGP for basic uses of GMeta. However this is not
trivial to achieve because, among other things, end-user proofs (such as soundness) generally
require unfolding infrastructure operations like substitution and those operations are written
in a datatype-generic way, in a form which is alien to users that do not know about DGP.
Therefore, to provide convenience to the user and to avoid that users need to know about
DGP, GMeta employs the techniques described next.

Automatically generated isomorphisms: Isomorphisms are a well-know technique to al-
low using DGP with conventional user-defined datatypes (or inductive definitions) such as
the ones presented in Figure 2. Like in most libraries for DGP in functional programming
languages (Rodriguez et al. 2009), GMeta uses automatically generated isomorphisms be-
tween the user-defined object language and a corresponding representation of that language
the generic universe. However, unlike the isomorphisms used in DGP libraries in functional
programming languages, GMeta’s isomorphisms cannot be generated automatically without
additional information about the binding structure of the language. To deal with this prob-
lem GMeta uses a small annotation language to describe the binding structure of the object
language. This allows the generation of isomorphisms which are aware of the correct binding
structure for that language (see Figure 2 for an example of the annotation language).

Templates: GMeta uses templates to solve the problem of interfacing with the infrastruc-
ture DGP libraries. The definitions and lemmas in templates are very simple. For example,
the definition of parameter substitution in the locally nameless template is:

Module LNTemplate (isoS1 : Iso, isoS2 : Iso).

. . .

[· → ·]T · : N→ S1 → S2 → S2
[k → u]T t = toS2 ([k → (fromS1 u)] (fromS2 t))

Essentially, S1 and S2 are supposed to be the types of the syntactic sorts used in object
language. These types come from the isomorphisms isoS1 and isoS2 , which are the parameters
of LNTemplate. Definitions like [· → ·]T · are simply using the isomorphism (through the
operations toS2 , fromS1 and fromS2) to interface with generic operations like [· → ·] · (see
Figure 8) defined in the representations layer.

Because of the isomorphisms between the user’s object language and the representation of
that language in the universe, users do not need to interact directly with the generic universe.
Instead all that a user needs to do is to instantiate the templates with the automatically
generated isomorphisms. In Section 1.1, we already described how this technique is used to
generate the infrastructure for System F<:.
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toS2 (fromS2 t) = t (1)

fromS2 (toS2 t) = t (2)

fromS2 ([k → u]T t) = [k → (fromS2 u)] (fromS2 t) (3)

Figure 4: Isomorphism and adequacy laws.

Special tactics: Templates alone are not enough to avoid dealing with DGP concepts di-
rectly. When proving lemmas for their own formalizations users may need to unfold operations,
which are defined in terms of corresponding generic operations. For example, the following
lemma – which states that typing is preserved by substitution – is a core lemma in formaliza-
tion of in the solution to the POPLMark challenge by Aydemir et al. (2008).

Lemma typing subst : ∀E F U t T z u,
(E ++ (z ,U ) :: F ) ` t : T ⇒ F ` u : U ⇒
(E ++ F ) ` ([z → u]T t) : T .

Proof .
intros; dependent induction H ; gsimpl .

...
grewrite tbfsubst permutation var wf ; eauto.

...
Qed.

The details of the Coq proof are not relevant. What is important to note is: 1) the key
difference to the original proof by Aydemir et al. (2008) is that two different tactics (gsimpl
and grewrite) are used; and 2) the lemma tbfsubst permutation var wf and the operation
[· → ·]T · are provided by GMeta’s templates.

If the user would try to use simpl (the standard Coq tactic to unfold and simplify definitions)
directly, the definition of [· → ·]T · would be unfolded and he would be presented with parts
of the definition of [· → ·] · (see Figure 8). This is a generic function defined in terms of
GMeta’s universe. However this is clearly undesirable, since the expected definition at this
point is one similar to a manually defined operation for the object language in hand.

Our solution to this problem is define some Coq tactics (such as gsimpl and grewrite) that
specialize operations and lemmas such as [· → ·]T · and tbfsubst permutation var wf using
the isomorphisms provided by the user, and the isomorphism and adequacy laws shown in
Figure 4.

Different use modes GMeta can be used in different use modes, depending on how much
knowledge a user has and what the user wishes to accomplish with GMeta. The most common
scenario of use of GMeta is to formalize metatheory using the existing libraries provided by
GMeta. In this scenario users can use GMeta in two modes: basic or advanced. The
distinction between this two modes essentially depends on which types of infrastructure can
be dealt by GMeta :

• Basic user: A basic user can simply use the isomorphism generator, instantiate tem-
plates like LNTemplate and use the special tactics provided by GMeta to deal with
infrastructure of type A1 and A2. It may be even possible to reuse some infrastructure
of type B. If some domain-specific templates exist in the libraries for the particular kind
of object-language that the user is defining, then that template can be used. There is no
knowledge of DGP required and no need to understand the technical details involved in
GMeta ’s libraries to use this mode.
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• Advanced user: It is also possible to use GMeta to deal with infrastructure of type
B provided some additional knowledge about DGP and understanding of how templates
work.

Finally, GMeta can also be used by library writers who wish to develop their own libraries
of infrastructure:

• Library writer: A library writer is someone that wishes to use GMeta to develop his
own set of infrastructure (for example writing infrastructure for the locally named ap-
proach or for dealing with languages which support dynamic binding). The big advantage
of GMeta in comparison with generative approaches such as LNGen is that, provided
some basic knowledge about DGP, developing libraries of infrastructure is easy.

