
Sound Non-Statistical Clustering of
Static Analysis Alarms ?

Woosuk Lee, Wonchan Lee, and Kwangkeun Yi

Seoul National University

Abstract. We present a sound method for clustering alarms from static
analyzers. Our method clusters alarms by discovering sound dependen-
cies between them such that if the dominant alarm of a cluster turns
out to be false (respectively true) then it is assured that all others in
the same cluster are also false (respectively true). We have implemented
our clustering algorithm on top of a realistic buffer-overflow analyzer
and proved that our method has the effect of reducing 54% of alarm re-
ports. Our framework is applicable to any abstract interpretation-based
static analysis and orthogonal to abstraction refinements and statistical
ranking schemes.

1 Introduction

1.1 Problem

Users of sound static analyzers frequently suffer from a large number of false
alarms. When we run a static analyzer for realistic software, false alarms often
outnumber real errors. For example, in a case of analyzing commercial software,
we have found only one error in 273 buffer-overflow alarms after a tedious alarm
investigation work [10].

Although statistical ranking schemes [10][13] help to find real errors quickly,
ranking schemes do not reduce alarm-investigation burdens. Statistical ranking
schemes alleviate the false alarm problem by showing alarms that are most likely
to be real errors over those that are least likely. However, the number of alarms
to investigate is not reduced with ranking. We should examine all the alarms in
order to find all the possible errors.

1.2 Our Solution

One way to reduce alarm-investigation burden is to cluster alarms according to
their sound dependence information. We say that alarm A has (sound) depen-
dence on alarm B if alarm B turns out to be false (true resp.), then so does

? This work was supported by the Engineering Research Center of Excellence Pro-
gram of Korea Ministry of Education, Science and Technology(MEST) / National
Research Foundation of Korea(NRF) (Grant 2011-0000971), the Brain Korea 21
Project, School of Electrical Engineering and Computer Science, Seoul National
University in 2011, and a research grant from Samsung Electronics DMC R&D Cen-
ter.

alarm A as a logical consequence. When we find a set of alarms depending on
the same alarm, which we call a dominant alarm, we can cluster them together.
Once we find clusters of alarms, we only need to check whether their dominant
alarms are false (true resp.).

In this paper, we present a sound alarm clustering method for static ana-
lyzers. Our analysis automatically discovers sound dependencies among alarms.
Combining such dependencies, our analysis finds clusters of alarms which have
their own a single or multiple dominant alarms. If the dominant alarms turn out
to be false (true resp.), we can assure that all the others in the same cluster are
also false (true resp.).

Example 1 through 3 show examples of alarm dependencies and how they
reduce alarm-investigation efforts. These examples are discovered automatically
by our clustering algorithm.

Example 1 (Beginning Example). Our analyzer reports 5 buffer-overflow alarms
for the following code excerpted from NLKAIN 1.3 (Alarms are underlined).

1 void residual(SYSTEM *sys, double *upad, double *r) {
2 nx = 50;

3 u = &upad[nx+2];

4 ...

5 for (k = 0; k < ny; k++) {
6 u++;

7 for(j = 0; j < nx; j++) {
8 r[0] = ac[0]*u[0] - ax[0]*u[-1] - ax[1]*u[1] - ay[0]*u[-nx-2]

9 - ay[nx]*u[nx+2] - q[0];

10 r++; u++; q++; ac++; ax++; ay++;

11 }
12 u++; ax++;

13 }
14 }

Note the following two facts in this example:

1. If buffer access u[-nx-2] at line 8 overflows the buffer, so do the others since
-nx-2 is the lowest index among the indices of all the buffer accesses on u.

2. If buffer access u[nx+2] at line 9 does not overflow the buffer, neither do
the others since nx+2 is the highest index among the indices of all the buffer
accesses on u.

Using these two facts, we can cluster alarms in two different ways: we can find
a false alarm cluster which consists of all the alarms in the example and the
dominant alarm is the one of the buffer access u[nx+2] at line 9. We can also
find the true alarm cluster in the same way, except that the dominant alarm
is the one of the buffer access u[-nx-2] at line 8. Instead of inspecting all the
alarms, checking either the alarm of buffer access u[-nx-2] true or the alarm of
buffer access u[nx+2] false is sufficient for users. ut

Example 2 (Inter-procedural alarm dependencies). The following code excerpted
from Appcontour 1.1.0 shows inter-procedural alarm dependencies. Our analyzer
reports three alarms at line 3, 4, and 10. In the example, array invmergerules

and invmergerulesnn have the same size 8.

1 int lookup_mergearcs(char *rule) {
2 ...

3 for (i = 1; invmergerules[i]; i++)

4 if (strcasecmp(rule, invmergerulesnn[i] == 0))

5 return (i);

6 ...

7 }
8 int rule_mergearcs(struct sketch *s, int rule, int rcount) {
9 if (debug)

10 printf("%s count %d", invmergerules[rule], rcount);

11 ...

12 }
13 int apply_rule(char *rule, struct sketch *sketch) {
14 ...

15 if ((code = lookup_mergearcs(rule)))

16 res = rule_mergearcs(sketch, code, rcount);

17 ...

