
SAFEWAPI: Web API Misuse Detector for Web Applications

SungGyeong Bae
KAIST, Korea

imai0917@kaist.ac.kr

Hyunghun Cho
Samsung Electronics, Korea

hyunghun.cho@samsung.com
Inho Lim

Samsung Electronics, Korea
inho0212.lim@samsung.com

Sukyoung Ryu
KAIST, Korea

sryu.cs@kaist.ac.kr

ABSTRACT
The evolution of Web 2.0 technologies makes web applications
prevalent in various platforms including mobile devices and smart
TVs. While one of the driving technologies of web applications
is JavaScript, the extremely dynamic features of JavaScript make
it very difficult to define and detect errors in JavaScript applica-
tions. The problem becomes more important and complicated for
JavaScript web applications which may lead to severe security vul-
nerabilities. To help developers write safe JavaScript web applica-
tions using vendor-specific Web APIs, vendors specify their APIs
often in Web IDL, which enables both API writers and users to
communicate better by understanding the expected behaviors of the
Web APIs.

In this paper, we present SAFEWAPI, a tool to analyze Web APIs
and JavaScript web applications that use the Web APIs and to de-
tect possible misuses of Web APIs by the web applications. Even
though the JavaScript language semantics allows to call a function
defined with some parameters without any arguments, platform de-
velopers may require application writers to provide the exact num-
ber of arguments. Because the library functions in Web APIs ex-
pose their intended semantics clearly to web application developers
unlike pure JavaScript functions, we can detect wrong uses of Web
APIs precisely. For representative misuses of Web APIs defined by
software quality assurance engineers, our SAFEWAPI detects such
misuses in real-world JavaScript web applications.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

General Terms
Languages, Verification, Design

Keywords
JavaScript, static analysis, web application, bug detection

1. INTRODUCTION

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FSE ’14, November 16–22, 2014, Hong Kong, China
Copyright 2014 ACM 978-1-4503-3056-5/14/11 ...$15.00.

Thanks to HTML5 [3] and web browsers on various platforms
and devices, JavaScript [2] web applications are available every-
where. While JavaScript was originally developed as a simple script-
ing language to interact with users and to manipulate browser doc-
uments, it is now one of the most popular programming languages.
The more diverse platforms and devices web applications support,
the more complex and huge JavaScript web applications become.

The same reasons that have brought the popularity of JavaScript
web applications also bring difficulties in developing them. Be-
cause HTML5 uses multiple languages including HTML, CSS, and
JavaScript, web application developers should understand complex
interactions between different languages. Also, to support diverse
platforms and devices, web applications should interact with native
applications or device functions seamlessly. While vendors provide
Web APIs for JavaScript developers to use native and device func-
tions, using such APIs correctly is a challenging task.

Indeed, many JavaScript errors originate from API function mis-
uses. Ocariza et al. [25] manually inspected 12 bug repositories and
reported that 74% of “fixed” JavaScript faults are from the “Incor-
rect Method Parameter” category, and 88% of the faults in the cate-
gory are DOM-related. Their finding implies that 65% of JavaScript
faults come from incorrect uses of DOM APIs by JavaScript code.

The main cause of the difficulties in using APIs correctly is the
apparent gap between platform developers and web application de-
velopers. In order to use APIs correctly, web application developers
should understand what platform developers intended when they
designed APIs, which are often impossible because most API im-
plementations are native or closed. Moreover, widespread uses of
implicit control flows in API functions introduce another compli-
cation. For example, many API functions take callback functions
as arguments from JavaScript developers and invoke them natively;
a web application developer provides both a success callback and
an error callback to an API function, and the API function invokes
one of the callback functions depending on its execution result. We
present an example of invoking callback functions within an API
function in Section 2. Because API functions invoke callback func-
tions with platform-generated objects as their arguments, faithfully
testing such callback functions is almost impossible for JavaScript
developers who cannot make platform-specific values.

To help JavaScript developers build correct web applications, re-
searchers have studied static and dynamic analyses of JavaScript
applications [15, 18, 19, 21, 11] but no existing tool can detect in-
correct uses of API functions by JavaScript programs. JavaScript
developers use JSLint [13] the most, but it detects only simple syn-
tactic mistakes and violation of syntactic guidelines. Extremely dy-
namic semantics of JavaScript and complex interactions with em-
bedding environments such as web browsers and device platforms
make testing and analysis of JavaScript web applications sophisti-

cated. Because the JavaScript errors defined in the language speci-
fication are too weak to find API misuses, and the dynamic features
allow developers to intentionally write seemingly incorrect code,
identifying API misuses is not crystal clear. Also, because the API
implementations and platform-generated objects are not available
to outside platforms, analyzing the interactions between JavaScript
applications and APIs lacks important information.

In this paper, we present SAFEWAPI, a static analyzer that de-
tects API misuses in JavaScript web applications. To address the
problems of analyzing JavaScript web applications, we utilize spec-
ifications of Web APIs often declared in interface description lan-
guages (IDLs) such as Web Interface Description Language (Web
IDL) [7]. First, we use API specifications as criteria for defining
API misuses. Even though the JavaScript language allows quirky
semantics like providing no arguments to a function that takes mul-
tiple parameters, vendors describe their intention explicitly in API
specifications requiring JavaScript developers to use APIs correctly
by following the specifications. Second, we infer the important miss-
ing information from API specifications to connect control flows
between web applications and API implementations. Because the
specifications describe both what callback functions API functions
expect and what platform-generated objects they use for callback
functions precisely, we use such information to analyze interactions
between JavaScript applications and Web APIs. Our SAFEWAPI
collects information about API functions and objects from API
specifications, models API functions and objects according to the
specifications, and analyzes JavaScript web applications to detect
misuses of APIs in them.

Our work includes the following contributions:

● We provide a list of API misuses in JavaScript web ap-
plications in Section 3. Even though defining errors in ar-
bitrary JavaScript applications is not trivial, we can identify
representative Web API misuses in JavaScript web applica-
tions with experienced software quality assurance engineers
from industries. We illustrate how a JavaScript web applica-
tion may use Web APIs incorrectly and how to detect such a
misuse in Section 2.

● We propose a mechanism to automatically model API func-
tions and objects using API specifications provided by
vendors in Section 4. Supporting API functions and objects
has been one of the most difficult problems for analyzers
because their implementations are not available to analyze.
While most analyzers require labor-intensive manual model-
ing of API functionalities, SAFEWAPI analyzes API specifi-
cations written in Web IDL and provides API modeling auto-
matically. Our mechanism of automatic API modeling based
on API specifications is not only for Web IDL and JavaScript
but also directly applicable to other languages.