4 DGP for Datatypes with First-Order Binders

This section briefly introduces DGP using inductive families to define universes of datatypes,
and shows how to adapt a conventional universe of datatypes to support binders and variables.
In our presentation we assume a type theory extended with inductive families, such as the
Calculus of Inductive Constructions (CIC) (Paulin-Mohring 1996) or extensions of Martin-Löf
type-theory (Martin-Löf 1984) with inductive families (Dybjer 1997).

4.1 Inductive Families

Functional languages like ML or Haskell support datatype declarations for simple inductive
structures such as the natural numbers:

Data Nat = z | s Nat

Inductive families are a generalization of conventional datatypes that has been introduced
in dependently typed languages such as Epigram (McBride and McKinna 2004), Agda (Norell
2007) or the Coq theorem prover. They are also one of the inspirations for Generalized Alge-
braic Datatypes (GADTs) (Peyton Jones et al. 2006) in Haskell.

We adopt a notation similar to the one used by Epigram to describe inductive families. In
general, such notation is of the form:

Data type-constructor-sig where data-constructor-sigs

Using this notation, the definition of natural numbers is:

Data
Nat : ?

where
z : Nat

n : Nat

s n : Nat

Essentially the same information as the conventional datatype definition is described (albeit
in a more detailed form). Both the type and data constructors are written using sans serif.
Signatures use natural deduction rules, with the context with all the constructor arguments
and their types above the line, and the type of the fully applied constructor below the line.
Finally, note that the notation ? (in Nat : ?) means the ‘type’ (or kind) of types.

The expressiveness of this notation reveals itself when we begin defining whole families of
datatypes. For example we can define a family of vectors of size n as follows:

Data
A : ? n : Nat

VectorA n : ?
where

vz : VectorA z

n : Nat a : A as : VectorA n

vs a as : VectorA (s n)
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Data Rep = 1 | Rep + Rep | Rep× Rep | K Rep | R

Data
r, s : Rep

JsKr : ?
where

() : J1Kr

s : Rep v : JsK
k v : JK sKr

s1, s2 : Rep v : Js1Kr
i1 v : Js1 + s2Kr

s1, s2 : Rep v : Js2Kr
i2 v : Js1 + s2Kr

s1, s2 : Rep v1 : Js1Kr v2 : Js2Kr
(v1, v2) : Js1 × s2Kr

v : JrK
r v : JRKr

Data
s : Rep

JsK : ?
where

s : Rep v : JsKs
in v : JsK

Figure 5: A simple universe of types.

In this definition the type constructor for vectors has two type arguments. The first ar-
gument specifies the type A of elements of the vector, while the second argument n is the
size of the vector. The type of the elements A is parametric; that is, it is a (globally visible)
parameter of all the constructors (both type and data constructors). In contrast, the type n
for the size of vectors varies for each constructor; it is z for the vz constructor and s n for
the vs constructor. We write parametric type arguments in type constructors such as VectorA
using subscript. Also, if a constructor is not explicitly applied to some arguments (for example
vs a as is not applied to n), then those arguments are implicitly passed.

4.2 Datatype Generic Programming

The key idea behind DGP is that many functions can be defined generically for whole families
of datatype definitions. Inductive families are useful to DGP because they allow us to define
universes (Martin-Löf 1984) representing whole families of datatypes. By defining functions
over this universe we obtain generic functions that work for any datatypes representable in
that universe.

A Simple Universe The universe that underlies GMeta can be viewed as a simplified
version of the universe for regular tree types by Morris et al. (2004). Essentially, Morris et
al.’s universe is expressive enough to represent recursive types using µ-types (Pierce 2002).
However, instead of the nominal approach traditionally used with recursive type binders, the
universe of regular tree types uses a well-scoped de Bruijn indices representation (Altenkirch
and Reus 1999; McBride and McKinna 2004). As a consequence the presentation of that
universe is somehow complicated by the use of telescopes needed in a well-scoped de Bruijn
indices representation.

For presentation purposes and to avoid distractions related to the use of telescopes (which
are orthogonal to our purposes), we will use instead a simplified version of regular tree types
in which only a single top-level recursive type binder is allowed. This reduces the expressive
power of the universe (in particular, no mutually inductive definitions are allowed), but it also
avoids the use of telescopes and leads to a simpler presentation of the universe.

The complete universe of regular tree types by Morris et al. (which includes the ability
to represent mutually-inductive definitions), is used in our experimental versions of GMeta
(both in Coq and in Agda) available in the online web page.
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Figure 5 shows our simple universe. The datatype Rep (defined using the simpler ML-style
notation for datatypes) describes the “grammar” of types that can be used to construct the
datatypes representable in the universe. The first three constructs represent unit, sum and
product types. The K constructor allows the representation of constants of some representable
type. The R constructor is the most interesting construct: it is a reference to the recursive type
that we are defining. For example, the type representations for naturals and lists of naturals
are defined as follows:

RNat : Rep
RNat = 1 + R

RList : Rep
RList = 1 + K RNat× R

Compared with the more familiar definitions of recursive types for naturals and lists using
µ-types (Pierce 2002)

Nat = µ R. 1 + R
List = µ R. 1 + Nat × R

we can see that the main difference is that there is no µ binder. This is because, as mentioned
earlier, since we can only express a single-top level binders, a single variable (R) is enough and
there is no need to have a separate binding construct.