18 }

Note the following two facts in this example:

1. If the alarm of the buffer access invmergerules[i] at line 3 is false, so are
the others.
– If alarm at line 3 is false, so is the one at line 4 because the buffer accesses

at line 3 and 4 use the same index variable i and there is no update on
the value between the two.

– If alarm at line 3 is false, so is the one at line 10 because the value of
index variable i at line 3 is passed to the index variable rule at line 10
without any change by function return and call (5→ 15→ 16→ 10).

2. If the buffer access invmergerules[rule] at line 10 overflows, so do the
others in a similar reason as the first fact.

We can find a false and true alarm cluster in the similar manner as in example 1.
Instead of inspecting all the alarms, checking either the alarm at line 10 true or
the alarm at line 3 false is sufficient. ut

Example 3 (Multiple dominant alarms). The following code excerpted from
GNU Chess 5.0.5 shows an example of a cluster with multiple dominant alarms.
Three alarms are reported at line 3, 4, and 9. Array cboard and ephash have
the same size 64.

1 void MakeMove(int side, int *move) {
2 ...

3 fpiece = cboard[f];

4 tpiece = cboard[t];

5 ...

6 if (fpiece == pawn && abs(f-t) == 16) {
7 sq = (f + t) / 2;

8 ...

9 HashKey ^= ephash[sq];

10 }
11 }

Since sq is the average of f and t, if both buffer accesses at line 3 and 4 are
safe, buffer access at line 9 is also safe. In this example, we have a false cluster
whose dominant alarms are the ones at line 3 and 4. ut

Contributions.

– We introduce a sound alarm clustering method for static analyzers that can
reduce the alarm-investigation cost. Our framework is general in that it is
applicable to any semantics-based static analysis. It is orthogonal to both
refining approaches and statistical ranking schemes.

– We prove the effectiveness of our clustering method for the benchmark of 16
open-source programs. By our clustering method, we reduce the number of
alarms to investigate by 54%.

Organization. Section 2 introduces our alarm clustering framework. Section 3
explains one practical algorithm which is a sound implementation of our alarm
clustering method. Section 4 discusses the experiment results. We implemented
our clustering algorithm on top of realistic buffer-overflow analyzer and apply
it to the benchmark of 16 open-source programs. Section 5 discusses the related
work and Section 6 concludes.

2 Alarm Clustering Framework

We describe our general framework of alarm clustering. In the rest of this section,
we suppose basic knowledge of the abstract interpretation framework [3] and
the trace partitioning abstract domain [16]. We begin by giving some definitions
excerpted from [16].

2.1 Definitions

Programs. We define a program P as a transition system (S,→, Sι) where S
is the set of states of the program, → is the transition of the possible execution
elementary steps and Sι denotes the set of initial states.

Traces. We write S∗ for the set of all finite non-empty sequences of states. If
σ is a finite sequence of states, σi will denote the (i+1)th state of the sequence,
σ0 is the first state and σa the last state. If τ is a prefix of σ, we write τ � σ.

A trace of program P is defined as a set [[P]] , {σ ∈ S∗ | σ0 ∈ Sι ∧ ∀i.σi →
σi+1}. The set [[P]] is prefix-closed least fixpoint of the semantic function; i.e.
[[P]] = lfpFP where FP is the semantic function, defined as:

FP : 2S
∗ → 2S

∗

FP (E) = {〈sι〉 | sι ∈ Sι}
∪ {〈s0, · · · , sn+1〉 | 〈s0, · · · , sn〉 ∈ E ∧ sn → sn+1}.

Partitioned Reachable States. Using a well-chosen trace partitioning func-
tion δ : Φ→ 2S

∗
, where Φ is the set of partitioning indices, one can model indexed

collections of program states. Domain Φ → 2S is a partitioned reachable-state
domain. The involved abstraction is α0(Σ)(ϕ) , {σa | σ ∈ Σ ∩ δ(ϕ)} and the
concretization is γ0(f) , {σ | ∀τ � σ.∀ϕ. τ ∈ δ(ϕ) ⇒ τa ∈ f(ϕ)}. The pair

of functions (α0, γ0) forms a Galois connection: 2S
∗
−−−→←−−−
α0

γ0
Φ → 2S . We write

concrete semantics [[P]] modulo partitioning function δ as [[P]]/δ .

Abstract Semantics. We think of a static analyzer which is designed over an
abstract domain D̂ = Φ→ Ŝ with the following Galois connections:

2S
∗

−−−→←−−−
α0

γ0
Φ→ 2S −−−→←−−−α

γ
Φ→ Ŝ.

The galois connection of (α, γ) is easily derived from the one of (αS , γS) between

domains 2S and Ŝ: 2S −−−−→←−−−−
αS

γS
Ŝ.

The abstract semantics of program P computed by the analyzer is a fixpoint
T̂ = lfp#F̂ where lfp# is a sound, abstract post-fixpoint operator and the func-
tion F̂ : D̂ → D̂ is a monotone or an extensive abstract transfer function such
that α ◦ α0 ◦ FP v F̂ ◦ α ◦ α0. The soundness of the static analysis follows from
the fixpoint transfer theorem [2].