● We describe our implementation of SAFEWAPI by extend-
ing a general analysis framework for JavaScript web ap-
plications, SAFE [4, 20], in Section 5. SAFEWAPI first an-
alyzes API specifications, uses the analyzed information to
model APIs, and detects incorrect uses of APIs in JavaScript
web applications. Using SAFEWAPI, JavaScript programmers
can develop and deploy safer JavaScript web applications on
multiple platforms and devices to end-users by statically de-
tecting errors before actually executing applications.

In Section 6, we describe how precisely and practically SAFEWAPI
detects Web API misuses in various real-world JavaScript web ap-
plications. Section 7 discusses related work and we conclude in
Section 8.

Figure 1: Web API specification written in Web IDL

2. MOTIVATION
Before formally defining representative Web API misuses and

how to detect them, we present a motivating example from indus-
trial uses. Consider the following code:

function successCB(calendars) {
calendars[0].foo;

}
var bar = "EVEN";
webapis.calendar.getCalendars(bar, successCB);

which calls webapis.calendar.getCalendars, a Samsung Web
API [5] function. Figure 1 presents its specification written in Web
IDL; it consumes two mandatory arguments of type CalendarType
and CalendarArraySuccessCallback, and one optional argu-
ment of type ErrorCallback. If the API function call ends suc-
cessfully, it invokes the second argument as a success callback,
otherwise, it invokes the third argument, if any, as an error call-
back. Thus, if the above API call succeeds, it invokes successCB,
whose type should be CalendarArraySuccessCallback, which
is a function type that takes an array of the Calendar type as the
Web API specification describes.

Let us take a closer look at the successCB callback. Because
it has a function type that takes an array of Calendar, its param-
eter calendars should have the array of Calendar type. Then,
the body of successCB accesses the 0th element of calendars
by calendars[0], which should have type Calendar. Finally, it
refers the property foo of a Calendar, which does not have any
property of name foo. Thus, we can detect that the body accesses
a missing property, which leads to an undefined reference error.

This example illustrates two main benefits of using API speci-
fications in our analysis. First, we can infer implicit control flows
between JavaScript code and API functions from the information
in API specifications. While a JavaScript developer who wrote the
callback cannot see its invocation by the API function, we can in-
fer with what type of value the API function invokes the callback
function and analyze them by connecting their call flows. Second,
we can use richer type information about JavaScript values using
the specifications. For example, because bar in the above exam-
ple is the first argument to the API function, it should have type
CalendarType, which has only two possible values "EVENT" and

"TASK". With this type information, we can detect the error that
bar has an invalid value "EVEN". We define representative Web
API misuses based on real-world industrial experiences in Section
3, and we describe how we infer implicit control flows and how we
detect type mismatches in Section 4.

3. WEB API MISUSES
The main observation of our analysis is that while the JavaScript

language semantics permits wild uses of dynamic features, plat-
form and device vendors who design and implement Web APIs for
JavaScript developers strongly prefer to specify the intended se-
mantics of API functions and require web application developers
to follow the specifications. Based on our real-world experiences
with designing industrial Web APIs and evaluating JavaScript web
applications using Web APIs, we identify 6 common patterns of
Web API misuses with software quality assurance engineers:

1. Accesses to absent properties of platform objects (AbsProp)

2. Wrong number of arguments to API function calls (ArgNum)

3. Missing error callback functions (ErrorCB)

4. Unhandled API calls that may throw exceptions (ExnHnd)

5. Wrong types of arguments to API function calls (ArgTyp)

6. Accesses to absent attributes of dictionary objects (AbsAttr)

3.1 Accesses to absent properties of platform
objects

Frequent mistakes by JavaScript web applications are due to mis-
understanding of platform objects. We call objects that are created
by platforms and used by JavaScript applications via Web APIs
platform objects. Similarly for JavaScript objects, platform objects
may have various properties. While Web APIs specify a list of
properties a platform object should provide, tracking what prop-
erties a given platform object provides is nontrivial. The example
in Section 2 belongs to this pattern. The success callback function
given as the second argument of the getCalendars function may
be invoked by platform functions with platform objects bound to
calendars. As we described with the example, detecting the er-
roneous access to the absent property foo of a Calendar object
requires to keep track of various information often leading to pro-
grammer errors.

3.2 Wrong number of arguments to API func-
tion calls

While JavaScript allows to pass any number of arguments to any
function calls, Web IDL can specify requirements on API function
parameters. In JavaScript, even though a function definition takes a
single parameter, it is perfectly fine not to provide any argument or
to provide more than one argument. If the function is called without
any argument, the parameter implicitly gets the undefined value,
and if the function receives more than one argument, the second to
the last arguments are evaluated but silently ignored. However, to
help web applications use platform functions more reliably, Web
APIs specify the minimum and the maximum numbers of argu-
ments that an API function expects. For example, the Calendar Web
API shown in Figure 1 specifies that the getCalendars function
may take two or three parameters as follows:

void getCalendars(
CalendarType type,
CalendarArraySuccessCallback successCallback,
optional ErrorCallback? errorCallback);

Thus, the function should take at least a calendar type and a suc-
cess callback function but it may not receive an error callback func-
tion. If one invokes the function without any arguments, it throws
a TypeError exception. Note that Web IDL supports optional pa-
rameters and function overloading unlike the JavaScript language,
which make checking of valid number of arguments even more
complicated.

3.3 Missing error callback functions
As we have already seen in previous examples, Web APIs ex-

tensively use callback functions to be responsive to user interac-
tions. Many Web API functions take both success callback func-
tions and error callback functions. If a Web API function executes
successfully it calls its success callback function; otherwise, it calls
its error callback function. Because such Web API functions ex-
ecute asynchronously with JavaScript web applications, if a web
application developer does not provide an error callback function
to a Web API function, the developer may not know whether the
API function performs as expected. Thus, missing (optional) error
callback functions may not cause run-time errors, but providing er-
ror callback functions all the time is more defensive programming.
For example, even though the Calendar Web API specifies that the
third parameter of the getCalendars function is optional, because
its type is ErrorCallback we detect the calls of getCalendars
without the third argument as a warning. We made this decision be-
cause, in theory, the function call may silently ignore a failed execu-
tion of the function if it does not have any error callback function,
and, in practice, missing error callback functions often degrades
productivity of web application developers.