The interpretation of the universe is given by two mutually inductive families J·Kr and J·K,
while the data constructors of these two families provide the syntax to build terms of that
universe. The parametric type3 r in the subscript in J·Kr , is the recursive type that is used
when interpreting the constructor R. For illustrating the data constructors of terms of the
universe, we first define the constructors nil and cons for lists:

nil : JRListK
nil = in (i1 ())

cons : JRNatK→ JRListK→ JRListK
cons n ns = in (i2 (k n, r ns))

When interpreting JRListK, the representation type r in J·Kr stands for 1 + K RNat × R.
The constructor k takes a value of some interpretation for a type representation s and embeds
it in the interpretation for representations of type r . For example, when building values of
type JRListK, k is used to embed a natural number in the list. Similarly, the constructor r
embeds list values in a larger list. The in constructor embeds values of type JrKr into a value
of inductive family JrK, playing the role of a fixpoint. The remaining data constructors (for
representing unit, sums and products values) have the expected role, allowing sum-of-product
values to be created.

As a final remark, note that, in this universe, in and J·K are redundant because the occur-
rences of J·K in J·Kr , in the data constructors r and k, could have been replaced, respectively,
by JrKr and JRKs . However, the stratification into two inductive families plays an important
role in Section 4.3, when the universe is extended with support for variables.

Generic Functions The key advantage of universes is that we can define (generic) functions
that work for any representable datatypes. A simple example is a generic function counting
the number of recursive occurrences on a term:

size : ∀(r : Rep). JrK→ N
size (in t) = size t

3Recall that, as explained in Section 4.1, parametric types are visible in both the type and data constructors.
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Data Rep = . . . | E Rep | B Rep Rep

Q : ? (* Quantifier type *)
V : ? (* Variable type *)

Data
r, s : Rep

JsKr : ?
where . . .

s : Rep v : JsK
e v : JE sKr

s1, s2 : Rep q : Q v : Js2Kr
λs1q.v : JB s1 s2Kr

Data
s : Rep

JsK : ?
where . . .

s : Rep v : V

var v : JsK

Figure 6: Extending universe with representations of binders and variables.

size : ∀(r , s : Rep). JsKr → N
size () = 0
size (k t) = 0
size (i1 t) = size t
size (i2 t) = size t
size (t , v) = size t + size v
size (r t) = 1 + size t

To define such generic function, two-mutually inductive definitions are needed: one induc-
tively defined on JrK; and another inductively defined on JsKr . For convenience the same name
size is used in both definitions. Note that r and s (bound by ∀) are implicitly passed in the
calls to size.

When interpreted on values of type JRNatK, size computes the value of the represented
natural number. When interpreted on values of type JRListK, size computes the length of the
list. What is great about this function is that it works, not only for these types, but for any
datatypes representable in the universe.

4.3 A Universe for Representing First-Order Binding

In this paper our goal is to define common infrastructure definitions and lemmas for first-
order representations, once and for all, using generic functions and lemmas. However, the
universe presented in Figure 5 is insufficient for this purpose because generic functions such
as substitution and free variables require structural information about binders and variables.
Therefore, we first need to enrich our universe to support these constructs.

Extended Universe Figure 6 shows the additional definitions required to support represen-
tations of binders, variables, and also deeply embedded terms. The data constructor B of the
datatype Rep provides the type for representations of binders. The type Rep is also extended
with a constructor E which is the representation type for deeply embedded terms. This con-
structor is very similar to K. However, the fundamental difference is that generic functions
should go inside the terms represented by deeply embedded terms, whereas terms built with K
should be treated as constants by generic functions.

The abstract types Q and V represent the types of quantifiers and variables. Depending on
the particular first-order representations of binders these types will be instantiated differently.
The following table shows the instantiations of Q and V for 4 of the most popular first-order
representations:
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RLambda : Rep
RLambda = R×R + B R R

fvar : N→ JRLambdaK
fvar n = var (inl n)

bvar : N→ JRLambdaK
bvar n = var (inr n)

app : JRLambdaK→ JRLambdaK→ JRLambdaK
app e1 e2 = in (i1 (r e1, r e2))

lam : JRLambdaK→ JRLambdaK
lam e = in (i2 (λR1. r e))

Figure 7: The untyped lambda calculus using the locally nameless approach.

Q V λx. x y
Nominal N N λx. x y
De Bruijn 1 N λ. 0 1
Locally nameless 1 N + N λ. 0 y
Locally named N N + N λx. x a

The last column of the table shows how the lambda term λx. x y can be encoded in the
different approaches. For the nominal approach there is only one sort of variables, which can
be represented by a natural number (alternatively a string could be used instead). In this
representation, the binders hold information about the bound variables, thus the type Q is the
same type as the type of variables V : a natural number. De Bruijn indices do not need to hold
information about variables in the binders, because the variables are denoted positionally with
respect to the current enclosing binder. Thus, in the de Bruijn style, the type Q is just the
unit type and the type V is a natural number. The locally nameless approach can be viewed
as a variant of the de Bruijn style. Like de Bruijn, no information is needed at the binders,
thus the type Q is just the unit type. The difference to the de Bruijn style is that parameters
and (bound) variables are distinguished: (bound) variables are represented in the same way
as de Bruijn variables; but parameters belong to another sort of variables. Therefore in the
locally nameless style the type V is instantiated to a sum of two natural numbers. Finally,
in the locally named style, there are also two sorts of variables. However, bound variables are
represented as in the nominal style instead. Thus the type Q is a natural number and the type
V is a sum type of two naturals.

The inductive family J·Kr is extended with two new data constructors. The constructor
e is similar to the constructor k and is used to build deeply embedded terms. The other
constructor uses the standard lambda notation λs1q.v to denote the constructor for binders.
The type representation s1 is the representation of the syntactic sort of the variables that are
bound by the binder, whereas the type representation s2 is the representation of the syntactic
sort of the body of the abstraction. We use s1 = R to denote that the syntactic sort of the
variables to be bound is the same as that of the body. This distinction is necessary because in
certain languages the syntactic sorts of variables to be bound and the body of the abstraction
are not the same. For example, in System F, type abstractions in terms such as ΛX.e bind
type variables X in a term e.

