A Theorem Prover for Boolean BI

Jonghyun Park

Jeongbong Seo

Sungwoo Park

Department of Computer Science and Engineering
Pohang University of Science and Technology (POSTECH)
Republic of Korea

{parjong,baramseo,gla}@postech.ac.kr

Abstract

While separation logic is acknowledged as an enabling technology
for large-scale program verification, most of the existing verifica-
tion tools use only a fragment of separation logic that excludes sep-
arating implication. As the first step towards a verification tool us-
ing full separation logic, we develop a nested sequent calculus for
Boolean BI (Bunched Implications), the underlying theory of sep-
aration logic, as well as a theorem prover based on it. A salient fea-
ture of our nested sequent calculus is that its sequent may have not
only smaller child sequents but also multiple parent sequents, thus
producing a graph structure of sequents instead of a tree structure.
Our theorem prover is based on backward search in a refinement
of the nested sequent calculus in which weakening and contraction
are built into all the inference rules. We explain the details of de-
signing our theorem prover and provide empirical evidence of its
practicality.

Categories and Subject Descriptors F.4.1 [Mathematical Logicl:
Mechanical theorem proving, Proof theory

General Terms Verification

Keywords Separation logic, Boolean BI, Theorem prover, Nested
sequent calculus

1. Introduction
1.1 Separation logic

Separation logic [36] is an extension of Hoare logic which facili-
tates reasoning about programs using mutable data structures. As it
is acknowledged as an enabling technology for large-scale program
verification [7, 31, 38], researchers have developed automated ver-
ification tools that use separation logic as their foundational theory.
Examples of such tools include Smallfoot [4], Space Invader [15],
THOR [30], SLAyer [6], HIP [33], VeriFast [26], jStar [14], and
Xisa [13]. The active development of such tools attests to the im-
portance of local reasoning in program verification, which is pre-
cisely the key feature that separation logic intends to support.

All the aforementioned tools, however, use not full separation
logic but only a decidable fragment by Berdine et al. [3] or its ex-
tension. Specifically separation logic features two new logical con-
nectives, separating conjunction = and separating implication —x,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

POPL’13, January 23-25, 2013, Rome, Italy.
Copyright © 2013 ACM 978-1-4503-1832-7/13/01. .. $10.00

but this decidable fragment includes only separating conjunction.
Lack of separating implication implies that for any program per-
forming heap mutation or allocation, there is no support for back-
ward reasoning by weakest precondition generation, an essential
requirement for any complete program verification system (see Ish-
tiaq and O’Hearn [25]). Thus, while very effective in their respec-
tive application domains, these tools allow only forward reasoning
based on symbolic execution as in [5] and fail to demonstrate the
full potential of separation logic in program verification.

Omitting separating implication is not a deliberate decision.
Rather it is an inevitable decision due to the availability of no
theorem prover for full separation logic. Berdine et al. [5] suggest
that such a theorem prover is highly desirable and can evolve into
a complete program verification system based on separation logic:

This incompleteness could be dealt with if we instead used

the backwards-running weakest preconditions of Separation
Logic. Unfortunately, there is no existing automatic theo-
rem prover which can deal with the form of these asser-
tions (which use quantification and the separating implica-
tion —x). If there were such a prover, we would be eager
consumers of it.

Still, however, there is no practical theorem prover for full separa-
tion logic.

Our long-term goal is to develop a theorem prover for full sep-
aration logic and incorporate it into a program verification sys-
tem supporting backward reasoning. The first step is then to study
Boolean BI, the underlying theory of separation logic.

1.2 Boolean BI

Boolean Bl is a substructural logic which belongs to the family of
the logic of BI (Bunched Implications) of O’Hearn and Pym [34].
It inherits additive connectives from classical propositional logic,
thus retaining the convenience of classical reasoning. It is also par-
ticularly suitable for reasoning about local resources because of
multiplicative connectives inherited from intuitionistic linear logic.
Like other members in the family, Boolean BI allows us to con-
sider free combinations of these additive connectives and multi-
plicative connectives, giving rise to an unusual form of contexts
called bunches: trees whose internal nodes specity whether sub-
trees are combined additively or multiplicatively. We obtain sepa-
ration logic as a model for Boolean BI based on a monoid of heaps.

While theoretical work on Boolean BI is maturing with recent
discoveries of its undecidability [11, 29], there is still no practical
theorem prover for Boolean BI. The display calculus for Boolean
BI by Brotherston [10], which draws on the framework of display
logic by Belnap [1], has the cut elimination property and thus can
be easily turned into a theorem prover, but developing a practical
proof search strategy on top of it does not seem to be easy because
of the complexity due to its display rules [9]. In order to develop

a practical theorem prover for Boolean BI and hence also for full
separation logic, we choose to develop another proof theory that
directly reflects the characteristics of Boolean BI and lends itself
well to proof search. This paper presents such a proof theory for
Boolean BI as well as a theorem prover based on it.

1.3 Contribution

We present a nested sequent calculus Sggi for Boolean BI. Un-
like in typical nested sequent calculi [12, 22-24, 27], its sequent
may have not only smaller child sequents but also multiple parent
sequents, thus producing a graph structure of sequents instead of a
tree structure. The use of nested sequents is necessary because of
the presence of intuitionistic multiplicative conjunction in a clas-
sical setting. The use of a graph structure of sequents is necessary
because of the interaction between multiplicative implication and
classical negation. As in typical multi-conclusioned sequent calculi
for classical logic, we use multisets of formulas not only for an-
tecedents but also for succedents of a sequent. Thus sequents in
Segr1 do not use bunches, which are supplanted by new structural
connectives specifying a graph structure of sequents. Sggr has the
cut elimination property and is sound and complete with respect to
the Kripke semantics for Boolean BI.

Our theorem prover for Boolean Bl is based on backward proof
search in another nested sequent calculus CSggi which is ob-
tained from Sgg1 by building weakening and contraction into all
the inference rules. In conjunction with a graph structure of se-
quents, the structural rules in CSggr1 make it particularly challeng-
ing to devise a practical proof search strategy, even if it is based on
backward proof search. We deal with an explosion in the search
space due to the structural rules, which can be applied indefinitely
and exponentially increase the search space, by prioritizing their
applications. We find that our theorem prover is reasonably fast in
proving typical formulas of Boolean BI. To the best of our knowl-
edge, our theorem prover is the first theorem prover for Boolean
BIL.

1.4 Organization of the paper

Section 2 gives preliminaries on Boolean BI. Section 3 presents
the nested sequent calculus Sggr and the satisfaction relation for
its sequents. Section 4 proves the cut elimination property of Sgsi,
and Section 5 proves the soundness and completeness of Sgp1 with
respect to the satisfaction relation as well as the Kripke semantics
for Boolean BI. Section 6 reviews the display calculus for Boolean
BI by Brotherston [10] and shows that Sggr is an optimization of
the display calculus. Section 7 presents the nested sequent calculus
CSgai. Section 8§ describes the backward search strategy in our
theorem prover and presents experimental results. Section 9 dis-
cusses related work and Section 10 concludes. Our theorem prover
(with an online demo) and accompanying technical report are avail-
able at http://pl.postech.ac.kr/BBI/.

2. Preliminaries on Boolean BI

Formulas in Boolean BI extend classical propositional logic with
multiplicative connectives from linear logic:

formula A == P|L|-A|AVA|I|AxA|A—~A

P denotes an atomic formula drawn from a set V. | is the multi-
plicative unit. A x B is a multiplicative conjunction and A — B
is a multiplicative implication. We define T as =L, AA B as
—(=AV-B), and A— B as =AV B. We use conventional
precedence rules for logical connectives: = > A, x > V >
—, —k.

The Kripke semantics of Boolean BI [17] uses a non-deterministic

commutative monoid on a set U. Assume a binary operator

w,p =P iff. w € p(P)
w,p =L iff. never
w,pE-A iff. w,pFEA

w,pEAVB iff. w,plEAorw,p=DB

w,pE1 iff. w=e
w,pEAxB iff. Jwi,ws € U suchthatw € wi o wo
and wi,p = Aand wa, p = B
Ywi € U. wr, p = A implies
Ywy € wowi. wa,p = B

w,plEA—*B iff.

Figure 1. Satisfaction relation w, p |= A for formulas

(Axiom1) FA—=IxA

(Axiom2) FIxA— A

(Axiom3) FAxB — Bx A

(Axiom4) F Ax(B*C)— (AxB)*C

|‘A1~>A2 '_BIHBQ
|_(A1 *Bl)%(AQ*BQ) *
F(A«B)—C FA— (B—C)

H 2y
FAS (B—C) 8 FAxB) SO0 2

Figure 2. Axioms and inference rules for multiplicative connec-
tives in the Hilbert system for Boolean BI

0:U xU — P(U) and a unit element e € U (where P(U) de-
notes the power set of U). We extend o to a binary operator on
P(U) such that Uy o Uz = U{w1 o wa | wr € Ur,wa € Uz} A
non-deterministic commutative monoid is a triple (U, o, e) which
satisfies the following conditions:

(neutrality) Vw € U. woe = {w}
(commutativity) Vwi, w2 € U. w1 0 w2 = w2 o wy
(associativity) Vw1, w2, ws € U. w1 o (w2 0 wg) =

(w1 owz) ows

Given a non-deterministic commutative monoid (U, o, €) and a
valuation p : V' — P(U) of atomic formulas, we obtain the Kripke
semantics of Boolean BI from the satisfaction relation w, p = A
for formulas given in Figure 1. The satisfaction relation w, p = A
is defined inductively on the structure of formula A. A formula A
is valid, written |= A, if w, p = A holds for any element w and
valuation p.