3.4 Unhandled API calls that may throw ex-
ceptions

Some API function calls may throw exceptions and Web APIs
can describe such cases as follows:

void getAddressBooks(
AddressBookArraySuccessCallback successCallback,
optional ErrorCallback? errorCallback

) raises(WebAPIException);

Because a call of the getAddressBooks function may throw the
WebAPIException, JavaScript web applications that use the func-
tion may abruptly terminate due to uncaught exceptions. Thus, web
applications should wrap any invocation of Web API functions that
may throw exceptions with the try statement. For example, when
one invokes getAddressBooks in a JavaScript code, it should de-
fend the code as follows:

try {
webapis.contact.getAddressBooks(succCB, errCB);

} catch (error) {
console.log(error.name);

}

3.5 Wrong types of arguments to API func-
tion calls

While JavaScript function definitions do not specify the expected
types of parameters, Web IDL specifies diverse properties includ-
ing types of API function parameters. In JavaScript, functions may
receive any values or even no values as arguments at function call
sites. Moreover, due to the dynamic nature of JavaScript, the EC-
MAScript language specification [2] assigns one chapter to de-
scribe implicit conversions between various types, which limit pos-
sibilities of run-time type mismatches. Except for critical situations

Figure 2: Dictionary type definitions in Web IDL

such as calling non-function objects, JavaScript code seldom ter-
minates abnormally. However, to develop more reliable web ap-
plications, Web APIs specify the expected parameter types of API
functions and they require web applications to satisfy the type re-
quirements. For example, because getCalendars expects a value
of type CalendarType as its first argument, the function should
receive either "EVENT" or "TASK" as its first input. Because the
example in Section 2 receives an invalid value "EVEN" for the first
argument, which is not of type CalendarType, the Web API func-
tion throws a TypeMismatchError exception.

3.6 Accesses to absent attributes of dictionary
objects

Unlike JavaScript that has only simple primitive types and ob-
ject types without any user-defined types, Web IDL provides richer
types including dictionary types [7]:

“A dictionary is a definition (matching Dictionary) used
to define an associative array data type with a fixed, or-
dered set of key-value pairs, termed dictionary mem-
bers, where keys are strings and values are of a partic-
ular type specified in the definition.”

Dictionary type values in Web IDL correspond to JavaScript object
values where object properties correspond to dictionary members.
In order for a JavaScript object to satisfy a dictionary type defined
in Web IDL, all the properties of the JavaScript object should be
the members of the dictionary type. If the object has a property that
is not a member of the dictionary type, the object does not have the
dictionary type.

For example, consider the definitions of two dictionaries in Fig-
ure 2. The definition of the CalendarEventInit dictionary speci-
fies that a dictionary of type CalendarEventInitmay have mem-
bers including endDate, availability, and recurrenceRule

and it may inherit members from the CalendarItemInit dic-
tionary, which has 14 more members. Therefore, while JavaScript
objects such as {isAllDay:true,availability:"FREE"} and
{availability:"BUSY"} have type CalendarEvenetInit, a
JavaScript object {foo:0} does not. Thus, when a JavaScript ap-
plication calls a constructor that expects an input value of type
CalendarEventInit, the input JavaScript object should have only
the properties that are members of the type. Thus, when a construc-
tor CalendarEvent expects a value of type CalendarEventInit,
the constructor call below is valid:

var ev = new webapis.CalendarEvent(
{description: ’HTML5 Introduction’,
summary : ’HTML5 Webinar’,
startDate : new webapis.TZDate(

2011, 3, 30, 10, 0),
duration : new webapis.TimeDuration(

1, "HOURS"),
location : ’Huesca’})

but an invalid constructor call with a wrong input value such as
new webapis.CalendarEvent({foo:0})may fail silently with-
out producing an expected result.

4. TECHNICAL DETAILS
In this section, we describe how we fill in the missing informa-

tion about Web API functions using their specifications. In order to
analyze JavaScript web applications, our analysis should analyze
both explicit and implicit execution flows between JavaScript pro-
grams and API functions. Even though we can analyze JavaScript
programs because we have their source code, we cannot analyze
API functions because either their sources are closed or their imple-
mentations are in different languages. Thus, to analyze API func-
tion calls in JavaScript web applications, we analyze their execution
flows as follows:

1. To analyze explicit execution flows from JavaScript code to
API functions, we check whether the JavaScript argument
values to API functions satisfy the types of the corresponding
parameters declared in the API specifications.

2. To analyze explicit execution flows from API functions to
JavaScript code, we check whether JavaScript code uses the
return values of API function calls correctly.

3. To analyze implicit execution flows hidden inside API func-
tions, we check whether JavaScript callback functions use
platform-generated objects correctly.

We briefly introduce our analysis based on abstract interpreta-
tion in Section 4.1. Then, we describe how we check the types of
argument values to API functions in Section 4.2, how we model
platform-generated objects to represent returned values from API
function calls in Section 4.3, and how we model API function calls
that invoke callback functions in Section 4.4.

4.1 Type-based analysis for JavaScript
Our tool to analyze JavaScript web applications builds on top of

an existing static analysis framework that detects type-related er-
rors in JavaScript programs [20]. The design and implementation of
the analysis are in the abstract interpretation framework, and both
the formal specification and the analysis implementation are open
to the public [4]. While the analysis framework provides a simple
abstract domain and a type-based analysis engine by default, the
framework design is pluggable in the sense that researchers can re-
place the default abstract domain or the default analyzer with their
own artifacts.

We describe the implementation of the analysis framework briefly
in Section 5.1. Due to the space limitation, we omit the details of
the analysis framework and refer the interested readers to the liter-
ature [20].

4.2 JavaScript values and Web IDL types
To check whether a Web API function receives valid JavaScript

values as its arguments, we should check whether the values satisfy
the corresponding parameter types in Web IDL. While JavaScript

Table 1: Type conversion between Web IDL types and JavaScript values

Argument Integer Float DOMString Boolean Enum Array Dictionary Callback Interface

undefined 0 Error "undefined" false Error Error Error Error

null 0 0.0 "null" false Error Error Error Error

true 1 1.0 "true" true Error Error Error Error

false 0 0.0 "false" false Error Error Error Error

"" 0 0.0 "" false Error Error Error Error

"1.2" 1 1.2 "1.2" true Error Error Error Error

"one" 0 Error "one" true Error Error Error Error

0 0 0.0 "0" false Error Error Error Error

Infinity 0 Error "Infinity" true Error Error Error Error

42 42 42.0 "42" true Error Error Error Error

NaN 0 Error "NaN" false Error Error Error Error

object "[object Object]" true Error object Error

[9] 9 9.0 "9" true [9] Error Error Error

array 0 Error true array Error Error

function 0 Error true Error

Figure 3: File type definition in Web IDL

has only 5 primitive types—undefined, null, boolean, string, and
number—and object types, Web IDL provides rich types. More-
over, we should also consider a large set of implicit type conver-
sion rules in JavaScript. Table 1 summarizes the conversions rules
between JavaScript values and Web IDL types.