The inductive family J·K is also extended with one additional data constructor for variables.
This constructor allows terms to be constructed using a variable instead of a concretely defined
term.
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Untyped lambda calculus using locally nameless representations As a simple exam-
ple demonstrating the use of the universe to represent languages with binding constructs, we
show how the untyped lambda calculus is encoded in Figure 7. The definition RLambda is the
representation type for the untyped lambda calculus. Note that the variable case is automati-
cally built in, so the representation only needs to account for the application and abstraction
cases. Application consists of a constructor with two recursive arguments and it is represented
by the product type on the left side of the sum. Abstraction is a binder with a recursive argu-
ment and is represented by the right side of the sum. The four definitions fvar, bvar, app and
lam provide shorthands the corresponding parameters, variables, application and abstraction
constructors. Terms can be built using these constructors. For example, the identity function
is defined as:

idRLambda : JRLambdaK
idRLambda = lam (bvar 0)

5 Modular Parameterization on Representations

This section shows how generic operations and lemmas defined over the universe presented
in Section 4 can be used to provide much of the basic infrastructure boilerplate once and for
all for the languages representable in the universe for two of the most important first-order
representations: locally nameless and de Bruijn.

5.1 Locally Nameless

Figure 8 presents generic definitions for the locally nameless approach. In this approach binders
do not bind names, and (bound) variables and parameters (free variables) are distinguished.
Thus, as discussed in Section 4.3, the types Q and V are, respectively, the unit type4 and
a sum of two naturals. Using these instantiations for Q and V , the set of parameters and
substitution operations can be defined generically for the locally nameless approach. Further-
more the operation for instantiating a (bound) variable with a term is also defined in a generic
way. Finally, generic lemmas can be defined using the generic operations. The statements for
subst fresh – which states that if a parameter does not occur in a term, then substitution of
that parameter is the identity – and bfsubst perm – which states that substitutions for param-
eters and variables can be exchanged under certain well-formedness conditions – are shown as
examples of such generic lemmas.

As explained in Section 4, generic operations are defined over terms of the universe by two
mutually-inductive operations defined over the J·K and J·Kr (mutually-)inductive families. Note
that, for convenience, we use same function names for mutual definitions.

The operation fvr1 computes the set of parameters in a term. The only interesting case
happens with parameters:

fvr1 (var (inl x )) = if r1 ≡ r2 then {x } else ∅

In this case a singleton set containing the parameter is returned only when the type rep-
resentations r1 and r2 are the same. That is, the computation of parameter sets depends on
the representation r1. For example, in System F, if r1 is the type representation for System F
types, then fvr1 computes the set of type parameters which occur in a term or a type (de-
pending on what r2 represents). Note that the constructor inl arises from the instantiation of
V = N + N. This constructor signals that the case under consideration is the left case of the
sum type, which represents parameters. Variables, on the other hand, are represented by the
right case of the sum type, which is signaled by the inr constructor. The other cases of fvr1
are straightforward.

4For convenience, we use 1 for both the unit type and the unique term of that type.
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Instantiation of Q and V :

Q = 1

V = N + N
Heterogeneous sets of parameters (free variable): Given r1 : Rep,

fvr1
: ∀(r2 : Rep). Jr2 K→ 2N

fvr1
(in t) = fvr1

t

fvr1
(var (inl x )) = if r1 ≡ r2 then {x } else ∅

fvr1
(var (inr y)) = ∅

fvr1
: ∀(r2 , s : Rep). JsKr2 → 2N

fvr1
() = ∅

fvr1
(k t) = ∅

fvr1
(e t) = fvr1

t

fvr1
(i1 t) = fvr1

t

fvr1
(i2 t) = fvr1

t

fvr1
(t , v) = (fvr1

t) ∪ (fvr1
v)

fvr1
(λr31.t) = fvr1

t

fvr1
(r t) = fvr1

t

Heterogeneous substitution for parameters:

[· → ·] · : ∀(r1 r2 : Rep). N→ Jr1 K→ Jr2 K→ Jr2 K
[k → u] (in t) = in ([k → u] t)
[k → u] (var (inl x )) = if r1 ≡ r2 ∧ k ≡ x then u else (var (inl x ))
[k → u] (var (inr y)) = var (inr y)

[· → ·] · : ∀(r1 , r2 , s : Rep). N→ Jr1 K→ JsKr2 → JsKr2
[k → u] () = ()
[k → u] (k t) = k t
[k → u] (e t) = e ([k → u] t)
[k → u] (i1 t) = i1 ([k → u] t)
[k → u] (i2 t) = i2 ([k → u] t)
[k → u] (t , v) = ([k → u] t , [k → u] v)
[k → u] (λr31.z ) = λr31.([k → u] z )
[k → u] (r t) = r ([k → u] t)

Heterogeneous substitution for (bound) variables:

{· → ·} · : ∀(r1 , r2 : Rep). N→ Jr1 K→ Jr2 K→ Jr2 K
{k → u} (in t) = in ({k → u} t)
{k → u} (var (inl x )) = var (inl x )
{k → u} (var (inr y)) = if r1 ≡ r2 ∧ k ≡ y then u else (var (inr y))