The Hilbert system for Boolean BI [35] uses a judgment - A
and is obtained by extending classical propositional logic with
axioms and inference rules for multiplicative connectives given in
Figure 2. An induction on the structure of the proof of - A proves
the soundness of the Hilbert system with respect to the Kripke
semantics of Boolean BI. Galmiche and Larchey-Wendling [17]
prove that the Hilbert system is also complete with respect to the
Kripke semantics of Boolean BI.

Theorem 2.1. = A if and only if - A.

3. Nested sequent calculus Sgpr for Boolean BI

This section presents the nested sequent calculus Sggr for Boolean
BI. We first explain the definition of sequents in Sgp1. Then we
present the satisfaction relation for sequents and the inference rules
of SgBiI.

3.1 Nested sequents

A sequent in Sggr represents a graph structure whose nodes store
sequents in classical logic. A node can have multiple parent nodes

| W | [Too= Ay
W \ r=A \ \ Weo \
‘Fc1=>Ac1 H Wea ‘ ‘ Wes H Wea ‘

Figure 3. An example of a graph structure of nodes in Sggr (p for
parent, c for child, s for sibling)

as well as multiple child nodes, but the following two relations
should always hold:

1. A node can have multiple parent nodes, but each parent node
determines a unique sibling node. Hence no node can have two
parent nodes with the same sibling node.

2. A node can have multiple child nodes, but each child node
determines another unique child node. Hence we can divide all
child nodes into groups of two sibling nodes.

Formally a sequent W describes a graph structure with respect
to a certain node in it, which we refer to as the reference node. It
consists of a truth context and a falsehood context. A truth context
contains node states which are either true formulas specific to the
reference node or descriptions of its relation to child, sibling, and
parent nodes; a falsehood context contains false formulas specific
to the reference node:

sequent W = TI'= A
truth context I' = ;s
falsehood context A = A A

|
-
node state S = A|0m | W, W |W{W)

We use truth contexts and falsehood contexts as unordered sets and
do not use an additive zero (like (), in the definition of bunches). @
is a special node state which corresponds to the unit element of the
monoid in the Kripke semantics of Boolean BI. A multiplicative
pair W, W' asserts the existence of a pair of child nodes which are
reference nodes of W and W’. An adjoint pair W {(W")) asserts
the existence of a sibling node and a common parent node which
are reference nodes of W and W', respectively. Note that a sequent
in Sggr reverts to a sequent in classical logic if we leave only true
formulas in its truth context.

The use of adjoint pairs implies that we can describe the same
graph structure of nodes using different sequents by changing the
reference node. As an example, consider the graph structure in
Figure 3 where lines denote parent-child relations and arcs denote
sibling relations. We let I = Ws1{Wp1)); (Wes, Wea). Then
the following three sequents describe the same graph structure in
Figure 3, but all use different reference nodes (top right, center,
and bottom left):

sz; (F; F,; (Fc1 = Acl, Wcz) = A, WSQ) = Apz
;T (Dot = Act, Wea); Wea(Tp2 = Apa)) = A
Ler; Wea (T3 T Waz (Tp2 = Ap2)) = A)) = Aa

Ser1 provides two inference rules which convert a sequent into
another equivalent sequent by changing the reference node.

Our definition of sequents in Sgrr embodies the principle of
proof by contradiction from classical logic: a proof of a sequent
means that its truth and falsehood contexts together lead to a logical
contradiction. This departure from the standard interpretation of se-
quents for classical logic (in which the conjunction of antecedents
implies the disjunction of succedents) is intentional, as the princi-

ple of proof by contradiction guides the development of both the
satisfaction relation and the rules for SgBr.

3.2 Satisfaction relation for sequents

Given a non-deterministic commutative monoid (U, o,e) and a
valuation p : V — P(U) of atomic formulas, we can define the
satisfaction relation w,p [=w W for sequents. It uses another
satisfaction relation w, p |=s S for node states and the satisfaction
relation w, p = A for formulas:

. vS erl. S
w,pEw = A iff. {VAEA.%:O/)';SA

The satisfaction relation w, p =s S for node states is defined as
follows:

w,pEs A iff. w,pEA
w,pEs O iff. w=e
w, p ':5 Wl,WQ iff. Ewl,wz € U such that w € w1 o wa
and w1, p Ew Wi and wa, p Ew Wa
w, p ':5 W1<<W2>> iff. Ewl,wg € U such that ws € w o w1
and w1, p Ew Wi and we, p Ew Wa

Note that the satisfaction relation for multiplicative formulas
can be rewritten in terms of the satisfaction relation for node states
as follows:

o w,p = liff. w, p Es Om.
cwpEAxBiffw,pEs (A=), (B=").
e w,pEA—xBiff. w,p lrs (A=) = B).

If w,p FEw W holds for any element w and valuation p, we
say that TV is unsatisfiable and write j=yy W.

3.3 Nested sequent calculus Sgg1

Figure 4 shows the nested sequent calculus Sgpr for Boolean
BI. The inference rules are divided into three groups: structural
rules, traverse rules, and logical rules. We read every rule from the
conclusion to the premise.

A structural rule makes a change to the sequent in the conclu-
sion, but does not change the reference node. The rules WLs, WRs,
CLs, and CRs are weakening and contraction rules. The rules ECs
and EAs rewrite a node state according to commutativity and as-
sociativity of sequents, respectively. Note that associativity of se-
quents does not use (W1, W2), W5 and Wi, (W2, W3), both of
which are syntactically ill-formed. The rule @Us creates a new
child node with a special form of sequent (), = -, which can be
absorbed back into the parent node by the rule PmDs. Intuitively
(m = - describes an empty node whose sibling node can be identi-
fied with its parent node.

A traverse rule changes the reference node without changing
parent-child or sibling relations between nodes. The rules 7Cs and
TPs promote the left child node (corresponding to I'ci = A1)
and the parent node (corresponding to I', = Ap), respectively,
as the new reference node. In conjunction with the rule ECs, the
two traverse rules enable us to designate an arbitrary node as the
reference node because every pair of nodes can be connected only
via parent-child relations. The following example shows how to
promote the sibling node as the reference node:

Ts; (T= A){(Tp = Ap) = A
Ty (Ts = A, (D= A) = A, Ecz
Ip; (D= A),(Ts = As) = Ap TPs
I;(Fs = A)((Tp = Ap)) = A

A logical rule focuses on a principal formula in the reference
node. If the sequent already expresses a logical contradiction, it

Structural rules:
I'= A I'=A

I;s; = A

D= A A A OW, W= A

I;S= A T=a4 "Rs

0 Wi, (We, W3 =) = A

InS=A
Iy (FQ = AQ),(@m =) = Ay

CR EC
S owow =A °

;T2 = A Ag

S TS AA

@mDS

D, (Wi, Wa =), Ws = A °

Traverse rules:
Fc1§ (FCQ = ACQ)«F = A» = Acl

T1;T2 = Ag; Az

OnUs T (T = o), (0m =) = A

I'p; (= A),(Ts = As) = Ap

S
F; (Fcl = Acl)7 (FC2 = A02) = A

Logical rules:

[;(Ts = A){(Tp = Ap) = A

(p for parent, c for child, s for sibling)

Init 1L I'=A 1R I'=AA I INA= A R I'i; A= A1 T'a;B= Ay VL
A=A S TS ToA L S T-A=A S T=A,-4 " TI2AVB= A, Ay S
I'= A;A; B VR I 0m = A " R A=),(B=)=A .
T=MAVB S Tia=4a 7 =t 0® T AxB= A s
T'i=A;;A Ta= A B R ' = A1;A TI'o;B= Ag F7(A:>)(<:>B)>:>A
(T1 = A1),(T2 = Ag) = Ax B ° (T1 = A2 = Ag); A B = - I = AA B S
Figure 4. Nested sequent calculus Sggi for Boolean BI
completes the proof without generating a premise. All the rules Initg
from Inits to VRs are from classical propositional logic. The rule B =B WLs'4
Inits expresses the principle of proof by contradiction. The rules L 0m;B=B s
ILs and I.RS use the fact that | is true only in an empty node wh.ich = Inits Om = B:—B ﬁRSH
(m describes. The rules xLs and *Rs are based on the following *Rs

interpretation of multiplicative conjunction x:

w,pE A% B iff. Jwi,ws € U such that w € w1 o wy
andwi,p = Aand we,p E B
Ywi,wz € U. w € wy o we implies

w1, p E Aorwse,p £ B

The rule xLs creates (3) two fresh child nodes (corresponding to
wy and ws) where A and B are true, respectively, which explains
why we need to use nested sequents. The rule *Rs chooses (V)
two existing child nodes (corresponding to w; and ws) which
are described by T'1 = A; and T'; = As. The rules —Ls and
—Rs are based on the following interpretation of multiplicative
implication —x:

w,pEA—B iff. Yw; € U. w1, p = Aimplies

Yws € wowi. we,p = B

Jwi, w2 € U such that we € w o wy
and w1, p = A and w2, p £~ B

The rule —«Ls chooses (V) existing sibling and parent nodes (cor-
responding to wi and ws) which are described by I'y = Ay and
I’ = Aj. The rule —*«Rgs creates (3J) a fresh sibling node (corre-
sponding to w) where A is true and a fresh parent node (corre-
sponding to w2) where B is false, which explains why we need to
allow multiple parent nodes.

w,p e Ax B iff.

w,p e A—B iff.