For a given JavaScript value on the first column, Table 1 shows
whether the value satisfies the Web IDL type denoted by the second
to the last columns; it assumes that the value satisfies the nullable
and optional attribute of the type specification. The table illustrates
most representative cases and refers the interested readers to the
Web IDL specification for more complex cases denoted by empty
gray cells. For example, the undefined value implicitly converts
to 0 in a type context expecting an integer, it implicitly converts
to "undefined" in a context expecting a DOMString, and it con-
verts to false in a boolean context. The Web IDL specification de-
scribes how to check undefined in an enumeration type context:
if "undefined" is not a value of the enumeration type, it throws
an exception. Finally, the undefined value throws an exception
for the other cases.

4.3 Automatic modeling of platform-generated
objects

To check whether JavaScript web applications use return values
from API function calls correctly, we automatically model platform-
generated objects to represent such return values from API calls,
and we use them as abstract values to analyze the JavaScript appli-
cations. Because API specifications include all the type definitions
and the types of API functions, we can automatically construct a
simple but valid object for each type defined in API specifications.
For example, consider that we analyze a JavaScript program which
calls a Web API function, receives a result from the call, and uses
the result of type File shown in Figure 3. The definition of File
declares that any value of type File should have several properties
including parent of type File, readOnly of type boolean, and
created of type Date. Based on the type definition, we can gen-
erate an object of type File accordingly and use it as an analysis
value for the API function result. Note that constructing such ob-
jects for the types defined in API specifications may be recursive.
Because the parent property of a File object also has type File,
when we generate a File object, we need another File object as
the value of the object’s parent property.

Therefore, we automatically generate one representative platform-
generated object, which we call an abstract type value, for each
type in API specifications in advance. For each type defined in API
specifications, we construct its abstract type value as follows:

● If it is one of the primitive types, undefined, null, boolean,
string, and number, the corresponding abstract type value is
the top abstract value of that type domain.

● If it is a composite type, the corresponding abstract type value
has every property described in the API specification, and
each property has its corresponding abstract type value.

● If it is a function type, the corresponding abstract type value
is an abstract function object that returns an abstract type
value that corresponds to the return type of the function type.

Using generated abstract type values for the types defined in
API specifications, we can analyze explicit execution flows from
API functions to JavaScript code so that we can check whether
JavaScript programs use platform-generated objects correctly. Be-
cause abstract type values are sound approximations of concrete
platform-generated objects, we add abstract operations on abstract
type values that also work as sound approximations of their corre-
sponding concrete operations. For example, when JavaScript code
compares platform-generated objects using comparison operators

like == or !==, we use a sound abstraction of the operators, which
always returns the top abstract value of the boolean domain.

4.4 Automatic modeling of API functions
Finally, to analyze implicit execution flows between JavaScript

code and API functions via callback function calls, we model API
function calls that invoke callback functions automatically. Because
JavaScript functions and API functions are usually in different pro-
gramming models, they often communicate with each other by asyn-
chronous callback function calls. While JavaScript developers write
callback functions that API functions may invoke during their exe-
cution, JavaScript web applications do not have explicit callsites of
callback functions. However, we can safely assume that API func-
tions that take callback functions as arguments may invoke the in-
put callback functions.

Thus, we model such implicit execution flows by analyzing hid-
den callback function calls with abstract type values. From a given
JavaScript web application, we identify API function calls that take
callback functions using the API specifications, and we add imag-
inary calls of the input callback functions. For example, consider
the same example code from Section 2:

function successCB(calendars) {
calendars[0].foo;

}
var bar = "EVEN";
webapis.calendar.getCalendars(bar, successCB);

We can easily identify that the API function call of getCalendars
takes a callback function successCB as its second argument. Then,
our analysis adds an imaginary call of successCB inside the invis-
ible body of the API function. To make a callback function call, we
should make its argument values, if any. Even though JavaScript
callback functions do not specify the expected types of their pa-
rameters, we can get that information from API specifications. For
example, as we discussed in Section 2, the API specification helps
us find out that the callback takes an array of Calendar. Thus, we
use an abstract type value corresponding to the array of Calendar
type to invoke the callback function.

Note that an API function may take multiple callback functions
as arguments and invoke one of them depending on the execution
result of the API function. Indeed, the getCalendars API func-
tion has an optional callback function parameter to invoke when the
execution of the API function terminates abnormally. The second
parameter is a callback function to invoke when the API function
execution terminates normally.

To safely model such API functions, our analysis adds imagi-
nary calls of all the callback functions, and joins the analysis results
from all the imaginary calls. Roughly speaking, our analysis mod-
els an API function API that takes non-callback parameters arg_1,
... and callback parameters CB_1, ..., CB_n as follows:

function API(arg_1, ..., CB_1, ..., CB_n) {
... // its body without the result
if (*) {
CB_1(arg_11, ...);

} else if (*) {
CB_2(arg_21, ...);

} .
.
.

} else if (*) {
CB_n(arg_n1, ...);

} else {
// when it does not call any callbacks

}
... // return the result

}

It invokes all the callback functions with their corresponding ab-
stract type values as arguments; for example, it invokes the nth
callback function CB_n with abstract type value arg_n1, ... cor-
responding to the parameter types of CB_n. The last branch denotes
the case when the API function does not invoke any callback func-
tions. The order of imaginary callback function calls does not affect
the analysis results because an API function invokes at most one
callback function.

5. IMPLEMENTATION
Now, we describe our implementation of SAFEWAPI, a static an-

alyzer that detects various misuses of Web APIs in JavaScript web
applications. Based on our experiences with real-world industrial
applications, we use the following domain-specific observations:

● The root platform object of the Web APIs, webapis, is avail-
able from the global environment so that JavaScript develop-
ers can use Web APIs as property accesses of the object like
webapis.calendar.getCalendar. The webapis object
includes all the Web APIs information, and it is not exten-
sible.