{· → ·} · : ∀(r1 , r2 , s : Rep). N→ Jr1 K→ JsKr2 → JsKr2
{k → u} () = ()
{k → u} (k t) = k t
{k → u} (e t) = e ({k → u} t)
{k → u} (i1 t) = i1 ({k → u} t)
{k → u} (i2 t) = i2 ({k → u} t)
{k → u} (t , v) = ({k → u} t , {k → u} v)
{k → u} (λr31.t) = if (r3 ≡ R ∧ r1 ≡ r2 ) ∨ (r3 6≡ R ∧ r1 ≡ r3 )

then λr31.({(k + 1) → u} t else λr31.({k → u} t)
{k → u} (r t) = r ({k → u} t)

Some heterogeneous lemmas:

subst fresh : ∀(r1 , r2 : Rep) (t : Jr1 K) (u : Jr2 K) (m : N).
m /∈ (fvr2

t) ⇒ [m → u] t = t

bfsubst perm : ∀(r1 , r2 , r3 : Rep) (t : Jr1 K) (u : Jr2 K) (v : Jr3 K) (m k : N).
(wfr3 u) ⇒ {k → ([m → u] v)} ([m → u] t) = [m → u] ({k → v} t)

Figure 8: Generic definitions for the locally nameless approach.
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Instantiation of Q and V : Q = 1 and V = N.

Heterogeneous shifting: Given r1 : Rep,

↑· · : ∀(r2 : Rep). N→ Jr2 K→ Jr2 K
↑m (in t) = in (↑m t)
↑m (var n) = if r1 ≡ r2 ∧ m 6 n then (var (n + 1)) else (var n)

↑· · : ∀(r1 , r2 , s : Rep). N→ JsKr2 → JsKr2
↑m () = ()
↑m (k t) = k t
↑m (e t) = e (↑m t)
↑m (i1 t) = i1 (↑m t)
↑m (i2 t) = i2 (↑m t)
↑m (t , v) = (↑m t , ↑m v)
↑m (λr31.t) = if (r3 ≡ R ∧ r2 ≡ r1 ) ∨ (r3 6≡ R ∧ r3 ≡ r1 )

then λr31.(↑(m+1) t) else λr31.(↑m t)
↑m (r t) = r (↑m t)

Figure 9: Heterogeneous shifting for de Bruijn representations.

In the generic definitions for substitutions5 the interesting cases are variables and binders.
In the case of variables, the condition r1 ≡ r2 is necessary to check whether the parameter
(or variable) and the term to be substituted have the same representation. The binder case
in the heterogeneous substitution for variables is more interesting. The subscript r3 keeps
the information about which kind of variables is to be bound. When r3 = R, the binding is
homogeneous, that is, the variable to be bound and the body of the binder have the same
representation. For example, the term-level abstraction in terms (λx : T.e) of System F is
homogeneous. An example of heterogeneous binding is the type-level abstraction in terms
(ΛX.e) of System F. In this case r3 is the representation for System F types. Variable shifting
happens when the bound variable and the terms to be substituted have the same representation.
Note that, in the case of homogeneous binding (r3 ≡ R), we compare r1 with r2 , not with r3 ,
because the bound variable and the body of the binder have the same representation r2 .

The main advantage of representing the syntax of languages with our generic universe is, of
course, that all generic operations are immediately available. For instance, the 8 substitution
operations mentioned in Section 1 can be recovered through suitable instantiations of the type
representations r1, r2, r3 in the two generic substitutions presented in this section.

5.2 De Bruijn

A key advantage of our modular approach is that we do not have to commit to using a particular
first-order representation. Instead, by suitably instantiating the types Q and V , we can define
the generic infrastructure for our own favored first-order representation. For example we can
use GMeta to define the generic infrastructure for de Bruijn representations. In de Bruijn
representations, binders do not bind any names, therefore the type Q is instantiated with
the unit type. Also, because there is only one sort of (positional) variables, the type V
is instantiated with natural numbers. For space reasons we only show how to define one
operation, shifting, in Figure 9. Other generic operations like substitution are similar to the
locally nameless style, and generic lemmas about operations on de Bruijn representations are
also definable generically. The implementation of heterogeneous generic shifting is quite simple
and follows a pattern similar to that used in the generic operations for the locally nameless
style for dealing with homogeneous and heterogeneous binders. The variable and binder cases
implement the expected behavior for the de Bruijn indices operations and all the other cases

5Note that the notation for substitutions follows Aydemir et al. (2008).
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Definitions Infrastructure Core Overall
(lemmas + definitions) (lemmas + definitions) inf. overhead total ratio

STLC Aydemir et al. 11 13 + 3 4 + 0 17 31 55%
(locally nameless) GMeta basic 7 4 + 0 4 + 0 1 15 7%

System F<: Aydemir et al. 20 48 + 7 17 + 1 60 93 65%
(locally nameless) GMeta basic 13 26 + 1 17 + 1 25 58 43%

GMeta advanced 11 15 + 0 18 + 1 11 45 24%

System F<: Vouillon 27 24 + 0 50 + 0 41 101 41%
(de Bruijn) GMeta basic 12 1 + 0 52 + 0 3 65 5%

Figure 10: Formalization of POPLmark challenge (part 1A+2A) and STLC in Coq using locally
nameless approach and de Bruijn approach with and without GMeta.

style savings
STLC GMeta basic vs Aydemir et al. LN 52%

F<:

GMeta basic vs Aydemir et al. LN 38%
GMeta adv. vs Aydemir et al. LN 52%
GMeta basic vs Vouillon dB 35%

Figure 11: Savings in various formalizations in terms of numbers of definitions and lemmas.

are limited to traversal code. Note that we follow Vouillon (2007)’s definitions.