Alarms. The static analyzer raises an alarm at trace partitioning index ϕ if
γS(T̂ (ϕ)) ∩ Ω(ϕ) 6= ∅ where T̂ is the abstract semantics of a program P and
function Ω : Φ→ 2S specifies erroneous states at each partitioning index. In the
rest of the paper, we use partitioning index and alarm interchangeably; alarm ϕ
means the one at the trace partitioning index ϕ.

The alarm ϕ is false alarm (resp. true alarm) when the static analyzer raises
the alarm and [[P]]/δ(ϕ) ∩Ω(ϕ) = ∅ (resp. [[P]]/δ(ϕ) ∩Ω(ϕ) 6= ∅).

Alarm Dependence Our goal is to find concrete dependencies between alarms.
Given two alarms ϕ1 and ϕ2, if alarm ϕ2 is always false whenever alarm ϕ1 is
false; i.e.

[[P]]/δ(ϕ1) ∩Ω(ϕ1) = ∅ =⇒ [[P]]/δ(ϕ2) ∩Ω(ϕ2) = ∅,

we say that alarm ϕ2 has a concrete dependence on alarm ϕ1. If we find this
concrete dependence of alarm ϕ2 on alarm ϕ1, we also have another dependence
as contraposition.

[[P]]/δ(ϕ2) ∩Ω(ϕ2) 6= ∅ =⇒ [[P]]/δ(ϕ1) ∩Ω(ϕ1) 6= ∅

Since concrete dependence is not computable in general, we use abstract
dependence which is sound with respect to concrete dependence. The idea is
that if we can kill the alarm ϕ2 from the abstract semantics refined under the
assumption that alarm ϕ1 is false, it also means that alarm ϕ2 has concrete
dependence on alarm ϕ1. It is easy to see that this is correct because, even
though the refined abstract semantics is smaller than the original fixpoint, it is
still sound abstraction of concrete semantics if the assumption of alarm ϕ1 false
holds.

In the rest of the section, we define the notion of sound refinement by refu-
tation and abstract dependence. We also prove the soundness of abstract depen-
dence.

Refinement by Refutation. Using the assumption of alarm ϕ being false, we
can get a sliced abstract semantics T̃ϕ. The definition of T̃ϕ is,

T̃ϕ = gfp#λZ.T̂¬ϕ u F̂ (Z)

where gfp# is a pre-fixpoint operator and T̂¬ϕ is the same as the original fixpoint

T̂ except the erroneous states at partitioning index ϕ sliced out:

T̂¬ϕ = T̂ [ϕ 7→ T̂ (ϕ) 	̂ αS(Ω(ϕ))]

where F [a 7→ b] is the same as F except it maps a to b. The 	̂ operator should be
a sound abstract slice operator such that αS ◦	 v 	̂ ◦αS×S where the operator
	 is a set difference and αS×S is an abstraction lifted for pairs. We assume that
the abstract domain Ŝ has meet operator and abstract slice operator.

We can extend this refinement to the case of refuting multiple alarms. Sup-
pose that we assume that set {ϕ1, · · · , ϕn} of alarms is false. The refinement
T̃{ϕ1,··· ,ϕn} of the fixpoint T̂ with respect to these assumptions is,

T̃−→ϕ = gfp#λZ.T̂¬{ϕ1,··· ,ϕn} u F̂ (Z)

where T̂¬{ϕ1,··· ,ϕn} =
d
ϕi∈{ϕ1,··· ,ϕn} T̂¬ϕi .

Abstract Alarm Dependence. We now define abstract alarm dependence.

Definition 1 (ϕ1 ϕ2) Given two alarms ϕ1 and ϕ2, alarm ϕ2 has abstract
dependence on alarm ϕ1, iff the refinement T̃ϕ1

by refuting alarm ϕ1 kills alarm
ϕ2; i.e.

iff γS(T̃ϕ1
(ϕ2)) ∩Ω(ϕ2) = ∅.

We write ϕ1 ϕ2 when an alarm ϕ2 has abstract dependence on alarm ϕ1. We
prove the soundness of abstract alarm dependence as the following lemma.

Lemma 1 Given two alarms ϕ1 and ϕ2, if ϕ1 ϕ2, then alarm ϕ2 is false
whenever alarm ϕ1 is false.

As a contraposition of lemma 1, we also have a different sense of soundness
of abstract alarm dependence.

Lemma 2 Given two alarms ϕ1 and ϕ2, if ϕ1 ϕ2, then alarm ϕ1 is true
whenever alarm ϕ2 is true.

We extend the notion of the abstract dependence for more than two alarms.

Definition 2 ({ϕ1, · · · , ϕn} ϕ0) Given set {ϕ0, · · · , ϕn} of alarms, we write
{ϕ1, · · · , ϕn} ϕ0, and say that alarm ϕ0 has abstract dependence on set
{ϕ1, · · · , ϕn} of alarms, iff the refinement T̃{ϕ1,··· ,ϕn} by refuting set {ϕ1, · · · , ϕn}
of alarms satisfies

γS(T̃{ϕ1,··· ,ϕn}(ϕ0)) ∩Ω(ϕ0) = ∅.