● JavaScript applications use Web APIs only as property ac-
cesses of webapis; they do not assign Web API features to
JavaScript variables.

Though general JavaScript programs may not satisfy the require-
ments, all the real-world JavaScript web applications we collected
to analyze satisfy them as we describe in Section 6. Even when
JavaScript web applications do not satisfy the requirements, we can
adjust our analysis to identify the root platform object of Web APIs
and the callsites of Web API functions. For presentation brevity, we
assume that the above requirements hold for our target JavaScript
web applications.

5.1 SAFE: type-based analysis for JavaScript
We build SAFEWAPI by extending SAFE [20], a scalable anal-

ysis framework for JavaScript applications. Because detecting mis-
uses of Web APIs requires a deep semantic analysis to infer argu-
ment values of Web API functions, for example, we extend Ana-
lyzer, a default type analyzer of SAFE. The SAFE framework is
pluggable in the sense that one can replace the default analyzer
with an alternative analyzer. To make the framework as scalable
and pluggable as possible, the SAFE architecture shown inside the
box of Figure 4 clearly separates concerns between components by
well-defined interfaces, and their formal specification and imple-
mentation are available to the public [4].

SAFE can analyze both stand-alone JavaScript applications and
web applications including a collection of JavaScript programs.
Figure 4 describes a more general scenario of analyzing web ap-
plications using JavaScript programs, where dashed boxes denote
data and solid boxes denote phases that manipulate and convert
them. SAFE takes an HTML document or a directory to analyze,
collects all the JavaScript codes either imported to HTML docu-
ments or embedded in them, converts them into CFGs (Control
Flow Graphs) via conventional compilation steps, and finally an-
alyzes the JavaScript programs in CFGs. To analyze web appli-
cations precisely, the analyzer should know various information
such as the enclosing HTML documents, DOM (Document Object
Model) APIs to access them, and JavaScript built-in objects and
functions. SAFE builds DOM trees by parsing HTML documents,
and constructs an initial heap that contains the global information
to analyze web applications using DOM trees via Heap Builder. For
a given program, the analyzer infers types for the expressions in the
program, and reports possible bugs in them by Bug Detector.

Figure 4: Architecture of SAFEWAPI

5.2 SAFEWAPI: SAFE with analysis of Web APIs
To analyze web applications using Web APIs correctly, we ex-

tend SAFE to understand Web APIs written in Web IDL. As the
dark boxes and data around them in Figure 4 illustrate, we add Web
IDL Parser that parses and analyzes Web APIs to build a richer ini-
tial heap by extended Heap Builder so that the extended Analyzer
and Bug Detector can report misuses of Web APIs.

First, Web IDL Parser parses a given API specification written in
Web IDL and extracts necessary information to analyze API func-
tions: interfaces and types. While interfaces in Web APIs corre-
spond to JavaScript objects and functions, Web IDL types do not
correspond to anything in JavaScript but describe expected behav-
iors of API functions.

Second, the extended Heap Builder builds an initial heap using
the additional interface and type information from Web APIs. It
adds the root platform object, webapis, that contains all the in-
terface objects constructed by Web IDL Parser to the initial heap.
Even though the Web IDL types do not correspond to any values
in JavaScript, we extend the initial heap with abstract type values
corresponding to Web IDL types. As we described in Section 4.3,
we model all the Web IDL types with their abstract type values so
that we can analyze API functions precisely.

Then, the extended Analyzer analyzes Web API function calls by
using their modeled functions with abstract type values from the
initial heap. Similarly for SAFE to model built-in functions and
DOM API functions, we model Web API functions automatically
from their API specifications. While modeling of pure JavaScript
API functions that do not have any type information is often im-
precise, which in turn degrades the analysis precision, modeling of
Web API functions is precise enough to return abstract type values,
which improves the analysis precision.

Finally, the extended Bug Detector uses the results of Analyzer
to detect any occurrences of the Web API misuse patterns defined
in Section 3. Note that all the misuse patterns except for AbsProp
involve API function calls, which implies that the complex interac-
tions between JavaScript code and API functions are vulnerable to
JavaScript developer errors. While detecting some misuse patterns
like ArgNum, ErrorCB, and ExnHnd requires only syntactic checks,
detecting other misuse patterns—AbsProp, ArgTyp, and AbsAttr—
require a deep semantic analysis. To detect the AbsProp misuse
pattern, Bug Detector uses abstract type values constructed as de-
scribed in Section 4.3 and modeling of API function calls explained
in Section 4.4. To detect the ArgTyp and AbsAttr misuse patterns,
Bug Detector checks whether the analysis results of API function
arguments satisfy the type requirements declared in API specifica-
tions according to the type conversion rules in Table 1 presented in
Section 4.2.

6. EVALUATION

Table 2: Real-world JavaScript web applications that include
Web API misuses

App. Id AbsProp ArgNum ErrorCB ExnHnd ArgTyp AbsAttr Total

tv-1 1 0 0 0 0 0 1
tv-4 0 0 1 11 0 0 12
tv-8 1 0 0 1 0 0 2
tv-15 1 0 0 0 0 0 1
tv-17 0 0 1 0 0 0 1
tv-19 0 0 1 0 0 0 1
tv-20 2 0 0 0 0 0 2
mb-2 0 0 0 2 0 0 2
mb-3 0 0 0 2 0 0 2
mb-5 0 0 0 1 0 0 1
mb-6 0 2 0 51 0 0 53
mb-7 0 0 0 4 0 0 4

mb-12 0 0 0 1 0 0 1
mb-15 0 0 0 0 0 0 0
mb-19 4 0 0 3 0 0 7
mb-20 0 0 1 10 0 0 11

Total 9 2 4 86 0 0 101

We evaluated SAFEWAPI with real-world web applications and
test cases. In this section, we describe representative examples that
the tool found precisely for the Web API misuse patterns described
in Section 3.

6.1 Overview
We collected 43 JavaScript web applications that use Samsung

Web APIs and ran SAFEWAPI to detect Web API misuses in the
applications. While the applications are not yet open to the public,
some of them will be available at the Samsung developers site [5]
in the near future. The 43 web applications consist of 23 Smart TV
applications and 20 Android mobile web applications; we call the
nth Smart TV application tv-n and the nth Android mobile web
application mb-n.