6 Discussion and Evaluation

In this section we present the results of the case studies we conducted. The discussion of
these results is done in terms of three criteria proposed by Aydemir et al. (2005) (reasonable
overheads, cost of entry and transparency) for evaluating mechanizations of formal metatheory.
We also discuss how theorem provers like Coq could be improved with better support for
GMeta.

6.1 Reasonable overheads

The biggest benefit of GMeta is that it significantly lowers the overheads required in mechan-
ical formalizations by providing reuse of the basic infrastructure. Figure 11 shows the savings
that GMeta achieved relative to the reference solutions by Aydemir et al. (2008). In all case
studies more than 35% of the total numbers of definitions were saved. We conducted case
studies in both System F<: (using locally nameless and de Bruijn representations) and STLC
(using locally nameless representations). We also employed GMeta in two modes, basic and
advanced (see Section 3.2 for the explanation). In the STLC case there was no need to employ
the advanced mode, since with the basic approach reuse was already as good as it could be.
In System F<: we need some lemmas of type B3, which cannot be dealt using just the basic
approach, so we also used the advanced approach. In the de Bruijn case study, only the basic
approach was employed.

Detailed results Figure 10 presents the detailed numbers obtained in our case studies. We
follow Aydemir et al. by dividing the whole development into three parts: definitions, infras-
tructure and core. The numbers on those columns correspond to the number of definitions and
lemmas used for each part. The definitions column presents the number of basic definitions
about syntax, whereas the core column presents the number of main definitions and lemmas of
the formalization (such as, for example, progress and preservation). The infrastructure column
is the most interesting because this is where most of the tedious infrastructure lemmas and
definitions are. The column inf. overhead counts the overall number of infrastructure defini-
tions and lemmas used across the formalizations. Although, for the most part, infrastructure
comes from what was classified by Aydemir et al. as the infrastructure part, some additional
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infrastructure definitions and lemmas also exists in the definitions part. This explains why
GMeta is able to reduce the number of definitions and lemmas in the two parts. The numbers
in bold face, are the numbers that were presented by Aydemir et al. (2008). However those
numbers did not reflect the real total number of definitions and lemmas in the solutions. For
example, in the infrastructure part only the lemmas were counted. Since we are interested in
all the infrastructure, our numbers reflect the total number of definitions and lemmas in each
part.

In same cases we needed a few lemmas simply to slightly adapt the form of a lemma used
in GMeta libraries to the form used in (Aydemir et al. 2008). This explains, for example the
1 in the inf. overhead column for STLC.

Basic vs Advanced The main difference between the basic and advanced approaches is
that the basic approach allows all types of infrastructure to be reused except for infrastructure
of type B3, whereas in the advanced approach all types of infrastructure can be reused. To
capture some of the B1 and B2 lemmas used in the basic mode for System F<: we used a
domain-specific template for typed languages involve at least 2 syntactic sorts (note that this
is a fairly common type of object language).

Proof size In comparison with Aydemir et al. reference solutions, the proofs in the basic
approach follow essentially the same structure of the original proofs. One minor difference is
that instead of some standard Coq tactics, a few more general tactics provided by GMeta
should be used (see Section 3.2). Because this is the only difference, the proofs in the GMeta
solution and Aydemir et al. solution have comparable sizes. In the advanced approach one
additional difference is that the formalization of environments differs from Aydemir et al., in
that we use two environments (for types and terms) and Aydemir et al. use a single environment
with a disjoint union. This difference means that, while most proofs will still be comparable
in size, a small number of proofs will be either shorter or larger.

6.2 Cost of entry

One important criteria for evaluating mechanical formalizations of metatheory is the associated
cost of entry. That is, how much does a user need to know in order to successfully develop
a formalization. We believe that the associated cost of entry of GMeta is comparable to
first-order approaches like the one by Aydemir et al. (2008) (at least for the basic approach).

Essentially GMeta has a pay-as-you-go approach in terms of the cost-of-entry. The basic
approach gives us a good cost/benefit ratio. Basically, with developments using the basic
mode we get quite a bit of reuse almost for free. reference solution. In the advanced approach
additional savings are possible, at the cost of some extra knowledge about DGP and GMeta.

One aspect of GMeta that (arguably) requires less knowledge when compared to Aydemir
et al. (2008) is that the end-user does not need to know how to prove many basic infrastructure
lemmas, since those are provided by GMeta’s libraries.

6.3 Transparency

The transparency criteria is intended to evaluate how intuitive a formalization technique is.
The issue of transparency is largely orthogonal to GMeta because it usually measures how
particular representations of binding (such as locally nameless or de Bruijn), and lemmas and
definitions using that approach, are easy to understand by humans. Since we do not introduce
any new representation, transparency remains unchanged (the same representation, lemmas
and definitions are used).
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6.4 Improving Coq and Other Theorem Provers

We found a few shortcomings in Coq during our experience with GMeta. These affected
the development of GMeta and also it’s usability. It would be nice to have the following
improvements to address those shortcomings.

Improved support for dependently typed programming GMeta makes significant
use of dependently typed programming. Being based on the calculus of inductive construc-
tions, Coq has good support for dependent types. However, only very recently more atten-
tion has been given to providing better support for dependent pattern matching (Coquand
1992) as done, for example, in the Agda or Epigram dependently typed languages. In this
respect the work by Sozeau (2007) on the Program tactic and the other related tactics like
dependent destruction is certainly a good step forward. Unfortunately, support for these fea-
tures is still experimental on the current version of Coq (8.3) and there is still some gap to
dependently typed languages like Agda or Epigram.