Figure 5 shows an example of proving A — (A x B) V (A x —B)

in Sggr. The formula means that every node can have an adjacent
node in which either B or =B is true. First we apply the rule 0, Us
to create an empty node, described by @ = -, in which we later
mix assumptions of B and —B to produce a logical contradiction:

Then we extend the truth context of the empty node with a node
state .S describing the current relation with its sibling and parent

nodes:

Here we promote the empty node as the reference node to generate
S and apply the contraction rule CLs to duplicate S. After isolating
the sequent for the empty node and adding B to its falsehood
context, we consume S in Orn; S = B (by the rule TPs) to restore

(A=), ®m = B)= Ax—-B

EC,
(@m:>B),(A=>'):>A*B;A*‘|B TPS}Q
A=A Om; S = B S

(A=),0m;S=)=A%xB
_EC
(0m;S =), (A=) = AxB;Ax B 5}5

TPs

Dm; S; 8 = -
@m;S:>' TC

(0 =), (A=) = A+ B; Ax-B 5}3
(A=), 0>)= AxBiAx-B

2
A= AxB;A%x-B OmUs

A= (AxB)V (Ax-B)

where S = (A= -){(- = A% B; A% -B))

Figure 5. A proof of A= (AxB)V (Ax—B) in Sgg1. We
number all proof steps for comparison with Figure 6.

Inits8

*Rs”
WRS6

CL54

VRs L

the previous relation between the empty node and its sibling and
parent nodes:

Finally we add B to the truth context and produce a logical contra-

diction:

4. Cut elimination in Sg
We state the cut elimination property of Sggr as follows:!

Theorem 4.1 (Cut elimination).
I = A;CandT;C = A, then T T = A A

! Strictly speaking, Theorem 4.1 states only the admissibility of the cut rule.
The cut elimination property, however, immediately follows as a corollary
and we refer to Theorem 4.1 as the cut elimination theorem.

Section 6 gives an indirect proof of Theorem 4.1 which exploits
the cut elimination property of the display calculus for Boolean
BI [10]. Here we give a sketch of a direct proof which is inspired
by the proof of cut elimination in original display logic [1].

The main complication in proving Theorem 4.1 is that the two
contraction rules CLs and CRs duplicate a node state or a formula
in their premise. In conjunction with the traverse rules, these con-
traction rules can produce copies of the cut formula C' in different
(smaller) sequents within the same sequent, as in:

T (Fl; c" = Al), Wi (F2;0n2 = AQ),WQ = A

Here C™ means a truth context containing n copies of C. To
represent such a sequent containing smaller sequents with copies
of the cut formula, we introduce the following definitions:

partial sequent w JEy=1ITv=A
partial truth context ~ == o|o;y
partial node state o = w, W |W,w|w,w]|
w(W) | W{w)) | wlw)
A partial sequent is a sequent with one or more holes in it; similarly
partial truth contexts and partial node states contain one or more
holes. We write w[W1] - - - [W,,] for the sequent obtained by filling

holes in w with sequents W1y, --- W, in that order; we define
~y[Wh]--- [Wy] and o[W1] - - - [W,] in a similar way:
w[Wil--- [Wn] =
1% wherew =[,n =1

1
Dy y[Wal -+ [Wh] = A1 wherew = [;v = |,
n>1,W =11 = A

Liy[Wh]--- [Wa] = A wherew =Ty = A

Note that [;y =] uses the first sequent to describe the reference
node and remaining sequents to fill the holes in 7.

The proof of Theorem 4.1, which is inspired by the proof of cut
elimination in display logic [1], proceeds by proving the follow-
ing three lemmas. Here we say that /C/ holds if I = A; A and
I'"; A= A’ implies I'; T = A; A’ for any proper subformula A
of C'. We also write I';|C| = A and I = A;[C] to indicate that C
is the principal formula of the last inference rule in their proofs. The
proof of Lemma 4.3 uses Lemma 4.2, and the proof of Lemma 4.4
uses Lemma 4.3.

Lemma 4.2. Suppose that /C'/ holds. Then
I'= A;[Cland T;[Cl = A imply T; T = A A

Lemma 4.3. Suppose that /C/ holds. Then
w[F1 = Al; le] s [Fk = Ak;C"k] andP’; = A,
imply w[l'1; 17 = A Al [T TV = Aps A).

Lemma 4.4. Suppose that /C'/ holds. Then
I'= A;Cand w[l};C™ = Af]--- [[;C™ = Af]
imply w[[; T = A; A [0; T, = A; AL

Then we complete the proof of Theorem 4.1 by induction on the
structure of the cut formula C.

5. Soundness and completeness of Spp1

This section proves the soundness and completeness of the nested
sequent calculus Sgg1 with respect to the satisfaction relation in
Section 3.2 (Theorems 5.1 and 5.2). It means that the syntactic
provability of a sequent coincides with its semantic unsatisfiability,
confirming the principle of proof by contradiction embodied in the
definition of sequents.

Theorem 5.1 (Soundness). IfI' = A, then lEw I' = A
Theorem 5.2 (Completeness). If ey I' = A, then I’ = A.

The proof of soundness proceeds by induction on the structure of
the proof of I' = A. The proof of completeness uses a translation

of a sequent W into a formula [W] in Boolean BI defined as
follows:

[I'=Alw = [IleA-[Ala
[le = T [la = L
;8] = [e A LSTs [AAla = [AlavA
Om]s = |
Wi, Wa]s = [Wi]w * [Wa]w
Wi(W2)ls = ~([Wi]w —=[Wa]w)

Recall that a sequent W is a description of a set of nodes with
respect to a reference node. [W] is essentially the same descrip-
tion as W, except that it specifies the relationship between nodes
through the use of multiplicative connectives * and — and nega-
tion —.2 The translation is characterized by Propositions 5.3 and
5.4.

Proposition 5.3. (A W if and only if = —[W .
Proposition 5.4. If- = —[I' = A, then I' = A.

Propositions 5.3 and 5.4 allow us to complete the proof of
completeness if we additionally show that = A implies - = A (for
A = —[I' = A]w). Since = A implies - A by Theorem 2.1, it
suffices to prove the following lemma, whose proof exploits the cut
elimination property of Sgs1 (Theorem 4.1):

Lemma 5.5. Ift A, then - = A.

The following corollary shows that Sggr is sound and complete
with respect to the Kripke semantics in Section 2:

Corollary 5.6. - = A ifand only if = A.

6. Display calculus for Boolean BI

This section reviews the display calculus DLggpr for Boolean
BI (without the cut rule) by Brotherston [10]. We establish the
equivalence between Sgpr and DLggr1, and show that Sggr is
an optimization of DLggr.

6.1 Definition and properties of DLgg1

The display calculus DLggr uses a judgment X Fp Y, called a
consecution, in its inference rules; X is called an A-structure and
Y a C-structure:
A-structure X A0y | 0m [8Y | X5 X | X, X
C-structure 'YV == A[0[4X|Y;V | XY

A-structures are essentially an extension of bunches in Boolean BI
with negative structures §Y". C'-structures do not use the multiplica-
tive unit (J, and the multiplicative structural connective ,, but intro-
duce a negative structural connective £ and a multiplicative struc-
tural connective —o which is originally from the display calculus
for linear logic [2].

The inference rules of DLpg1 are divided into three groups:
structural rules, display rules, and logical rules. Structural rules
deal with the structural properties of consecutions. Display rules
introduce or eliminate Y, §X, and X — Y as necessary in order
to “display” a target A-structure or C-structure as the sole element
in the left or right side of a consecution. A logical rule focuses on a
single formula that has already been “displayed” in the left or right
side of a consecution by the display rules. We refer the reader to
[10] for the inference rules of DLpg1.

Brotherston [10] presents the following results on DLgg::’

2 The definition shows that TW7 (T2)) is a meta-level operator correspond-
ing to the logical connective septraction in [8, 37].