Even though all the web applications are products ready for de-
ployment, we found Web API misuses from 7 TV applications and
9 mobile applications, and our colleague software quality assurance
engineers confirmed the detected misuses. As Table 2 summarizes,
we found 4 misuse patterns out of 6 from the real-world web appli-
cations. The majority of the detected misuses are unhandled excep-
tions from API function calls that may throw exceptions (ExnHnd),
and about 10 % of the detected misuses are accessing absent prop-
erties by using deprecated API functions (AbsProp). While we did

not detect 2 misuse cases (ArgTyp and AbsAttr) from the collected
web applications that the development of which has finished, we
expect to detect them from web applications in development be-
cause we detected them from various test cases. We elaborate each
misuse case with concrete examples highlighted in Table 2.

6.2 Accesses to absent properties of platform
objects

We found this misuse pattern in 4 TV applications and 1 mobile
application. Consider the following simplified excerpt from tv-1:

var nserviceModule = {
...
nservice.registerManagerCallback(

nserviceModule.onDeviceStatusChange);
...
onDeviceStatusChange: function(sParam){

...
alert("[nServiceModule.onDeviceStatusChange]"+

": eventType = "+sParam.eventType+
", deviceName = "+sParam.deviceName+
", device Type = "+sParam.deviceType);

from which SAFEWAPI detects a misuse as follows:

nserviceModule.js:21:149~21:166: [Warning]
Reading absent property ’deviceType’ of object
’sParam’.

Note that detecting such a misuse requires understanding of the
Web APIs and tracking of the information flow between JavaScript
code and platform code via asynchronous callback functions. To
see why sParam.deviceType on the last line is invalid, we should
know the type of sParam and whether it has an attribute named
deviceType. The type of sParam is the parameter type of the
function value assigned to the onDeviceStatusChange property
of the object nserviceModule. Because that property is passed as
an argument of the nservice.registerManageCallback func-
tion in the NService API:

[NoInterfaceObject] interface NServiceManager {
...
void registerManagerCallback(

NServiceDeviceManagerCallback monitorCallback);
};

the type of nserviceModule.onDeviceStatusChange is the pa-
rameter type of the registerManageCallback function, which is
NServiceDeviceManagerCallback:

[Callback=FunctionOnly, NoInterfaceObject]
interface NServiceDeviceManagerCallback {
void ondetected(ManagerEvent event);

};

which is a function type from ManagerEvent to void. Thus, the
type of sParam is ManagerEvent:

[NoInterfaceObject]
interface ManagerEvent {
readonly attribute unsigned short eventType;
readonly attribute DOMString deviceName;
readonly attribute DOMString uniqueID;

};

which does not have an attribute named deviceType. As the exam-
ple shows, writing correct JavaScript web applications using Web
APIs with rich structures is a challenging task for JavaScript devel-
opers and SAFEWAPI can help the developers build safe software
by detecting possible errors during development.

6.3 Wrong number of arguments to API func-
tion calls

We found this misuse pattern in 1 mobile application as shown
in the following simplified excerpt from mb-6:

var NService_Client = {
multicastMessage: function(msg) {
if (typeof NService_Client.deviceGroup

== ’undefined’) {
...

} else if
(msg ===
NService_Client.DEV_EVENT_JOINED_GROUP) {
result =
webapis.nservice.multicastMessage(
NService_Client.DEV_EVENT_JOINED_GROUP);

} else if
(msg ===
NService_Client.DEV_EVENT_LEFT_GROUP) {
result =
webapis.nservice.multicastMessage(
NService_Client.DEV_EVENT_LEFT_GROUP)

SAFEWAPI detects two errors from the application as follows:

nservice_client.js:406:33~406:106: [WebAPIError]
The number of arguments to
webapis.nservice.multicastMessage is 1;
provide arguments of size 2.

nservice_client.js:408:33~408:104: [WebAPIError]
The number of arguments to
webapis.nservice.multicastMessage is 1;
provide arguments of size 2.

and reports that while the multicastMessage function expects
two arguments the callsites provide only one argument. Indeed, the
Web API specifies that the function takes two arguments:

[NoInterfaceObject] interface NServiceManager {
...
unsigned short multicastMessage(
DOMString groupID,
DOMString message);

};

6.4 Missing error callback functions
We found this misuse pattern in 3 TV applications and 1 mobile

application. The following simplified excerpt from mb-20 shows
an example:

(function(global, webapis) {
...
exports.joinTeam = function (team) {
webapis.nservice.joinGroup(
team,
function (group) {
global.bs.log(

"Group members: " +
JSON.stringify(group.getMembers()));

});

While the NService API allows to omit the last argument to joinGroup
as follows:

[NoInterfaceObject] interface NServiceManager {
...
void joinGroup(
DOMString groupName,
NServiceGroupSuccessCallback onsuccess,
optional ErrorCallback? onerror);

};

because it is an error callback function, SAFEWAPI warns JavaScript
developers as follows:

bs.network.js:119:9~121:11: [WebAPIWarning]
Call to webapis.nservice.joinGroup is missing an
error callback function; provide an error
callback function.

to make sure that they are aware of missing error callbacks to en-
courage them to develop defensive programming.

6.5 Unhandled API calls that may throw ex-
ceptions

This pattern is the majority of the detected misuses of Web APIs
in the real-world web applications. We found this pattern in 2 TV
applications and 8 mobile applications. The following simplified
excerpt from mb-20 shows the pattern:

try {
webapis.contact.getAddressBooks(
function (addressbooks) {

var contact1 = addressbooks[0].get(’ID#1’);
},
function (err) {

console.log(
err.name+
’ error is occurred on getting address ’+
’books’);

});
} catch (ex) {
console.log(
ex.name+
’ is thrown on getting all address books’);

}

While the developer wrapped the code with the try statement to
handle uncaught exceptions from the call of getAddressBooks
on the second line, the try statement cannot handle uncaught ex-
ceptions from the call of get on the fourth line. Because the func-
tion get is called inside a success callback function passed to the
function getAddressBooks, the developer should wrap the call
of get with the try statement inside the callback function. This
pattern happens very often which SAFEWAPI detects precisely as
follows:

testContactManagerUpdate.js:4:42~4:53:
[WebAPIWarning] Function webapis.contact.get may
raise an exception; call the function inside the
try statement.