Our experience with GMeta is that there are still a few bugs lying around in the current
implementation of Coq which make the development of dependently typed programs that use
dependent pattern matching difficult. We found nested dependent pattern matching and the
use mutual induction with dependent destruction to be particularly tricky in Coq. Curiously
we only need these features for defining isomorphisms, which (technically speaking) are a
fairly uninteresting part of GMeta (since usually the definition of isomorphisms in DGP
is supposed to be straightforward and mechanical). More concretely, the need for nested
dependent pattern matching arises from the to function (which converts from a representation
of the object language in the universe to the user defined object language) and the to from
lemma (which states that to (from t) = t).

With the very valuable help of Chlipala upcoming book on “Certified Programming with
Dependent Types” (Chlipala 2009) we did manage to learn enough techniques to tame Coq
and make our programs and proofs pass the type and termination checkers. However in our
experimental version of GMeta which is based on the more expressive universe for regular tree
types by (Morris et al. 2004) and it requires even more dependent types, we found that the
techniques we used earlier no longer worked and we are still looking for a way to implement
isomorphisms (although the remaining parts of the framework work as expected).

In contrast, our experience with developing a version of GMeta in Agda was much smoother
due to the good support for dependent pattern matching. In Agda, the definitions of isomor-
phisms were essentially painless. Of course, the main reason not to use Agda in the first place is
that the main purpose of GMeta is to assist with theorem proving of mechanized metatheory
and Coq support for theorem proving is generally better than Agda, which is focused primarily
on programming.

To make a long story short, we believe that support for dependent pattern matching in Coq
could be improved in two ways. The first way is simply to polish the current implementation
to make it bug free and well supported. We expect that in the next few versions of Coq this
will happen. The second improvement would be to provide better assistance when developing
programs using dependent pattern matching. The emacs mode for Agda and Epigram are good
examples of how the “IDE” can provide valuable help to the user.

Partial evaluation of modules One disadvantage of using DGP for reusing infrastructure
is that such infrastructure is written generically. When trying to prove some lemmas users may
have to unfold such generic definitions. The way that GMeta currently deals with this problem
is through the use of some special tactics like gsimpl or grewrite (as discussed in Section 3),
which make use of isomorphisms and their laws to automatically specialize definitions into the
form that the user would expect. However this approach is not ideal because it requires the
user to know about the special tactics and when to use them, so a nicer alternative is desirable.
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We believe some kind of module-level partial evaluation would be a better solution for
specializing infrastructure for object languages and eliminating the DGP indirections. Ideally
when instantiating templates like LNTemplate with particular isomorphisms we would like
to partially evaluate the resulting module so that all the isomorphism indirections would be
evaluated and removed. The work by Brady and Hammond (2010) on partial evaluation
for dependently typed languages and the work by Alimarine and Smetsers (2004) on partial
evaluation of generic functions should be good starting points to investigate this possibility
further.

In essence, with module-level partial evaluation we would get the best of DGP and gener-
ative approaches: verified generic infrastructure that can be specialized to a form similar to
hand-written definitions.

Built-in support for isomorphisms Finally, it would be better to support isomorphism
generation directly in Coq, instead of using of an external tool. This could be done for example
via a plugin. The idea is simply to support the isomorphism annotations; and to generate and
make the isomorphism available to the user directly, rather than calling an external tool that
generates a Coq module that needs to be imported later. This could be supported in very
much the same way that inductive principles and recursion principles are supported in Coq for
inductive definitions. Basically, Coq automatically generates the associated principles when we
define an inductive definition, and those principles become immediately available to the user.

7 Related Work

Generative Approaches Closest to our work are generative approaches like LNgen (Ay-
demir and Weirich 2009), which uses an external tool, based on Ott (Sewell et al. 2010) spec-
ifications, to generate the infrastructure lemmas and definitions for a particular language au-
tomatically. One advantage of generative approaches is that the generated infrastructure is
directly defined in terms of the object language. In contrast, in GMeta, the infrastructure is
indirectly defined in terms of generic definitions. This is not entirely ideal, but it is possible to
handle the situation in a reasonably effective way in GMeta using tactics (see Section 3.2). As
we have discussed in Section 6.4, allowing some kind of module-level partial evaluation would
be nicer and would allow us to recover direct definitions from the generic infrastructure.

There are two main advantages of a DGP approach over generative approaches: 1) ver-
ifiability ; and 2) extensibility. Like with DGP, a generator allows defining once-and-forall
the infrastructure. However, unlike DGP, we cannot verify once-and-forall that the genera-
tor always generates correct (well-typed) infrastructure. With a generator we can only verify
whether each particular generated set of infrastructure is correct. Another disadvantage of
generators is that they are hard to extend. If we wanted to add a new lemma to the set of
generated infrastructure we would have to directly change the generator code. With a library
approach like GMeta this is much easier because it amounts to extending a module with a
new generic function.