Lemma 3 Given set {ϕ0, · · · , ϕn} of alarms, if {ϕ1, · · · , ϕn} ϕ0, then alarm
ϕ0 is false whenever all alarms ϕ1, · · · , ϕn are false.

The contraposition of lemma 3 is not quite useful since it specifies only some
alarms among set {ϕ1, · · · , ϕn} of alarms are true when {ϕ1, · · · , ϕn} ϕ0 and
alarm ϕ0 is true.

In the rest of paper, we sometimes write −→ϕ to denote a set of alarms.

2.2 Alarm Clustering

Using abstract alarm dependencies, we can cluster alarms in two different ways.

Definition 3 (False Alarm Cluster) Let A be set of all alarms in program
P and be the dependence relation. A false alarm cluster CF−→ϕ ⊆ A with its

dominant alarms −→ϕ is {ϕ ∈ A | −→ϕ ϕ}.

Definition 4 (True Alarm Cluster) Let A be set of all alarms in program
P and be the dependence relation. A true alarm cluster CTϕ ⊆ A with its

dominant alarms ϕ is {ϕ′ ∈ A | ϕ′ +
 ϕ} (

+
 is the transitive closure of

between only singleton alarms).

Note that we cannot exploit dependencies like {ϕ1, · · · , ϕn} ϕ0 to make true
alarm cluster. As we mentioned in 2.1, it does not tell us exactly which alarms
among set {ϕ1, · · · , ϕn} of alarms are true when alarm ϕ0 is true.

The soundness of true and false alarm clusters directly follow the soundness
of abstract alarm dependence.

Theorem 1 Every alarm in CF−→ϕ is false whenever all alarms −→ϕ are false.

Theorem 2 Every alarm in CTϕ is true whenever alarm ϕ is true.

For two reasons, we only focus on false alarm clusters. First, both type of
clusters can be found from the same dependence relation , so whether to make
true or false alarm is simply the matter of interpretation. Second, in our current
framework, true alarm clusters can exploit fewer dependencies than false alarm
cluster, thus they cluster less alarms. In the rest of the paper, a cluster C means
a false alarm cluster CF .

3 Alarm Clustering Algorithm

As we explain in section 2.2, we need to compute abstract dependence relation
among all the alarms for clustering. A naive way to do this is to enumerate
all possible subsets of all the alarms and find the others that are dominated
by them. This naive algorithm requires 2N times of re-computation where N is
number of alarms, which is far from practical.

We present one practical alarm clustering algorithm, shown in algorithm 1,
which clusters alarms based on a (not all) subset of possible dependencies. By one
fixpoint computation, our algorithm finds the subset of possible dependencies.
The idea is to slice the static analysis result as much as possible by refuting all
alarms and track which dominant alarm candidate possibly kills which alarm.
Then, we cluster the alarms which must be killed by the same dominant alarm
candidate.

Our algorithm works in the following way: we start by assuming that each
alarm is a dominant one of a cluster that clusters only itself. This can be ex-
pressed by slicing out the erroneous states at every alarm point but not propa-
gating refinement yet. Then from an alarm point, say ϕ1, we start building its
cluster. We propagate its sliced, non-erroneous abstract state to another alarm
point say ϕ2 and see if the propagation further refines the non-erroneous ab-
stract state at ϕ2. If the propagated state is smaller than that at ϕ2, it means
refuting ϕ1 will refute alarm ϕ2, hence dependence ϕ1 ϕ2 and thus we add
ϕ2 to the ϕ1-dominating cluster. If the propagated state is larger than that at
ϕ2, then dependence ϕ1 ϕ2 is not certain hence, instead of adding ϕ2 to the
ϕ1-dominating cluster, we start building the ϕ2-dominating cluster. If the propa-
gated state is incomparable to that at ϕ2, then we pick both alarms as dominant
ones and start building the ϕ1-and-ϕ2-dominating cluster by propagating the
slicing effect of simultaneously refuting (i.e., taking the meet of refuting) both
alarms.

In the algorithm, we assume that Φ is the set of program points and every
program point has several predecessors and successors specified by function pred
and succ (line 2). For brevity, we also assume that an alarm can be raised at
every program point; i.e. for all ϕ ∈ Φ, Ω̂(ϕ) 6= ⊥ where Ω̂ is abstract erroneous
information (line 8).

From line 1 to 9, we give definitions used in the algorithm. Everything other
than function R at line 7 is trivially explained by the comment on the same line.

Algorithm 1 Clustering algorithm

1: w ∈Work = Φ W ∈Worklist = 2Work

2: pred ∈ Predecessors = Φ→ 2Φ succ ∈ Successors = Φ→ 2Φ

3: f̂ ∈ Φ→ Ŝ → Ŝ (* abstract transfer function for each program point *)

4: T ∈ Table = Φ→ Ŝ (* abstract state indexed by program point *)

5: −→ϕ ∈ DomCand = 2Φ (* dominant alarm candidate. set of alarms. *)

6: ∆ ∈ 2DomCand (* set of dominant alarm candidates *)

7: R ∈ RefinedBy = Φ→ 2DomCand
(* {ϕ 7→ ∆} ∈ R : T(ϕ) is refined by −→ϕ in ∆ *)