6.6 Wrong types of arguments to API func-
tion calls

We did not find this misuse pattern from the collected web appli-
cations but we encountered the pattern occasionally with test cases.
Consider the following code:

var appEventCB = {
oninstalled: function(appinfo) {},
onupdated: function(appinfo) {},
onuninstalled: function(id) {} };

try {
...
appEventCB = null;
webapis.application.addAppInfoEventListener(

appEventCB);
} catch (e) {}

The above code assigns the null value to appEventCB hoping that
it unregisters the event callback. However, the Web API provides
the following two functions for registering and unregistering event
callbacks:

[NoInterfaceObject] interface ApplicationManager {
long addAppInfoEventListener(
ApplicationInformationEventCallback

eventCallback)
raises(WebAPIException);

void removeAppInfoEventListener(long watchId)
raises(WebAPIException);

}

Also, because the parameter of addAppInfoEventListener is
not nullable, passing the null value as an argument is invalid as
SAFEWAPI detects as follows:

appMgr.js:21:25~21:80: [WebAPIError]
Argument #1 of the function
webapis.application.addAppInfoEventListener is
wrong; the expected type is
ApplicationInformationEventCallback.

6.7 Accesses to absent attributes of dictionary
objects

We did not find this misuse pattern from the collected web ap-
plications either but this pattern is another source of occasional
mistakes found with test cases. While dictionary objects are very
useful to represent associative arrays, developers should make sure
that the JavaScript objects correctly implement corresponding dic-
tionary types defined in Web APIs. Consider the following code:

var calendar =
webapis.calendar.getDefaultCalendar("EVENT");

var calendarEvent1 = new webapis.CalendarEvent(
{ startDate: new webapis.TZDate(2012, 3, 4),
duration: new webapis.TimeDuration(3, "DAYS"),
summary: "HTML5 Seminar" });

var calendarEvent2 = new webapis.CalendarEvent(
{ name: ’Birthday party’ });

Two constructor calls of CalendarEvent on the second and the
sixth lines expect an input of type CalendarEventInit:

[Constructor(
optional CalendarEventInit? eventInitDict),

Constructor(
DOMString stringRepresentation,
CalendarTextFormat format)]

interface CalendarEvent : CalendarItem { ... }

the definition of which is shown in Figure 2. While the input ob-
ject of the first constructor call is valid because all of its prop-
erties are members of CalendarEventInit inherited from the
CalendarItemInit dictionary, the input object of the second con-
structor call is invalid because its property name is not a member
of CalendarEventInit. Thus, SAFEWAPI reports the misuse as
follows:

calendar.js:18:30~18:66: [WebAPIError]
No matching constructors for CalendarEvent;
possible constructors are:
Constructor(
[optional] CalendarEventInit? eventInitDict)

Constructor(
DOMString stringRepresentation,
CalendarTextFormat format).

Unlike JavaScript developers who make mistakes in tracking infor-
mation about Web APIs, SAFEWAPI correctly checks the proper-
ties of objects using the pre-analyzed database of Web APIs.

6.8 Threats to validity
Our results may not generalize for the following reasons:

● One of the main contributions of this paper is to propose
a new mechanism to analyze complex interactions between
JavaScript code and API function implementations rather than
proposing a new analysis for JavaScript programs. Thus, the
precision of our mechanism depends on the precision of the
base JavaScript analyzer.

● Because the base JavaScript analyzer, SAFE, is in the ab-
stract interpretation framework, our tool may report false pos-
itives.

● While our analysis models hidden execution flows between
JavaScript code and API functions via callback function calls,
we may miss other kinds of execution flows between them
that API specifications do not explicitly describe. For exam-
ple, API function calls may produce some side effects like
manipulating DOM, which affects the behavior of JavaScript
web applications. Because our target Web API functions ma-
nipulate platform and device functionalities, we believe that
they may not produce side effects that change the semantics
of JavaScript applications.

● Our analysis models API functions with the assumption that
an API function may invoke at most one callback function,
which implies that it does not consider semantic effects due
to different invocation orders of multiple callback functions
in an API function. Because most API functions invoke call-
back functions to communicate their execution results with
JavaScript code, we believe that our assumption holds most
of the cases.

7. RELATED WORK
Modern web applications execute on various platforms and de-

vices using multiple APIs to access platform-specific information [6,
14, 24]. Any leakage of sensitive data from devices to untrusted
third-party developers will affect all the players: API providers,
web applications, and end users. However, most APIs are vulner-
able to security attacks, and even carefully designed APIs [12, 1]
with static restrictions and dynamic checks have been reported se-
curity problems [26, 21, 22]. As Guha et al. sated [16]:

“Designing and implementing these APIs securely, and
verifying that this has been done, is hence an important
challenge.”

To develop safe JavaScript programs, researchers have studied
syntactic checks [13], type systems [27, 9, 17], static analyses [15,
18, 19], and hybrids of static and dynamic analyses [21, 11] for
JavaScript. Unfortunately, the most widely used JSLint verifies only
simple syntactic checks and coding guidelines, type systems are too
restrictive to be acceptable by JavaScript developers in the wild,
and the performance and precision of JavaScript analyses are not
yet ready for being practical. One of the biggest problems with an-
alyzing JavaScript applications is to understand the authors’ inten-
tions. Because JavaScript is an extremely dynamic language, pro-
grams alone do not reveal whether developers make mistakes or
aggressively utilize dynamic features.

As complementary or replacing solutions, several variants of the
JavaScript language try to communicate clearly with developers.
CoffeeScript [10] provides syntactic sugars such as list comprehen-
sions and pattern matching inspired by Ruby, Python, and Haskell
to JavaScript, and it compiles into JavaScript. ActionScript [8] is a

dialect of JavaScript with rich data types and type checking at both
compile time and run time. TypeScript [23] is a typed superset of
JavaScript that compiles into JavaScript. It supports classes, mod-
ules, and interfaces to improve static checking and verification of
TypeScript programs.

Instead of some form of JavaScript variants, many vendors use
separate interface definition languages particularly designed for spec-
ifying interfaces such as Web IDL [7]. Because most web applica-
tions are JavaScript programs, the Web IDL specification describes
how specifications written in Web IDL correspond to JavaScript
constructs. Thus, explicitly specifying the authors’ intentions us-
ing Web IDL effectively bridges the gap between JavaScript web
application developers and platform developers.

8. CONCLUSION
We present SAFEWAPI, a practical static analysis tool to ana-

lyze JavaScript web applications to detect misuses of Web APIs.
Even though the general problem of correctly analyzing JavaScript
programs using closed-source APIs efficiently is a very difficult
problem, we identified its subset problem that is practically use-
ful and effective. Instead of trying to infer programmers’ inten-
tion from extremely dynamic JavaScript programs, we utilize Web
API specifications written in Web IDL to clearly communicate with
them. To address explosive execution flows to analyze due to asyn-
chronous semantics by events and callback functions, we adopted
simplifying assumptions from development experiences with real-
world web applications. We achieve reasonable analysis precision
by connecting execution flows between JavaScript applications and
platform functions via modeling platform-specific frameworks.