It is also interesting to compare GMeta and LNGen in terms of which types of infrastruc-
ture they can reuse and how hard it is to reuse such infrastructure. The main advantage of
LNGen is that dealing inductive relations is easy. In GMeta, type 3 definitions require some
more effort to be reused. A solution for this problem would be to extend the isomorphism gen-
erator tool to deal with inductive relations as well. On the other hand the strength of GMeta
lies on its extensibility. It is easy to capture some types of domain-specific infrastructure,
which are still common enough that we may want to capture in a reusable form. The lemma
thbfsubst perm core presented in Section 2.2 is one example. Dealing with domain-specific
infrastructure like that is in conflict with the general purpose nature of LNGen.
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DGP and Binding DGP techniques have been used before for dealing with binders us-
ing a well-scoped de Bruijn indices representation (Altenkirch and Reus 1999; McBride and
McKinna 2004). Chlipala (2007) used an approach inspired by proof by reflection techniques
(Boutin 1997) to provide several generic operations on well-typed terms represented by well-
scoped de Bruijn indices. Licata and Harper (2009) proposed a universe in Agda that permits
definitions that mix binding and computation. The obvious difference is that GMeta works
with traditional (non well-scoped) first-order representations instead of well-scoped de Bruijn
indices. This difference of representation, means that the universes and generic functions have
to deal with significantly different issues and that they are quite different in nature. More
fundamentally, Chlipala (2007) and Licata and Harper (2009) work can be viewed as trying to
develop new ways to formalize metatheory, in which many of the invariants that would have to
be proved otherwise hold by construction. This is different from our goal: we are not proposing
new ways to formalize metatheory, rather we wish to make well-established ways to formalize
metatheory with first-order representations less painful to use.

DGP techniques have also been widely used in conventional functional programming lan-
guages (Jansson and Jeuring 1997; Hinze and Jeuring 2003; Lämmel and Peyton Jones 2003;
Rodriguez et al. 2009), and Cheney (2005) explored how to provide generic operations such as
substitution or free variables using nominal abstract syntax.

Our work is inspired by the use of universes in type-theory (Martin-Löf 1984; Nordström
et al. 1990). The basic universe construction presented in Figure 5 is a simple variation of the
regular tree types universe proposed by Morris et al. (2004, 2009) in Epigram. Nevertheless the
extensions for representing variables and binders presented in Figure 6 are new. Dybjer and
Setzer (1999, 2001) showed universe constructions within a type-theory with an axiomatization
of induction recursion. Altenkirch and McBride (2003) proposed a universe capturing the
datatypes and generic operations of Generic Haskell (Hinze and Jeuring 2003) and Norell
(2008) shows how to do DGP with universes in Agda (Norell 2007).

Verbruggen et al. (2008, 2009) formalized a Generic Haskell (Hinze and Jeuring 2003)
DGP style in Coq, which can also be used to do generic programming. This approach allows
conventional datatypes to be expressed, but it cannot be used to express meta-theoretical
generic operations since there are no representations for variables or binders.

Other Techniques for First-Order Approaches Aydemir et al. (2009) investigated sev-
eral variations of representing syntax with locally nameless representations aimed at reducing
the amount of infrastructure overhead in languages like System F<:. One advantage of these
techniques is that they are very lightweight in nature and do not require additional tool sup-
port. However, while the proposed techniques are effective at achieving significant savings,
they require the abstract syntax of the object language to be encoded in a way different from
the traditional locally nameless style, potentially collapsing all syntactic sorts into one. In
contrast GMeta allows the syntax to be encoded in the traditional locally nameless style,
while at the same time reducing the infrastructure overhead through it’s reusable libraries of
infrastructure.

Higher-order Approaches and Nominal Logic Approaches based on higher-order ab-
stract syntax (HOAS) (Pfenning and Elliot 1988; Harper et al. 1993) are used in logical frame-
works such as Abella (Gacek 2008), Hybrid (Momigliano et al. 2008) or Twelf (Pfenning and
Schürmann 1999). In HOAS, the object-language binding is represented using the binding of
the meta-language. This has the important advantage that facts about substitution or alpha
equivalence come for free since the binding infrastructure of the meta-language is reused. It is
well-known that in Coq it is not possible to use the usual HOAS encodings, although Despey-
roux et al. (1995); Chlipala (2008) have shown how weaker variations of HOAS can be encoded
in Coq. Approaches like GMeta or LNgen are aimed at recovering many of the properties
that one expects from a logical framework for free.
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Nominal logic (Pitts 2003) is an extension of first-order logic that allows reasoning about
alpha-equivalent abstract syntax in a generic way. Variants of nominal logic have been adopted
in the nominal Isabelle package (Urban 2005). However, because Coq does not have a nominal
package, this approach cannot be used in Coq formalizations.

8 Conclusion

There are several techniques for formalizing metatheory using first-order representations, which
typically involve developing the whole of the infrastructure by hand each time for a new for-
malization. GMeta improves on these techniques by providing reusable generic infrastructure
in libraries, avoiding the repetition of definitions and lemmas for each new formalization. The
DGP approach used by GMeta not only allows an elegant and verifiable formulation of the
generic infrastructure, which is appealing from the theoretical point of view; but also reveals
itself useful for conducting realistic formalizations of metatheory.
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Introduction. Oxford Unversity Press, 1990.

U. Norell. Towards a practical programming language based on dependent type theory. PhD
thesis, Chalmers University of Technology, 2007.

U. Norell. Dependently typed programming in agda. In Advanced Functional Programming
’08, 2008.
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F. Pfenning and C. Schürmann. System description: Twelf - a meta-logical framework for
deductive systems. In CADE ’99, 1999.

B. C. Pierce. Types and Programming Languages. The MIT Press, 2002.

A. M. Pitts. Nominal logic, a first order theory of names and binding. Inf. Comput., 186(2):
165–193, 2003.

A. Rodriguez, J. Jeuring, P. Jansson, A. Gerdes, O. Kiselyov, and B. C. d. S. Oliveira. Com-
paring libraries for generic programming in haskell. SIGPLAN Not., 44(2):111–122, 2009.

A. Rossberg, C. V. Russo, and D. Dreyer. F-ing modules. In TLDI ’10, 2010.

P. Sewell, F. Z. Nardelli, S. Owens, G. Peskine, T. Ridge, S. Sarkar, and R. Strnǐsa. Ott:
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