3 Similarly to Theorem 4.1, Theorem 6.1 states only the admissibility of the
cut rule, but we refer to it as the cut elimination theorem.

Theorem 6.1 (Cut elimination).
IfXbtp Aand Abp Y, then X Fp Y.

Theorem 6.2 (Soundness and completeness).
0a Fp Aifand only if = A.

6.2 Equivalence between Sggrr and DLgp1

Although the equivalence between Sgpr and DLgpgr is obvious
from Corollary 5.6 and Theorem 6.2, it does not illuminate how se-
quents and consecutions are related. Here we present direct trans-
lations between the two calculi and study their similarities and dif-
ferences.

Given a consecution X Fp Y, we translate A-structure X to
a sequent [X[x and C-structure Y to another sequent [Y]y.
Then we combine [X]x and [Y]y to build a single sequent
[X Fp Y]e. Letus write (T' = A)W(I” = A") for I T = A; A
We define [X Fp Y]c as follows:

[XFpY]e = [X][xw[Y]y
[[A ry = A=
H@a X = c =
[[@m x = @m =
Y] = [Y]y
[X1; X2]x = [Xa]x W [X2]x
[X1, X2]x = [Xi]x, [Xe]x =
[[A y = = A
D]y = -=-
[fX]y = [X]x
[Yi;Yo]y = W]y w([Ye]y
[X—Y]y = [X]x([Y]y)=-

Like sequents in Sgsr, both A-structure X and C-structure Y
are essentially descriptions of a set of nodes, but formulas in X are
regarded as true whereas formulas in Y as false in the reference
node. We also observe that multiplicative structures X1, X2 and
X —o Y correspond to multiplicative pairs and adjoint pairs in
SeEI.

Lemma 6.3 shows that Sggr is as expressive as DLegr:

Lemma 6.3.
IfX }_,D Y holds in DLBBI, then [[X |_D Y]]c holds in SBBL

Given a sequent I" = A, we translate I to an A-structure [I']g
and A to a C-structure [A]p. Then we combine [I']g and [A]p
to another A-structure [I' = AJyy defined as follows:

[['=Alw = [Ilg:t[Alp
[l = 0. [lo = 0a
[T;8Te = [Tlg;[S]s [AsA]lp = [Alp;A
[Als = A
[Dn]s = Om
Wi, Wa]s = [Wi]w, [Wa]w
[Wi{Wa)ls = &([Wilw —t[Wa]w)

[WT1y is defined in a similar way to [W] given in Section 5.
For example, [W1, W2]s coincides with [W1, Wa]s if we write ,
as %, and [W1{(W2))]s coincides with [W1{(W2))]s if we write
fas - and — as —. The comparison between [W]yy and
[W]w reveals a correspondence between structural connectives in
DLgg: and logical connectives in Boolean BI that complies with
the translation from DLgpg1 to Boolean BI given in [10].

Lemma 6.4 shows that DLggr is as expressive as Sgpi. In
conjunction with Lemma 6.3, it proves the equivalence between
SBBI and DLBB[.

Lemma 6.4. IfT" = A, then [’ = A]w Fp 0a.

With Lemmas 6.3 and 6.4, we can now give another indirect
proof of Theorem 4.1 by exploiting Theorem 6.1. We need an
additional lemma relating the two translations:

Lemma 6.5.
[IMlg]x =T = - and [[A]p]y = - = A.

Proof of Theorem 4.1. Suppose I' = A;C and T'; C' = A,
[[F 4 A; Cﬂw Fp @a and [[F/; C = A/HW Fp @a
by Lemma 6.4
[Tlg; 81AlD b Cand C ko §[IM]g; [A']o
by the display rules and the rule 0, Rp
[[F]]g; ﬁ[[A]]D }_D ﬁ[[r/ﬂg; [[A,HD by Theorem 6.1

[0;T]g Fo [A; Al by the display rules
[[T; ¢ ko [A; A']p]c in Seer by Lemma 6.3
0T = A A by Lemma 6.5 O

6.3 Sggr as an optimization of DLgg1

The two translations in Section 6.2 suggest that sequents in SBB1
essentially represent a normal form of consecutions in DLegri. We
say that a consecution is of the normal form if it permits a negative
structure §.X only in the right side of — according to the revised
definition of C-structures:

C-structure Y == A[0,|Y;Y | X —fX

It turns out that every consecution X Fp Y can be converted by
the structural rules (for associativity and (),) and the display rules
to its normal form [[X Fp Y]c]w Fp 0a, whose formulas form
the same syntactic structure as the sequent [X Fp Y]c. Thus we
may think of sequents as representing consecutions of the normal
form and Sgg1 as a sequent calculus that directly manipulates such
consecutions.

Note that consecutions of the normal form in DLgg; still
require the negative structural connective § whereas Sgr requires
no such negative structural connective. Hence those display rules
dealing with § have no counterparts in Sgg1, which implies that
proof searches in Sggr are always simpler than in DLggr (except
in trivial cases) because of the extra cost of applying such display
rules in DLggr.

Figure 6 shows an example of proving in DLggr the same for-
mula as in Figure 5. The proof search proceeds in a similar man-
ner: first creating (), next applying a contraction rule to duplicate a
C-structure, then consuming the C'-structure, and finally applying
the rule Init>. We number each proof step to mark the correspon-
dence between proof steps in Figures 5 and 6. Note that the display
rule MD1ap expands to a pair of a traverse rule (7Cs or TPs) and
the rule ECs (at proof steps 3, 5, and 9). We observe that DLeg1
takes extra six proof steps all of which apply display rules (marked
in rectangles). This example illustrates that Sggr is a formal sys-
tem which can be obtained from an optimization of DLggr that
dispenses with those display rules dealing with the negative struc-
tural connective f and revises all the logical rules accordingly.

7. Nested sequent calculus CSgp;

While the presence of multiplicative connectives from intuitionis-
tic linear logic may suggest the inverse method for implementing
a theorem prover for Boolean BI, the contraction property alone
makes the inverse method not so ideal as it seems, as already ob-
served in previous work on intuitionistic BI by Donnelly et al. [16].
This is especially the case for Sgr1, which, unlike sequent calculi
for intuitionistic BI, needs to use a graph structure of sequents in-
stead of a tree structure. For example, it is not clear how to gen-
erate a minimal graph structure that weakens to a given pair of
graph structures (for those inference rules with two sequents in the
premise). Thus we choose to use a backward search strategy in our
theorem prover.

As the first step, we obtain the nested sequent calculus CSgB1
(Contraction-free Sggi), shown in Figure 7, by embedding the
weakening and contraction rules (WLs, WRs, CLs, and CRs) into

Structural rules:

Ty (I Wi, Wa = A'),Wa; Wi & S1, (Wa @ So, W@ Sz = +) = A

S1 = W (T'; W3 (T = A) = A")

T (Wi, We = A), Wy = A

s Wo, Wy = A

=
EAc where So = Wi(I; W3(T' = A)) = A)
S3 = (I"; Wi, Wa = A)(T = A)

==

L= A),0n =)= A

Wi, Wy = A

;T = A1), (T2;0m = A2); TS = A Ay

T (01 = A1), (T2;0m = Ag) = A

Traverse rules:
FC1; (FCQ = Acg)«l—‘ = A» = Acl

I'=A OmUe

OmDce where S = (I'2;0m = A2)(T = A))

Ip; (D= A),(Ts = As) = Ap

C
I (FC1 = Acl)v(FCQ = AC2) = A

Logical rules:

[;(Ts = A){(Tp = Ap) = A

I'=A;A

(p for parent, c for child, s for sibling)

A=A

A= AA
IMA=A I'B=A

I''l=A

Init 1L 5
ke ¢ T,-A= A

I'"TAVB=A
A=),(B=:)=A

=R
¢ T=A-A €

T;0m = A
il= A

c ILc IRc

T;0m = Al

F;(Fl :>A1;A),(F2 :>A2) = A;AxB F;(Fl =>A1),(]._‘2 =>A2;B) = A;AxB

L
T AxB= A e

F;(Fl = Al),(rg = Ag) = A;A*B
F;(Fl = Al;A)«FQ = AQ»;A —*B = A F;(Fl = Al)«FQ;B = AQ»;A —*B = A L
—x

*Re

D= =By =4

F; (Fl = Al)«FQ = AQ»;A —+B = A

¢ = A A+B ¢

Figure 7. Nested sequent calculus CSgpi. We define (I' = A) @ S as I'; S = A in the rule EAc.

R 15
Brp B Initp

Bimton 7
———— |AD1
0o i5.E

ey raer
my 3

- g 12 R PR p 1
Arp A Initp OmifB Fp —B R’D11
A, (0m; 8B) Fp Ax—B :VLD .
A, (Om: #B)); 4 (Ax B) Fp Ax—B _ P
(A, (0m; 8B)); 4() Fp DS
4, (@nitB) Fp Ax B A+ B MD1ap?