8: Ω̂ ∈ ErrorInfo = Φ→ Ŝ (* abstract erroneous state information *)

9: C ∈ Clusters = DomCand → 2Partid (* alarm clusters indexed by dominant alarms *)

10: procedure FixpointIterate(W,T,R)
11: repeat
12: ϕ := choose(W) (* pick a work from worklist *)
13: ŝ := T (ϕ) (* previous abstract state *)

14: ŝ′ := f̂(ϕ)(
⊔
ϕi∈pred(ϕ) T (ϕi))(* new abstract state *)

15: ŝnew := ŝ′ u ŝ
16:
17: ∆ := R(ϕ) (* previous set of dominant alarm candidates *)

18: ∆′ :=
⋃
ϕi∈pred(ϕ) R(ϕi)

(* new set of dominant alarm candidates *)

19: if ŝ A ŝ′ then ∆new = ∆′

20: else if ŝ v ŝ′ then ∆new = ∆

21: else ∆new := ∆ d∆′

22: if ŝnew @ ŝ then (* propagate the change to successors *)

23: W := W ∪ succ(ϕ); T (ϕ) := ŝnew; R(ϕ) := ∆new

24: until W = ∅
25: procedure ClusterAlarms(T,R)
26: for all ϕ ∈ Φ do
27: if T (ϕ) u Ω̂(ϕ) = ⊥ then
28: for all −→ϕ ∈ R(ϕ) do
29: C := C{−→ϕ 7→ C(−→ϕ) ∪ {ϕ}}
30: procedure main()

31: T := T̂¬Φ (* T̂ is the original fixpoint *)
32: R := {ϕ 7→ {{ϕ}} | ϕ ∈ Φ}
33: FixpointIterate(Φ,T,R); ClusterAlarms(T,R)

Function R keeps the information of dominant alarm candidate. As specified in
the comment, if R(ϕ) = ∆ for some program point ϕ and set ∆ of dominant
alarms, it means that the abstract state at ϕ is refined by some dominant alarm
candidate −→ϕ in ∆, thus alarm ϕ can be a member of the −→ϕ -dominating cluster.
We keep the set of dominant alarm candidates, not a single dominant alarm
candidate, since there are branches where each branch takes different dominant
alarm candidate. Line 32 shows that function R initially maps each program
point ϕ to a set that only contains itself, which means that initially, alarm ϕ is
the only member of the ϕ-dominating cluster.

Without considering gray-boxed parts, procedure FixpointIterate in the
algorithm is a traditional fixpoint iteration to compute a pre-fixpoint of a de-
creasing chain. We pick a work from worklist (line 12), compute a new abstract
state (line 14 and 15), and propagate the change to successors if the newly com-
puted state is strictly less than the previous one (line 22). We repeat this until
no work remains. To guarantee the termination or to speed up, we can integrate
acceleration method (such as widening [4] in the decreasing direction). We start

the fixpoint computation from the fixpoint refined by refuting all alarms (line
32).

Gray-boxed parts are to track which set of dominant alarm candidates refines
the abstract state at program point ϕ. As specified from line 19 to line 21, there
are three cases: 1) the new abstract state refines the previous one (line 19), 2)
the previous abstract state is smaller than or equal to the new one (line 20), and
3) both abstract states are incomparable (line 21). For the first case, we change
the set of dominant alarm candidates to the new one ∆′ (line 18). For the second
case, we do not change (line 19) since we cannot further refine the abstract state.
For the last case, we pick both dominant alarm candidates from set ∆ and ∆′

(line 20). The new set of dominant alarm candidates is thus computed by the
following lifted union d:

∆1 d∆2 = {−→ϕ 1 ∪ −→ϕ 2 | −→ϕ 1 ∈ ∆1 ∧ −→ϕ 2 ∈ ∆2}.

For each dominant alarm candidate −→ϕ 1 and −→ϕ 2 in set ∆1 and ∆2 of alarm
candidates, respectively, we union the two.

Finally, procedure ClusterAlarms validates the dominant alarm candidate
information R based on the refined fixpoint T and clusters alarms. For each alarm
at ϕ, we validate that the union of all dominant alarm candidates in R(ϕ) really
dominates alarm ϕ by checking that the refined abstract state T (ϕ) kills the
alarm (line 27). If the alarm is killed, we put alarm ϕ to the R(ϕ)-dominating
cluster (line 28 and 29).

4 Experiments

4.1 Implementation

We have implemented our alarm clustering method on top of Airac [9, 10, 19–
21], a realistic buffer-overflow analyzer for C programs. Our static analyzer is
a sound, inter-procedural abstract interpreter with interval domain. Because of
limited space, we do not explain our baseline analysis; See [20] for the details.

Three different alarm clustering analyses are implemented: 1) syntactic alarm
clustering, 2) inter-procedural semantic clustering with interval domain, 3) intra-
procedural semantic clustering with octagon domain. As we move from syntactic
clustering to semantic clustering with octagon domain, we can cluster more
alarms but need to pay more cost for the analysis. Thus, we initially use syntactic
clustering to group alarms as many as possible and then apply the semantic
clustering analyses to the rest of alarms that are not clustered yet.