SAFEWAPI does not verify absence of Web API misuses in web
applications but it effectively detects bugs from real-world appli-
cations. In the course of developing SAFEWAPI, we even detected
inconsistencies in the Web API specifications and found some real
bugs in sample examples included in the specifications. We plan
to increase the coverage of Web API misuse detection by defin-
ing more misuse patterns found in real-world applications and by
modeling various JavaScript libraries and platform frameworks. We
also plan to automatically validate Web API specifications for their
consistencies and any misuses of them in sample examples.

9. ACKNOWLEDGMENTS
This work is supported in part by Korea Ministry of Education,

Science and Technology(MEST) / National Research Foundation
of Korea(NRF) (Grants NRF-2014R1A2A2A01003235 and NRF-
2008-0062609), Samsung Electronics, S-Core, and Google.

10. REFERENCES
[1] Caja. http://code.google.com/p/google-caja.
[2] ECMAScript Language Specification. Edition 5.1.

http://www.ecma-international.org/
publications/standards/Ecma-262.htm.

[3] HTML5. http://www.w3.org/TR/html5/.
[4] SAFE: Scalable Analysis Framework for ECMAScript.

http://safe.kaist.ac.kr.
[5] Samsung Smart TV apps developer forum. http://www.

samsungdforum.com/.
[6] Samsung web API on developer site. http:

//developer.samsung.com/samsung-web-api.
[7] Web IDL. http://www.w3.org/TR/WebIDL.
[8] ActionScript.org. ActionScript. http://www.

actionscript.org.

http://code.google.com/p/google-caja
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.w3.org/TR/html5/
http://safe.kaist.ac.kr
http://www.samsungdforum.com/
http://www.samsungdforum.com/
http://developer.samsung.com/samsung-web-api
http://developer.samsung.com/samsung-web-api
http://www.w3.org/TR/WebIDL
http://www.actionscript.org
http://www.actionscript.org

[9] C. Anderson, P. Giannini, and S. Drossopoulou. Towards type
inference for JavaScript. In Proceedings of the 19th European
Conference on Object-Oriented Programming, 2005.

[10] J. Ashkenas. CoffeeScript. http://coffeescript.
org.

[11] R. Chugh, J. A. Meister, R. Jhala, and S. Lerner. Staged in-
formation flow for JavaScript. In Proceedings of the 2009
ACM SIGPLAN Conference on Programming Language De-
sign and Implementation, 2009.

[12] D. Crockford. ADsafe. http://www.adsafe.org.
[13] D. Crockford. JSLint. http://www.jslint.com.
[14] L. Foundation. Tizen. http://tizen.org.
[15] A. Guha, S. Krishnamurthi, and T. Jim. Using static analysis

for Ajax intrusion detection. In Proceedings of the 18th Inter-
national Conference on World Wide Web, 2009.

[16] A. Guha, B. Lerner, J. G. Politz, and S. Krishnamurthi. Web
API verification: Results and challenges. In Analysis of Secu-
rity APIs, 2012.

[17] P. Heidegger and P. Thiemann. Recency types for analyz-
ing scripting languages. In Proceedings of the 24th European
Conference on Object-Oriented Programming, 2010.

[18] S. H. Jensen, A. Møller, and P. Thiemann. Type analysis for
JavaScript. In Proceedings of the 16th International Sympo-
sium on Static Analysis, 2009.

[19] S. H. Jensen, A. Møller, and P. Thiemann. Interprocedural
analysis with lazy propagation. In Proceedings of the 17th In-
ternational Symposium on Static Analysis, 2010.

[20] H. Lee, S. Won, J. Jin, J. Cho, and S. Ryu. SAFE: Formal
specification and implementation of a scalable analysis frame-
work for ECMAScript. In Proceedings of the 2012 Inter-
national Workshop on Foundations of Object-Oriented Lan-
guages, 2012.

[21] S. Maffeis, J. C. Mitchell, and A. Taly. Isolating JavaScript
with filters, rewriting, and wrappers. In 14th European Sym-
posium on Research in Computer Security, 2009.

[22] S. Maffeis, J. C. Mitchell, and A. Taly. Object capabilities and
isolation of untrusted web applications. In IEEE Symposium
on Security and Privacy, 2010.

[23] Microsoft. TypeScript. http://www.
typescriptlang.org.

[24] Mozilla.org. Firefox OS. http://www.mozilla.org/
en-US/firefox/os/.

[25] F. Ocariza, K. Bajaj, K. Pattabiraman, and A. Mesbah. An em-
pirical study of client-side JavaScript bugs. In Proceedings of
the 7th IEEE International Symposium on Empirical Software
Engineering, 2013.

[26] J. G. Politz, S. A. Eliopoulos, A. Guha, and S. Krishnamurthi.
ADsafety: type-based verification of JavaScript sandboxing.
In Proceedings of the 20th USENIX conference on Security,
2011.

[27] P. Thiemann. Towards a type system for analyzing JavaScript
programs. In Proceedings of the 14th European Symposium
on Programming, 2005.

http://coffeescript.org
http://coffeescript.org
http://www.adsafe.org
http://www.jslint.com
http://tizen.org
http://www.typescriptlang.org
http://www.typescriptlang.org
http://www.mozilla.org/en-US/firefox/os/
http://www.mozilla.org/en-US/firefox/os/

	Introduction
	Motivation
	Web API Misuses
	Accesses to absent properties of platform objects
	Wrong number of arguments to API function calls
	Missing error callback functions
	Unhandled API calls that may throw exceptions
	Wrong types of arguments to API function calls
	Accesses to absent attributes of dictionary objects

	Technical Details
	Type-based analysis for JavaScript
	JavaScript values and Web IDL types
	Automatic modeling of platform-generated objects
	Automatic modeling of API functions

	Implementation
	SAFE: type-based analysis for JavaScript
	SAFEWAPI: SAFE with analysis of Web APIs

	Evaluation
	Overview
	Accesses to absent properties of platform objects
	Wrong number of arguments to API function calls
	Missing error callback functions
	Unhandled API calls that may throw exceptions
	Wrong types of arguments to API function calls
	Accesses to absent attributes of dictionary objects
	Threats to validity

	Related Work
	Conclusion
	Acknowledgments
	References