Om;tBFp A— (A B; A% —B)

AD2b
s Om Fp B; A—(Ax B; Ax —B)
Arp A "D g HA—(AxB;Ax-B)) Fp B
A, (0m: 8(A—<(AxB; Ax—B))) Fp Ax B i
A (mif(A—(AxB;AxB) Fp AxBiAx—B ' "
5
Om; #(A—o(Ax B; Ax=B)) Fp A—o(Ax B; Ax —B) %
Om Fp (A—(Ax B; A% —B)); (A—(Ax B; Ax—B)) _4“D
Om Fp A—o(Ax B; Ax—B) CRp
Abp AxB;Ax—B
VRp!
Abp (AxB)V (Ax—B)

6

MD1lap?
@m UD2

Figure 6. A proof of Atp (AxB)V (Ax—B) in DLgg1
(adapted from Brotherston [9])

all the other rules of Sggr. Similarly to Sgg1, the inference rules
are divided into structural rules, traverse rules, and logical rules.
Since contraction is built into all the inference rules in CSggi,
the premise of every structural rule subsumes the graph structure
of nodes represented by the conclusion. Except the rule EC¢ which
rewrites a node state according to commutativity of sequents, every
structural rule has a premise that strictly extends its conclusion with
new relations between nodes. Below we further describe the two

structural rules EAc and (,Uc, in which the premise restructures
nodes by changing parent-child and sibling relations but is also
able to recover the original structure of nodes expressed in the
conclusion.

In the rule EAc, each sequent W; & S; (i = 1,2,3) in the
premise represents the same graph structure as the conclusion,
except that its reference node is now described by W;. Extending
W, with S; in this way is a part of building contraction into the
rule FAc and is thus necessary for the completeness of CSgg1
with respect to Boolean BI. As an example, consider the proof of a
sequent

(Wl,WQ 4 B),Wg = -
where W1 = A= -and Wy = C — —(=(A — B) * C') = - and
W3 = C' = -. We apply the rule EA¢ to generate another sequent

(Wh,Wa = B),Ws3; W1 @ S1, Wa @ Se, Ws ® S3 =) = -

with Sy = Wa(Ws((- = -) = B)) and S = Wi (Ws (- = -) = B)

and Ss = (W1, W2 = B){(- = -)). Eventually we reach the fol-
lowing sequent which is provable only because of the interaction
between S2 and A — B via the rule —+L¢:

C #*—\(—!(A 7*3) *C);
(Ws © S3) (W1 @ S1)((S1 = -)) = ~(A — B) x C);
[S2A—B]= -

Hence, if we omit \S; in the premise of the rule EA¢, we lose the
completeness of CSggr.

The rule 0,Uc creates a new child node with a special form
of sequent () = -, which can be absorbed back into the parent
node by the rule @mDc. Intuitively @ = - describes an empty node
whose sibling node can be identified with its parent node. Similarly
to the rule EAc, the premise of the rule fDc combines the conclu-
sion with a new sequent I'1;.S = Aj, which represents the same
graph structure as the conclusion but has a different reference node.
Omitting S in the premise also costs the completeness of CSgg1.
For example, if we omit S in the premise of the rule mDc, the se-
quent in Figure 8 is not provable because its proof depends on the
interaction between A — B and S via the rule —Lc.

Om; A; (S" = B)Y{A —xB = B)) = A

Inite

A —%B; (0 A= A),(S' = B) = B ZC o
A %B;(5 = B), 0m; A= A) = B Pc A—BiB;(S'=B),(id=)=>B ¢
S (dm;iA= A)(A—+B=>B)=>B 8 0mA=)(A—~*B;B=B)=>B .
[A=BE(T=).0mA=) T:E= B e
A—B;(T="),0m;A=-)=>B me
Where{ o EL?T*AB?T)S-;*&j@)-);T

Figure 8. A proof of A — B; (T =), (Im; A = -) = Bin CSgp1

Every inference rule in CSggg is invertible, i.e., the premise
implies the conclusion and vice versa. We can formally prove that
both weakening and contraction are admissible in CSggi. We can
also prove the equivalence between Sgg1 and CSggi.

Theorem 7.1 (Weakening and contraction in CSggi).
IfT = A, then; S = Aand ' = A; A.
IfT;5;8 = A, then I'; S = A.

IfT = A; A; A thenT = Aj A

Theorem 7.2 (Equivalence between Sggr and CSggi).
I' = Ain Ssgi ifand only if I' = A in CSggr.

Figure 9 shows an example of proving in CSgg: the same
sequent as in Figure 5. The proof tree is much smaller: the depth
decreases from 16 to 8 and the number of applications of rules
decreases from 18 to 12. Besides the amount of non-determinism
in proof search is now minimal. In Figure 5, after applying the rule
@mUs (when read from the conclusion to the premise), we have to
decide whether or not to duplicate S by applying the contraction
rule CLs, and if we skip the rule CLs, proof search fails. In
Figure 9, this form of non-determinism does not arise because
the contraction rule is embedded into the rule @,Uc. As a result,
except for applying the rule (,Uc indefinitely, the only source of
non-determinism concerns which of A x B and A x —B should be
considered first by the rule *R¢, which is irrelevant for the purpose
of this proof anyway.

Since their role is to change only the reference node without
changing the graph structure of nodes, the traverse rule 7C¢ and
the structural rule EC¢ in Figure 9 do not increase the complexity
of proof search. For example, once we decide to focus on =B in
A; (A= A), (0m = B;~B) = A, we obtain a unique sequence
of rules, namely EC¢ followed by TCc, for exposing 0, = B; =B
in the reference node. Thus the cost of proof search is incurred
mainly by various decisions on applying the structural and logical
rules and not by applications of the traverse rules. Section 8.5
explains how to eliminate the traverse rules altogether in proof
search.

8. Backward proof search in CSpp;

This section explains the design of our theorem prover which uses
a backward search strategy built on top of CSggi. Because of
the undecidability of Boolean BI [11, 29], our theorem prover
implements a semi-decision algorithm. For our purpose, a semi-
decision algorithm is still useful because in program verification,
we usually attempt to prove formulas that are believed to be true.
Our theorem prover includes a certifier which converts every
proof in CSgg1 into an equivalent proof in Sgg1 according to our
proof of Theorem 7.2. In addition to automated proof search, it also
supports an interactive mode, in which the user can issue various
tactics to manually change the structure of nodes. Both extensions
are a preliminary step toward developing a program verification

Algorithm ProveBBI(W, d)
Input: goal sequent W, search depth d
Output: true or fail
1 for each node w,
2 promote w as the reference node
3 if Initc, LLc, or IRc is applicable, return true
4: if =L¢, =Rc, VRe, IL¢, L, or —Rc is applicable,
5: W' « result of applying the rule
6: return ProveBBI(W’, d)
7 if VLc is applicable,
8: W1 and W < result of applying the rule
9: return ProveBBI(W1, d) && ProveBBI(W2, d)

10: if xR¢ or —Lc is applicable to a fresh node state S,
11: W1 and Wa < result of applying the rule to S
12: return ProveBBI(W1, d) && ProveBBI(W>, d)

13: if d = 0, return fail
14: for each node state .S in node w
to which EA¢ or mDe is applicable,
15: promote w as the reference node
16: W’ « result of applying the rule to S
17: if ProveBBI(W’, d — 1) = true, return true
18: for each node w,

19: promote w as the reference node
20: W' < result of applying 0Uc
21: if ProveBBI(W', d — 1) = true, return true

22: return fail

Figure 10. Pseudocode for the proof search algorithm ProveBBI

system based on full separation logic. For space reasons, we do
not describe these extensions.

8.1 Basic structure of the proof search algorithm

Figure 10 shows the pseudocode for the proof search algorithm
ProveBBI. Given a goal sequent W/ and a search depth d as input, it
attempts to search for a proof tree for W with at most d applications
of the structural rules (except the rule EC¢) along any search path.
First it examines every formula in a given sequent and applies the
corresponding logical rule if possible (lines 1-12). After checking
if d = 0 (line 13), it considers the structural rules EAc, @mDc, and
OmUc (lines 14-21). It returns either true or fail, depending on the
result of the proof search. For the sake of simplicity, the algorithm
ProveBBI assumes that the rule EC¢ is embedded into all the other
rules. For example, the rule EA¢ in Figure 10 indeed refers to one
of the four instances obtained by independently applying the rule
EC¢ to node states Wi, Wo and (I"; Wy, Wa = A'), Ws.

The first phase of the algorithm ProveBBI (lines 1-12) exploits
the fact that all the logical rules, including xR¢ and —Lc, are
invertible. Hence it starts by applying the logical rules wherever
possible until no more applications are left. For the rules *R¢ and
—Lc, we make sure that they do not focus more than once on the

Inite

Ini (A= D) (A= A)BI=[B "
Om; (A = A) (A = A) = B; 5B ch

Init 4
[l (0n = B)(A = A) = A[A] TZ” A(n=BB) A= 8)=a

c

A=) Qao b)) A
*,

Init
@00 = (A= A) = AF ¢ AES A (n=B) = A
C

A (A= A A, (On =) = A

A; (A= A), (0 = B) = Ax B;[Ax—B|

Re

A (A= A), (0m =) > [AxBEAx B

*Rc

A= AxB;Ax—-B

A=[(AxB)V (Ax-B)

OmUc where A = A% B; Ax—B

VRc

Figure 9. A proof of A = (A% B) V (Ax—B) in CSggi. Each rectangle marks a principal formula or a sequent to be exposed in the

reference node.

same pair of a principal formula and a node state (e.g., a pair of
A —xB and (I't = A1), (I'2 = A2) in the rule xRc), since the
principal formula survives in the premise.