In the rest of this section, we explain briefly about the implementation of
each clustering analysis.

Syntactic Alarm Clustering. Syntactic alarm clustering is based on syntac-
tically identifiable alarm dependencies. Two alarms are syntactically dependent
iff 1) the expressions that raise the alarms are syntactically equivalent and 2) the

variables inside the expressions have the same definition points in the definition-
use chain [18].

We implement syntactic alarm clustering as a post-analysis phase. The first
check for a syntactic dependence is trivial and the second check can exploit the
definition-use chain already computed by our baseline analyzer. Once we find
dependencies, the alarm clustering part is the same as algorithm 1.

Note that the syntactic alarm clustering can be explained in our clustering
framework. Syntactic alarm dependence is a special type of abstract dependence
such that the abstract transfer function between two alarm points is identity
upto the alarm-related variables, thus the falsehood of one alarm makes the
other also false trivially.

Example 4. Our static analyzer reports four alarms in the following code snippet
excerpted from ftpd.c in Wu-ftpd 2.6.2:

1 /* extern char *optarg; */

2 while (*optarg && *optarg >= ’0’ && *optarg <= ’9’)

3 val = val * 8 + *optarg++ - ’0’;

We can easily find that three alarms at line 2 have syntactic dependencies on
each other. We also find that two alarms in line 2 and 3 are also syntactically
dependent; two expressions that raise the alarms are syntactically the same
(*optarg) and the definitions of optarg at line 2 and 3 are always the same
(either the one defined before the loop or newly defined at line 3). ut

From a practical point of view, syntactic alarm clustering is beneficial for
two reasons. First, syntactic alarm clustering is highly cost-effective. It requires
only an additional definition-use analysis which does not cost a lot. Especially,
our static analyzer has been performing definition-use analysis for its own use.
Second, syntactic alarm clustering is precise because it does not involve any
abstraction.

Alarm Clustering with Interval and Octagon Domain. We implement
algorithm 1 for both interval and octagon domain. The algorithms work after
syntactic clustering algorithm find alarm clusters. The octagon domain enables
us to find dependencies that are visible only by relational analysis.

One difference between the implementation with interval domain and oc-
tagon domain is that we use more fine-grained “refined-by” information (R in
algorithm 1) in the implementation with interval domain. We track set of dom-
inant alarm candidates not per each program point, but per each variable. By
tracking dominant alarm candidates in this way, we could find more dependen-
cies.

For octagon domain-based analysis, which has not been supported by our
baseline analyzer, we integrate a prototype using Apron octagon domain li-
brary [8] into our clustering system. We only implement intra-procedural analysis
(for cost reduction) and paralleize it. For each function, we do dependence anal-
ysis [18] to find the set of alarm-related variables and pack only those variables

Table 1. Alarm clustering results.
B : baseline analysis, S: syntactic alarm clustering, I : semantic alarm clustering with
interval domain, O : semantic clustering with octagon domain.

Alarms % Reduction Time(s)Program LOC
B S S+I S+I+O S +I +O S+I+O B I O

nlkain-1.3 831 124 118 96 93 5% 18% 2% 25% 0.17 0.03 0.1
polymorph-0.4.0 1,357 25 19 13 13 24% 24% 0% 48% 0.12 0 0.06
ncompress-4.2.4 2,195 66 50 38 30 24% 18% 12% 55% 0.54 0.03 0.69
sbm-0.0.4 2,467 237 230 185 125 3% 19% 25% 47% 2.28 0.3 1.15
stripcc-0.2.0 2,555 194 165 143 127 15% 11% 8% 35% 2.76 0.07 25.44
barcode-0.96 4,460 435 386 329 302 11% 13% 6% 31% 3.23 0.1 2.59
129.compress 5,585 57 56 29 29 2% 47% 0% 49% 2.46 0.02 0.19
archimedes-0.7.0 7,569 711 342 215 132 52% 18% 12% 81% 6.48 0.27 16.11
man-1.5h1 7,232 276 226 189 165 18% 13% 9% 40% 11.65 0.28 1.86
gzip-1.2.4 11,213 385 341 278 263 11% 16% 4% 32% 10.03 0.3 2.92
combine-0.3.3 11,472 733 468 297 294 36% 23% 0% 60% 19.74 0.81 26.93
gnuchess-5.05 11,629 976 744 343 333 24% 41% 1% 66% 42.49 4.78 8.66
bc-1.06 12,830 593 330 320 198 44% 2% 21% 67% 33.75 7.04 27.23
grep-2.5.1 31,154 115 100 96 85 13% 3% 10% 26% 4.19 0.01 11
coan-4.2.2 22,414 461 350 332 291 24% 4% 9% 37% 126.66 1.91 6.14
lsh-2.0.4 110,898 616 387 319 264 37% 11% 9% 57% 115.13 2.12 204.12
TOTAL 245,861 6,004 4,312 3,222 2,744 28% 18% 8% 54% 381.68 15.94 335.19

to make octagons. We use the straightforward translation between the baseline,
interval analysis results and their octagon representations.

4.2 Experiment Results

We apply our clustering analyzer on 16 packages from three different categories
(Bugbench [14], GNU softwares, and SourceForge open source projects). Table 1
shows our benchmark.