After the first phase, the algorithm ProveBBI recursively in-
vokes itself to apply the structural rules EAc, OmDc, and 0mUc in
depth-first order (lines 14-21). For example, with d = 2, it con-
siders all sequences of length 2 in the following order: EAc—EAc,
EAc~0wDec, EAc—OmUc, OmDc—EAc, OmDe—0mDe, OmDe—DmUe,
OmUc—EAc, OmUc—0mDe, OmUc—DmUc. We choose to consider the
rules EAc and 0mDc before the rule () Uc, which is the least re-
strictive rule in the sense that it can be applied to any sequent. Note
that applying a structural rule does not create new formulas but
only gives rise to new pairs of a formula (A x B or A — B) and a
node state to which the rules xR¢ and —xL¢ can be applied. A re-
cursive invocation of ProveBBI immediately focuses on these new
pairs during its first phase (lines 10-12).

8.2 Explosion in the search space and the number of subgoals

While the algorithm ProveBBI eventually finds a proof tree for ev-
ery provable sequent if given an unlimited search depth, a naive im-
plementation suffers from two problems that are unique to Boolean
BI. The first is an explosion in the search space in terms of the
amount of conjunctive non-determinism among the logical rules
*Rc and —Lc and the structural rules. That is, a typical proof
search is quickly overwhelmed with too many choices for applying
these rules, which are all invertible and thus can be applied aggres-
sively. This problem is due to the structural rules EAc, OmDc, and
(@mUc, each application of which immediately doubles or quadru-
ples the search space. The second problem is an explosion in the
number of subgoals due to the logical rules xRc and —L¢, each
application of which increments the number of subgoals. These
rules can be applied to each formula A x B or A — B as many
times as there are corresponding node states. For example, if I" con-
tains n» multiplicative pairs, the rule xR¢ creates 2" subgoals from
T' = A % B during the first phase of the algorithm ProveBBI.

The first problem is closely related to the contraction property
built into the structural rules. As an example, consider the structural
rule EAc in Figure 7. The graph structure of the premise has four
times more nodes than that of the conclusion because each sequent
W; & S; (i = 1,2,3) represents the same graph structure as
the conclusion, as shown in Figure 11. Consequently the premise
provides four times more ways to apply the rules of CSggi, thus
quadrupling the search space. In a similar way, each application of
the other structural rules @Dc and (), Uc doubles the search space.
We remark that the first problem is not the price to pay for building
contraction into the structural rules, since the same problem of
search space explosion remains even if we do not build contraction
into the structural rules.

The second problem itself is orthogonal to the first problem, but
its effect is heavily exacerbated by the first problem. As an exam-
ple, consider again the structural rule EAc in Figure 7 where we
set A = Ax (B« C). After an application of the rule EA¢ to ob-
tain the graph structure in Figure 11, two applications of the rule
*R¢ ensue to copy A to Wi, B to Wa, and C' to Ws. If these for-
mulas happen to involve multiplicative connectives, we can again
apply the rules xR¢ and —L¢ to propagate their component formu-
las, which, in turn, may trigger further applications of the rules xR¢
and —L¢, and so on.

To alleviate the first problem, we need to devise a scheme for
prioritizing applications of the structural rules (Section 8.3). We
can solve the second problem by borrowing an idea from the inverse
method (Section 8.4). In addition, we can eliminate the traverse
rules altogether (Section 8.5).

8.3 Prioritizing applications of the structural rules

As a solution to the first problem, we assign a priority, either high
or low, to every sibling relation between nodes so as to prioritize
all applications of the rules EA¢ and @mDc, and to every node
itself so as to prioritize all applications of the rule PmUc. When
applying a structural rule, the algorithm ProveBBI first considers
sibling relations and nodes with a high priority and then those with
a low priority. Below we explain how to assign priorities to sibling
relations and how to determine priorities for nodes.

For the rule EAc as shown in Figure 7, we assign priorities to
sibling relations in the premise according to Figure 11 with the
following interpretation:

e For a sequent inside a rectangle , every sibling relation in
it is assigned the same priority as in the conclusion.

e For a sequent inside a dashed rectangle | W !, every sibling
relation in it is assigned a low priority.

e A sibling relation depicted with solid lines ~"™\ is assigned a
high priority.

e A sibling relation depicted with dashed lines.-"-.is assigned a
low priority.

The rationale for this assignment is that an application of the
rule EAc is primarily intended to generate sibling relations de-
scribed by Wi, (W2, W3 =), rather than Si, Sz, and Ss in
Wi @ S1,(Wa@® Sz, Ws @ Ss = -). When applying the rule
EAc, the algorithm ProveBBI focuses first on those node states
both of whose sibling relations have a high priority. In a similar
way, we assign priorities to sibling relations in the premise of the
rules OmDc and mUc according to Figure 12.

We determine priorities of nodes by analyzing priorities of sib-
ling relations. If a node is involved in a sibling relation with a high

Figure 11. The graph structure of nodes before (conclusion) and after (premise) applying the structural rule EA¢ in Figure 7

After applying the rule (nDc:

[foa JU[Ti=A | [To0n =4 |
T1=815 Taidn= 2]

After applying the rule 0, Uc:
I'=A

[T=A | [On=-]

Figure 12. Assigning priorities to sibling relations after applying
the rules OmDc and PmUc. (' = A) U (I" = A’) is defined as
T = A A

priority, it is more likely to be under active consideration by other
structural rules than those nodes with no such involvement. Hence
we assign a high priority to every node involved in at least one such
sibling relation. For the logical rules xLc and —R¢, we reuse the
priority assigned to the reference node of the conclusion for two
new nodes in the premise.

Now we redesign the algorithm ProveBBI as a two-stage algo-
rithm. In the first stage, it applies the structural rules using only
sibling relations and nodes with a high priority. Note that it still
generates every node with a low priority, which is never used by
the structural rules, but may be needed by the logical rules. For ex-
ample, the two sequents discussed in Section 7 are provable in the
first stage precisely because we also generate every node with a low
priority. If the proof search fails, it enters the second stage and re-
peats the proof search without ignoring sibling relations and nodes
with a low priority. The second stage is necessary for the complete-
ness of proof search, since some formula requires us to apply the
structural rules using those with a low priority as well. In fact, we
can find even a formula whose proof tree applies the structural rules
using only those with a low priority. Section 8.6 presents examples
of such formulas.

8.4 Reusing the proof tree from the premise

We solve the problem of an explosion in the number of subgoals
with a simple technique of reusing the proof tree from the premise.
Suppose that we apply the rule xR¢ or —L¢ to produce two sub-
goals in the premise, without knowing whether this application is
necessary or not. If this application is unnecessary, however, every
proof tree for the first premise must be a proof tree for the con-
clusion as well. Hence, upon finding a proof tree for the first sub-

goal, we “replay” it against the conclusion, and attempt to prove
the second subgoal only in the case of a failure. In this way, we can
aggressively apply the rules *R¢ and —L¢ without worrying about
an explosion in the number of subgoals. In essence, we partially
simulate the inverse method with a moderate overhead of revisiting
proof trees (but without entirely reformulating the nested sequent
calculus CSggi).

8.5 Eliminating the traverse rules

The algorithm ProveBBI invokes the traverse rules to change the
reference node (lines 2, 15, 19 in Figure 10), but we can eliminate
the traverse rules altogether with a slight change in the represen-
tation of sequents. The basic observation is that the traverse rules
change only the reference node without altering the graph structure
of nodes. Hence, by rewriting every rule in such a way that it di-
rectly focuses on any formula or node without requiring a reference
node, we can discard the traverse rules.

To this end, we introduce a labelled sequent which assigns a
unique label w to every node and annotates all formulas and (,’s
in it with w:
= EZFY¥=1I
= | E,w~wrwe
: X, AQuw | X, O @Qu
w= - |II, AQuw

w ~ wi-ws in the graph structure specifies that w is a parent
node of wi and ws. Then we can convert every sequent to a
unique labelled sequent modulo renaming labels, since a sequent
determines a unique graph structure of nodes where each node
contains a unique set of true formulas, y’s, and false formulas.
Let us write [WW] for the unique labelled sequent converted from
sequent W . For a rule deducing W from W' (and W) in CSgg1,
we derive a new rule that deduces [W] from [W'] (and [W"]) in
a single step; for an axiom deducing W in CSggi, we derive a
new axiom deducing [W7]. We refer to the resultant system as the
labelled CSsgr:

labelled sequent

graph structure

labelled truth context
labelled falsehood context

= 041 &~
I

W/R in CS [[W,HR in the labelled CS
— in — — in the labelle
W BBI Wl c BBI
The labelled CSgg1 has no traverse rules because the premise
and conclusion of a traverse rule in CSgg1 represent the same
graph structure of nodes. Still it is equivalent to CSgg1 because
the definition of labelled sequents embeds the traverse rules into all
the inference rules:

Proposition 8.1. W is provable in CSsgu if and only if [W] is
provable in the labelled CSggi.

Figure 13 shows an example of proving in the labelled CSgB1
the same formula as in Figure 9. The depth decreases from 8 to

Init
w~wy-we BTy BQwa = Aj; A1; BQws mie

wr~wy-we BT = A; Ay BQug; AQuw;y

Init -
mte wr~wywz F T = A; Ay BQug; ~BQuws; £

Init
w~wy-ws BT = A; Ay AQu; mte

*Rp

w~wi-we T = Ax BQw;[A x ~BQuwl; A1; BQuw>

*R,

w~wy-ws F T = [Ax BQuw|; A x ~BQw; A

- FH AQw = A% BQw; A x —-BQuw

AQw; AQuwz; OmQuwo

-+ AQw = (A% B) V (A*-B)Quw

A x BQuw; A x ~BQu
A% B@wl; Ax ‘!B@’wl

OmUr r
VR, where A

Ay

Figure 13. A proof of - H AQuw = (A% B)V (A% —B)Qu in the labelled CSggi. The rule xR focuses on the formula inside the

rectangle.

6 and the number of applications of rules decreases from 12 to 8.
The rule Init, immediately completes the proof when it detects
the same labelled formula in both contexts of a given labelled
sequent. The rule —R also directly focuses on ~BQuws, regardless
of the presence of w ~ w; -ws in the graph structure. In this way,
the labelled CSgp1 dispenses with the traverse rules, yielding a
smaller proof tree than CSggi.

8.6 Experimental results

We compare a naive implementation of the algorithm ProveBBI
with an optimized implementation that incorporates those ideas de-
scribed in Sections 8.3 and 8.4. Both implementations internally
use the labelled CSgpr to eliminate the traverse rules, as ex-
plained in Section 8.5. Our implementations are written in Objec-
tive CAML and run on Ubuntu Linux 11.10 with Intel Core i7-960
3.2GHz and 6 gigabytes of main memory.

Figure 14 shows results of running both implementations (naive
and optimized) on 14 representative formulas. For a given formula
A, we use sequent - = A and search depth d as input to the
algorithm ProveBBI. Except for experiment (c), we set d to the
minimum search depth for finding a proof tree. The result is either
the return value of ProveBBI (true and fail) or error if the proof
search does not terminate within 10 minutes. In measuring the cost
in terms of the number of applications of the rules, we exclude the
rule ECc which is already embedded into all the other rules. The
elapsed time is in seconds.

Experiment (a) tests nine formulas (all involving multiplicative
connectives) of increasing complexity. The two formulas marked
#f require only those applications of the rule EAc in which sibling
relations with a low priority are visited; hence the proof search fin-
ishes in the second stage of the algorithm ProveBBI. Experiment
(b) is designed to measure the effectiveness of the two optimiza-
tions specifically against the rule EAc. Experiment (c) tests the ef-
fect of increasing d for a common formula which can be proven
with two applications of the rule EA¢ followed by an application of
the rule @mDc.

We observe that the cost of proof search is mainly driven by
search depth d, i.e., the number of applications of the structural
rules required to complete proof search. We also observe that the
optimized implementation is much less susceptible to the expo-
nential growth of the search space than the naive implementation,
thereby demonstrating that the two optimizations in Sections 8.3
and 8.4 are indeed highly effective. In experiment (c), a search
depth of 3 eventually produces a proof tree, but only after a number
of wrong applications of the rule EAc. An increase of d to 4, how-
ever, immediately incurs a wrong application of the rule EA¢ which
happens to lead to the correct two applications of the rule FAc,
which is why it produces a proof tree at a much lower cost (from
5942 to 181). A further increase of d to 5 does not significantly in-
crease the cost, but the elapsed time becomes much longer because
of the extra overhead of manipulating much larger sequents.

Overall we find that the optimized implementation is reasonably
fast in proving typical formulas of Boolean BI.

9. Related work
9.1 Proof search in the logic of BI and separation logic

Previous work on proof search in the logic of BI mainly focuses on
intuitionistic BI, which is another member in the family that inher-
its multiplicative connectives from intuitionistic linear logic (like
Boolean BI), but additive connectives from intuitionistic proposi-
tional logic. Galmiche and Méry [18, 19] present a labelled tableau
calculus for a propositional fragment without L and develop a theo-
rem prover, called BILL, on top of it. Their later paper [21] extends
the calculus for full intuitionistic BI. Donnelly et al. [16] investi-
gate the inverse method for a propositional fragment without units
(T, L, and I) and develop a forward theorem prover.

For Boolean BI, no theorem prover has been developed yet
because of the lack of a proof theory suitable for proof search.
Larchey-Wendling and Gamliche [28] formulate a labelled tableau
calculus by extending the labelled tableau calculus for intuitionistic
Blin [21], but only in order to investigate the relation between intu-
itionistic BI and Boolean BI. Brotherston [10] shows that a modular
combination of display calculi for classical logic and intuitionistic
linear logic gives rise to a display calculus DLgg1 for Boolean BI,
the first cut-free syntactic formulation of Boolean BI, and proves
the cut elimination property by observing that its rules obey all
the syntactic constraints given in [1]. Developing a practical proof
search strategy on top of it, however, is far from easy because of the
complexity due to its display rules and the difficulty in restricting
applications of the contraction rules [9].

Galmiche and Méry [20] present a labelled tableau calculus
for separation logic. It lies somewhere between syntactic (tableau)
and semantic (labelled) formulations because labels correspond to
heaps in separation logic. Their calculus, albeit sound and com-
plete, does not directly translate to a proof search strategy in its
current form. It is easy to build a tableau for a given formula ac-
cording to the calculus, but one needs to check if all branches in
the tableau are logically or structurally inconsistent. This requires
two semantic functions (a measure and an interpretation) for each
branch, and the calculus does not specify how to obtain such se-
mantic functions. For a similar reason, the labelled tableau calculus
for Boolean BI in [28] does not directly translate to a proof search
strategy. For theorem provers for the decidable fragment of sepa-
ration logic by Berdine et al. [3] (without separating implication),
see, for example, [4, 14, 32].

9.2 Nested sequent calculi

A nested sequent calculus is one whose sequent may contain
smaller sequents. It has been used as a proof-theoretic formula-
tion of some modal and tense logics [12, 27] for which no sequent
calculus of the standard form exists. Sggr is also a nested sequent
calculus because a sequent may contain smaller sequents.

formula d naive optimized
result cost | result cost time
@ | (A—+«B)A(Tx(IANA)—B 1 true 9 true 9 0.001
T—+=(=AxD) > A 1 true 9 true 9 0.001
—((A—*—=(Ax B))A((mA —%—-B) A B)) 1 true 26 | true 19 0.001
- (A—+B—+C) *xAxB —xC 2 true 700 | true 76 0.021
| > Ax(BxC)—*AxB*C 2 true 2606 | true 263 0.051
I - A% ((BL —*B2) *C) —x A% (B1 —* B2) xC 2 true 12317 true 336 0.102
f —((A — = (=(D —*« (A% (C«xB))) * A))ANC % (DA (A* B))) 2 true 121000 | true 380 0.053
—((C1 * (C2 * C3))A
((A —x —~(~(B % —~(C % (C3 + C1))) x A)) % (B A (A+T)))) 2 true 1614053 true 43 0.023
—((A—*=(=(D —*=(C* Bz *x (B1 xA)))x A)ANC
f w(D A (A (Bi x Bz)))) 3 error - true 74856 128.4
b) | Ax(B*x(C* D)) — Dx*(C*(Bx*A)) 2 true 2618 true 56 0.012
Ax (B*x(C* D)) — D« (B*(C*A)) 3 true 15686 | true 34 0.041
Ax (Bx(Cx(DxFE))) = E* (D% (Ax(B=x*(C))) 3 | error - true 2320 2.2
Ax (B*x(Cx(DxFE))) = E*(Bx*(Ax*(C*D))) 4 | error - true 2921 28.2
) | - A% ((By —xB2) %« (C D)) —% A% D * (C x (B1 —x B2)) 2 fail 1795 fail 1837 0.438
3 error - true 5942 8.2
4 | error - true 181 7.0
5 | error - true 182 127.0
6 | error - | error - -

Figure 14. Results of running two implementations (naive and optimized) of the algorithm ProveBBI. The elapsed time is in seconds.