Effectiveness. To evaluate how much our clustering can reduce the alarm-
investigation effort, we measure the number of distinct dominant alarms of alarm
clusters and compare it to the number of reported alarms. In table 1, the columns
labeled “# Alarms” show the numbers of alarms reported by baseline analyzer
(B), reduced by syntactic clustering (S), reduced further by semantic clustering
with interval domain (S+I), and reduced further by semantic clustering with oc-
tagon domain (S+I+O), respectively. The next columns labeled “% Reduction”
show the reduction ratios of each additional alarm clustering analysis (S, +I,
and +O) and the total (S+I+O).

As shown in table 1, our alarm clustering reduces 54% of alarms on aver-
age. Note that even though the syntactic clustering reduces 28% of alarms, the
semantic clustering reduces 26% additionally (18% by clustering with interval
domain and 8% by the other). This means that semantic clustering analyses suc-
cessfully find intricate alarm dependencies which can never be found by syntactic
clustering.

We investigate the most effective and the least effective cases of the interval
domain-based alarm clustering. Our interval domain-based algorithm turned out
to be the most effective for gnuchess-5.05 and 129.compress (reduced by 41% and
47%) because of the following reasons. First, the sizes of almost all buffers in the

programs are fixed. In this case, we can slice out erroneous state accurately, which
is essential for refinement by refutation, even using interval domain. Second,
there were many different buffers of the same size which are accessed using the
same index variable. On the other hand, our interval domain-based clustering
is least effective for grep-2.5.1 (reduced by 3%). It is because almost all buffers
in the program are dynamically allocated, thus the sizes of them were hard to
track accurately. Indeed, we found that the interval values of the sizes of buffers
were, in most cases, [0,∞] which means the buffer can have arbitrary size. In
this case, we cannot slice out the erroneous states at all.

For programs polymorph-0.4.0, 129.compress, combine-0.3.3, and gnuchess-
5.0.5, octagon domain-based clustering is not effective. The reason of ineffec-
tiveness for the first three programs is rather originated from our implemen-
tation, which has been only doing intra-procedural analysis. Indeed, program
polymorph-0.4.0 has many library function calls between alarm points, so that
they ruin the refinement. In the case of gnuchess-5.0.5, many buffers were ac-
cessed by indices with bit operations on them, which is beyond the reach of
octagon domain.

We also investigate the most effective case of the octagon domain-based alarm
clustering. The most effective case was program sbm-0.0.4. The program has
long consecutive buffer accesses with the indexes having relationship of form
±i± j = c. This type of relationship can be precisely expressed and handled by
octagon domain.

Clustering Overhead. We measure the analysis time to assess the overhead
of clustering analysis. All our experiments are performed on a PC with a 2.4
GHz Intel Core2 Quad processor and 8 GB of memory. In table 1, the columns
labeled “Time” present times for the baseline analysis (B) and the additional
alarm clustering with interval domain (I) and octagon domain (O). Note that we
do not measure the cost of syntactic clustering since it exploits the definition-use
chains already generated by the baseline analysis.

The overhead of interval domain-based alarm clustering is on average only
4% of the baseline analysis time. On the other hand, we find that the overhead
of octagon domain-based clustering is almost close to, and even surpasses for
some cases, the baseline analysis time. This is because octagon domain-based
static analysis usually has higher cost than interval domain-based static analysis
and our octagon domain-based abstract interpreter is prototypical and far less
optimized than interval domain-based one which has been highly optimized [9,
19, 20].

5 Related Work

To our best knowledge, Le et al.’s work [23] is the first one that proposes non-
statistical clustering method. They reduce the number of faults (alarms) by
detecting correlations (dependencies) between them. By propagating the effects
of the error state along the program path, they detect the correlation of pairs

of alarms. They automatically construct a correlation graph which shows how
faults are correlated. Based on the graph, we can reduce the number of faults to
consider.

However, Le et al.’s method is not sound, while our method is sound. Ac-
cording to their experiment results, the dependencies they use to construct the
correlation graph can be spurious (false positive), which means that it is not
always safe to rule out faults even though they are correlated to the others.

Statistical ranking schemes [7, 10, 12, 13] may help to find real errors quickly,
but ranking schemes do not reduce alarm-investigation burdens as in our work.
Since our technique is orthogonal to statistical ranking schemes, we might com-
bine our technique with them for a more sophisticated alarm reporting interface.

Our work resembles to Rival’s work [22] in the sense that both work refines
the abstraction by exploiting the information about error state. In his work, Rival
refines the abstraction by slicing out non-error states and sees if the initial state
after refinement still insists that the erroneous states are reachable. If the initial
state becomes bottom after refinement, the alarm turns out to be false. On the
other hand, in our work, we refine the abstraction by slicing out erroneous states
at one point and see if erroneous states at other points become non-reachable,
which means that we found the dependence between alarms.