A nested sequent calculus is often obtained as an optimization
of an equivalent display calculus that is not simplified to a sequent
calculus of the standard form. Gore et al. [22-24] propose such
nested sequent calculi for bi-intuitionistic logic and classical tense
logic. In particular, their nested sequent calculus SKt for classical
tense logic is similar to Sggr in that it has two residual rules corre-
sponding to the traverse rules of Sggi. The main difference is that
SKt uses only a tree structure of sequents and has no rule for asso-
ciativity (which changes parent-child and sibling relations between
sequents). Hence it is much easier to embed contraction rules in
SKt than in Sgs1 and the problem of search space explosion due
to structural rules as in CSgg1 does not exist in SKt.

9.3 Comparison between Sggrr and DLgg1

We have seen in Section 6.3 that for Boolean BI, sequents in SB1
essentially represent a normal form of consecutions in DLgg1. For
intuitionistic BI, Brotherston [10] establishes a stronger result that
sequents in its sequent calculus are literally a normal form of conse-
cutions in its display calculus and thus belong to the same syntactic
category. He also conjectures that a cut-free sequent calculus for
Boolean BI is unlikely to exist if it has no negative structural con-
nective such as f in DLgg1 (see Section 5 in [10]). Our discovery
of Sgr1 does not contradict his conjecture because we can think of
sequents in Sggpr as implicitly applying a negative structural con-
nective to falsehood contexts.

What is equally important, however, is that introducing only a
negative structural connective is not enough to achieve a cut-free
sequent calculus for Boolean BI, which must use a graph structure
of sequents in which a sequent may have multiple parent sequents.
In the case of DL, the linear structural connective —o allows
such a graph structure of sequents, but the purpose of introducing
—o is to obtain the display theorem which is essential to Belnap’s
proof of the cut elimination theorem for display calculi [1]. Sim-
ilarly, even though it does not require such a graph structure, the
display calculus for intuitionistic BI in [10] also has the same lin-
ear structural connective —o. In contrast, Sppi introduces an ad-
joint pair W {{W')) for the sole purpose of allowing such a graph
structure of sequents.

10. Conclusion

Despite its close connection with separation logic, Boolean BI has
not received much attention from the proof search community.
Such a lack of research, which is quite unusual considering the

status of separation logic in the field of program verification, is
perhaps due to the difficulty of finding a proof theory suitable for
theorem proving. Our nested sequent calculus Sggr as well as a
theorem prover based on it may serve as a test bed for developing
proof search strategies for Boolean BI. In particular, its use of
nested sequents allowing multiple parent sequents may shed new
light on how to deal with separating implication in a theorem prover
for separation logic.

Acknowledgments

We are grateful to the anonymous reviewers for their helpful com-
ments. This work was supported by the Engineering Research Cen-
ter of Excellence Program of Korea Ministry of Education, Science
and Technology (MEST) / National Research Foundation of Korea
(NRF) (Grant 2012-0000472) and Mid-career Researcher Program
through NRF funded by the MEST (2010-0022061).

References

[1] N. Belnap. Display logic. Journal of Philosophical Logic, 11:375—
417, 1982.

[2] N. Belnap. Linear logic displayed. Notre Dame Journal of Formal
Logic, 31:14-25, 1990.

[3] J. Berdine, C. Calcagno, and P. W. O’Hearn. A decidable fragment of
separation logic. In Proc. FSTTCS, pages 97-109, 2004.

[4] J. Berdine, C. Calcagno, and P. W. O’Hearn. Smallfoot: Modular
automatic assertion checking with separation logic. In Proc. FMCO,
pages 115-137, 2005.

[5] J. Berdine, C. Calcagno, and P. W. O’Hearn. Symbolic execution with
separation logic. In Proc. APLAS, pages 52—68, 2005.

[6] J. Berdine, C. Calcagno, B. Cook, D. Distefano, P. W. O’Hearn,
T. Wies, and H. Yang. Shape analysis for composite data structures.
In Proc. CAV, pages 178-192, 2007.

[7] L. Birkedal, N. Torp-Smith, and J. C. Reynolds. Local reasoning about
a copying garbage collector. In Proc. POPL, pages 220-231, 2004.

[8] R. Brochenin, S. Demri, and E. Lozes. On the almighty wand. In Proc.
CSL, pages 323-338, 2008.

[9] J. Brotherston. A cut-free proof theory for boolean BI (via display
logic). Technical Report DTR09-13, Imperial College London, 2009.

[10] J. Brotherston. A unified display proof theory for bunched logic. In
Proc. MFPS, pages 197-211, 2010.

[11] J. Brotherston and M. Kanovich. Undecidability of propositional
separation logic and its neighbours. In Proc. LICS, pages 130-139,
2010.

[12] K. Briinnler. Deep sequent systems for modal logic. In Proc. Advances
in Modal Logic, pages 107-119, 2006.

[13] B.-Y. E. Chang and X. Rival. Relational inductive shape analysis. In
Proc. POPL, pages 247-260, 2008.

[14] D. Distefano and M. J. Parkinson. jStar: towards practical verification
for Java. In Proc. OOPSLA, pages 213-226, 2008.

[15] D. Distefano, P. W. O’Hearn, and H. Yang. A local shape analysis
based on separation logic. In Proc. TACAS, pages 287-302, 2006.

[16] K. Donnelly, T. Gibson, N. Krishnaswami, S. Magill, and S. Park. The
inverse method for the logic of bunched implications. In Proc. LPAR,
pages 466—480, 2004.

[17] D. Galmiche and D. Larchey-Wendling. Expressivity properties of
boolean BI through relational models. In Proc. FSTTCS, pages 357—
368, 2006.

[18] D. Galmiche and D. Méry. Proof-search and countermodel generation
in propositional BI logic. In Proc. TACS, pages 263-282, 2001.

[19] D. Galmiche and D. Méry. Semantic labelled tableaux for proposi-
tional BI (without bottom). Journal of Logic and Computation, 13:
70-753, 2003.

[20] D. Galmiche and D. Méry. Tableaux and resource graphs for separa-
tion logic. Journal of Logic and Computation, 20:189-231, 2010.

[21] D. Galmiche, D. Méry, and D. J. Pym. The semantics of BI and
resource tableaux. Mathematical Structures in Computer Science, 15:
1033-1088, 2005.

[22] R. Goré, L. Postniece, and A. Tiu. Cut-elimination and proof-search
for bi-intuitionistic logic using nested sequents. In Proc. Advances in
Modal Logic, pages 43—66, 2008.

[23] R. Goré, L. Postniece, and A. Tiu. Taming displayed tense logics using
nested sequents with deep inference. In Proc. TABLEAUX, pages 189—
204, 2009.

[24] R. Goré, L. Postniece, and A. Tiu. On the correspondence between
display postulates and deep inference in nested sequent calculi for
tense logics. Logical Methods in Computer Science, 7:1-38, 2011.

[25] S. S. Ishtiaq and P. W. O’Hearn. BI as an assertion language for
mutable data structures. In Proc. POPL, pages 14-26, 2001.

[26] B. Jacobs, J. Smans, and F. Piessens. VeriFast: Imperative programs
as proofs. In Proc. VSTTE, pages 59—-68, 2010.

[27] R. Kashima. Cut-free sequent calculi for some tense logics. Studia
Logica, 53(1):119-136, 1994.

[28] D. Larchey-Wendling and D. Galmiche. Exploring the relation be-
tween intuitionistic BI and boolean BI: an unexpected embedding.
Mathematical Structures in Computer Science, 19:435-500, 2009.

[29] D. Larchey-Wendling and D. Galmiche. The undecidability of boolean
BI through phase semantics. In Proc. LICS, pages 140-149, 2010.

[30] S. Magill, J. Berdine, E. M. Clarke, and B. Cook. Arithmetic strength-
ening for shape analysis. In Proc. SAS, pages 419436, 2007.

[31] N. Marti, R. Affeldt, and A. Yonezawa. Formal verification of the
heap manager of an operating system using separation logic. In Proc.
ICFEM, pages 400—419, 2006.

[32] J. A. Navarro Pérez and A. Rybalchenko. Separation logic + superpo-
sition calculus = heap theorem prover. In Proc. PLDI, pages 556-566.
ACM, 2011.

[33] H. H. Nguyen and W.-N. Chin. Enhancing program verification with
lemmas. In Proc. CAV, pages 355-369, 2008.

[34] P. W. O’Hearn and D. J. Pym. The logic of bunched implications.
Bulletin of Symbolic Logic, 5:215-244, 1999.

[35] D.J. Pym. The Semantics and Proof Theory of the Logic of Bunched
Implications. Kluwer Academic Pub, 2002.

[36] J. C. Reynolds. Separation logic: A logic for shared mutable data
structures. In Proc. LICS, pages 55-74, 2002.

[37] V. Vafeiadis and M. J. Parkinson. A marriage of rely/guarantee and
separation logic. In Proc. CONCUR, pages 256-271, 2007.

[38] H. Yang. An example of local reasoning in BI pointer logic: the
Schorr-Waite graph marking algorithm. In Proceedings of the Ist
Workshop on Semantics, Program Analysis, and Computing Environ-
ments for Memory Management, pages 41-68, 2001.