Our work is more general than error recovery technique that is used for re-
ducing false alarms in many commercial static analysis tools [1, 15, 17]. For each
alarm found, the commercial analyzers recover from those alarms; i.e. they as-
sume that an alarm is false when they passed the alarm point. Because error
recovery is done within the baseline analysis, possible refinements are bounded
by the expressiveness of the abstract domain of the baseline. As we show in Sec-
tion 4, we can use more expressive domain for clustering purpose than the one
used in the baseline, which can be more cost-effective than using expensive ab-
stract domain in the baseline. Additionally, our method can derive true clusters
for which cannot be done by the error recovery technique.

Our clustering method can be integrated with other refinement approaches [5,
6, 11, 22]. The goal of them is to remove false alarms by abstraction refinement,
while our work is to reduce the number of alarms to investigate. Our work can
reduce the number of targets to do the refinement.

6 Conclusion

We have presented a new, sound non-statistical alarm clustering method for
semantic-based static analyzers. We propose a general framework of alarm clus-
tering. Our technique is general enough to be applicable to any static analysis
based on abstract interpretation. By experiment results, we show that our tech-
nique can considerably reduce the number of alarms to investigate manually.

Acknowledgment The authors would like to thank Youil Kim, Daejun Park,
Hakjoo Oh, Minsik Jin, and the anonymous referees for their comments in im-
proving this work.

References

1. Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux,
D., Rival, X.: A static analyzer for large safety-critical software. In: PLDI. pp. 196–
207 (2003)

2. Cousot, P., Cousot, R.: Abstract interpretation and application to logic programs.
Journal of Logic Programming 13(2–3), 103–179 (1992)

3. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL. pp.
238–252 (1977)

4. Cousot, P., Cousot, R.: Comparing the galois connection and widening/narrowing
approaches to abstract interpretation. In: PLILP. pp. 269–295. Springer-Verlag,
London, UK (1992)

5. Gulavani, B.S., Chakraborty, S., Nori, A.V., Rajamani, S.K.: Automatically refin-
ing abstract interpretations. In: TACAS. Lecture Nodes in Computer Science, vol.
4963, pp. 443–458 (2008)

6. Gulavani, B.S., Rajamani, S.K.: Counterexample driven refinement for abstract
interpretation. In: TACAS. LNCS, vol. 3920, pp. 474–488. Springer (2006)

7. Heckman, S.S.: Adaptively ranking alerts generated from automated static analy-
sis. Crossroads 14, 7:1–7:11 (2007)

8. Jeannet, B., Mine, A.: Apron: A library of numerical abstract domains for static
analysis. In: CAV. pp. 661–667 (2009)

9. Jhee, Y., Jin, M., Jung, Y., Kim, D., Kong, S., Lee, H., Oh, H., Park, D., Yi., K.:
Abstract interpretation + impure catalysts: Our Sparrow experience. Presentation
at the Workshop of the 30 Years of Abstract Interpretation, San Francisco (2008)

10. Jung, Y., Kim, J., Shin, J., Yi, K.: Taming false alarms from a domain-unaware C
analyzer by a bayesian statistical post analysis. In: SAS. pp. 203–217 (2005)

11. Kim, Y., Lee, J., Han, H., Choe, K.M.: Filtering false alarms of buffer overflow
analysis using smt solvers. Inf. Softw. Technol. 52(2), 210–219 (2010)

12. Kremenek, T., Ashcraft, K., Yang, J., Engler, D.R.: Correlation exploitation in
error ranking. In: FSE. pp. 83–93 (2004)

13. Kremenek, T., Engler, D.R.: Z-ranking: Using statistical analysis to counter the
impact of static analysis approximations. In: Symposium on Static Analysis. pp.
295–315 (2003)

14. Lu, S., Li, Z., Qin, F., Tan, L., Zhou, P., Zhou, Y.: Bugbench: Benchmarks for
evaluating bug detection tools. In: Workshop on the Evaluation of Software Defect
Detection Tools (2005)

15. MathWorks: Polyspace embedded software verification, http://www.mathworks.

com/products/polyspace/index.html

16. Mauborgne, L., Rival, X.: Trace partitioning in abstract interpretation based static
analyzers. In: Sagiv, M. (ed.) ESOP. Lecture Notes in Computer Science, vol. 3444,
pp. 5–20. Springer-Verlag (2005)

17. Microsoft: Code contracts, http://msdn.microsoft.com/en-us/devlabs/

dd491992.aspx

18. Muchnick, S.S.: Advanced compiler design and implementation. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA (1997)

19. Oh, H.: Large spurious cycle in global static analyses and its algorithmic mitigation.
In: APLAS. Lecture Notes in Computer Science, vol. 5904, pp. 14–29. Springer-
Verlag, Seoul, Korea (2009)

20. Oh, H., Brutschy, L., Yi, K.: Access analysis-based tight localization of abstract
memories. In: VMCAI. pp. 356–370. Springer-Verlag, Berlin, Heidelberg (2011)

21. Oh, H., Yi, K.: An algorithmic mitigation of large spurious interprocedural cycles
in static analysis. Software: Practice and Experience 40(8), 585–603 (2010)

22. Rival, X.: Understanding the origin of alarms in astrée. In: SAS. Lecture Notes in
Computer Science, vol. 3672, pp. 303–319. Springer (2005)

23. Wei Le, M.L.S.: Path-based fault correlations. In: FSE (2010)

