
ROSAEC MEMO

2014-001

February 11, 2014

Encrypted Execution

Daejun Park, Jeehoon Kang, Kihong Heo, Sungkeun Cho,
Yongho Yoon, and Kwangkeun Yi

Seoul National University

{djpark,jhkang,khheo,skcho,yhyoon,kwang}@ropas.snu.ac.kr

February 11, 2014

Abstract

We present secret execution in which an encrypted program is evaluated without de-
cryption, to give an encrypted result whose decryption yields the original result.

1 Introduction

Can we execute an encrypted program without decryption? In the cloud computing era, more
people want to execute their programs in cloud server. The biggest challenge for delegating
program execution is security—how to keep the programs confidential? One possible solution is
protecting the programs via obfuscation (e.g., virtual machine-based obfuscation) [4, 15, 3, 14].
Unfortunately, however, this protection is not perfect; one can decode the obfuscation—it’s only
a matter of time. Fortunately, however, cryptologist has already researched similar problem
for decades and recently proposed a solution: homomorphic encryption—basis of our work.

Homomorphic encryption is an encryption scheme that preserves certain operations on
encrypted data. A homomorphic encryption E is said to preserve an operation op if it provides
op, an encrypted version of op, such that for a plain text m,1

op(E(m)) ≡ E(op(m))

For example, using a homomorphic encryption that preserves addition operation, we can get the
sum of encrypted data without decrypting each data, just by summing up all given encrypted
data and decrypting the sum.

Recently, a powerful homomorphic encryption scheme is proposed by Gentry[7, 8, 22], in the
sense that the encryption scheme preserves addition and multiplication operations, which leads
to preserve arbitrary operations since we can construct arbitrary circuit with only addition and
multiplication operations. This is because addition (modulo 2) and multiplication operations
correspond to XOR and AND gates respectively, and all circuits can be constructed by using
only XOR and AND gates. For this reason, Gentry’s homomorphic encryption scheme is called
a fully homomorphic encryption scheme.

Based on homomorphic encryption, we present secret execution in which an encrypted
program is evaluated without decryption. We propose a protocol how to encrypt a given
program and how to execute the encrypted program without decryption. Our secret execution
protocol guarantees that 1) encrypted programs are totally secure, in the sense that attackers
can never reconstruct any piece of original programs from encrypted programs, and 2) execution
results are correct, whose decryption yields the very results of execution of original programs.

1Throughout this section, all equations are using notations defined at Section 2.1.

February 11, 2014 ROSAEC-2014-001 2

Contributions

• We present a cryptographic protocol for program execution. We project cryptographic
concept of homomorphic encryption to our domain, programs and their execution. Al-
though Gentry’s fully homomorphic encryption scheme itself is sufficient for all operations
(including program execution), our work is meaningful in that we present a specific in-
stance for program execution, that is, we, for the first time, definitize the blurred region
unexplored so far.

• More specifically, we present how to evaluate expressions with encrypted operators, how
to handle memory operation (such as assignment and lookup operations) under encryp-
tion, and how to execute loop under encrypted loop condition.

1.1 Overview

A tricky problem comes from managing control flow. In conventional execution of a program,
program executor find out how program control (e.g., program counter) flows. For example,
at an if statement, executor need to know which part (among then-part and else-part) to be
executed, at a loop, executor need to know how many times loop to be executed, at a function
call, which function to be called, and so on. However, in execution of encrypted programs, we
should prevent the executor from perceiving which control flow to be taken. Otherwise, control
flow information is revealed, which give rise to security vulnerability. For example, as for the
following if statement,

if (e) stmtt stmtf

suppose that executor can determine which branch, stmtt or stmtf , to be taken, say stmtt.
Then, although he has no idea of the original program, executor can realize, at least, e is
evaluated to be true. Accumulated throughout entire program, these revealed informations are
used in statistical attack, eventually causing encryption to be broken. To sum, we make the
executor to evaluate control flow without noticing which one is taken.

This seemingly ironic requirement/problem can be reduced to well-known problem, Obliv-
ious Transfer (OT)[20, 6]. In OT, a client requests i in encrypted form, and a server returns
ith data, si, to the client in encrypted form whose decryption yields si. More specifically, let
us consider binary OT: a server has secret data s: s0 and s1 (integer value), a client requests
i, either 0 or 1, in the form of encrypted one, and the server returns encrypted value of si to
the client. We can establish a protocol to achieve the above requirements as the follows:

• Suppose an public key homomorphic encryption scheme E preserving addition (modulo
2) and multiplication, and also having semantic security (refer to Section 2.2 for more
details) property. (e.g., Gentry’s FHE[22])

• A client generates a request q according to i, either 0 or 1, such that2

q =

{
(E(1), E(0)) if i = 0
(E(0), E(1)) if i = 1

• Given a request q = (q0, q1), either (E(1), E(0)) or (E(0), E(1)), a server generates an
answer a according to q such that

a = q0 × E(s0) + q1 × E(s1)

• The client takes the requested data si by decrypting a.

2In general, q = (E(0), · · · , E(1), · · · , E(0)), where only ith element is E(1) and others are E(0).

February 11, 2014 ROSAEC-2014-001 3

How this works? Let us analyze for each i, either 0 or 1. If i is 0, then q = (E(1), E(0)), and

a = E(1)× E(s0) + E(0)× E(s1)

≡ E(1× s0 + 0× s1) (by homomorphism)

≡ E(s0)

therefore, E−1(a) = s0. The remaining case with i = 1 is similar. Intuition behind this protocol
is:

• Each 0 and 1 is a token representing validity: 1 means valid, and 0 means not.

• A request q′ is a tuple consisting of the (encrypted) validity tokens: ith element is 1
(meaning that the very element is valid), and others are 0 (meaning that the elements
are not valid).

• A server, given request q = (q0, q1), does not know which one is an encryption of valid
token, but he can generate an answer by masking (multiplying) each data si with validity
token qi. In this case, non valid data is always masked by 0, and valid data is only masked
by 1. Therefore, only valid data remains as it is, others becoming 0. At this moment,
summing all masked data yields the very result, si.

Using this concept, we can execute if statement without noticing any information which
branch to be taken. For example, as for the following if expression,

if (b) {x := 10} else {x := 20}

suppose that b can have either 0 or 1 during execution. Secret execution evaluates b to either
0 or 1. In this case, executor has no idea of b’s value, but he can evaluate x’s value after if
statement. How? We know that x’s value is either 10 or 20 according to the value of b: if
b is 1 then x becomes 10, and if b is 0 then x becomes 20. Suppose that we have equality
testing function eq returning 1 if two encrypted values are equivalent, otherwise 0. (Refer to
Section 4.2 for details.) Then secret executor can evaluate x’s value as follows:

x = eq(E(b), E(1))× E(10) + eq(E(b), E(0))× E(20)

= E(eq(b, 1))× E(10) + E(eq(b, 0))× E(20) (by homomorphism)

= E(eq(b, 1)× 10 + eq(b, 0)× 20) (by homomorphism)

If b is E(1) then the above value becomes E(10), else if b is E(0) then the above value becomes
E(20). Here, the executor has no idea of either what is b’s value or which branch to be taken,
but correctly evaluates x’s value.

This approach of masking each validity token and summing up all, called “masking and
sum”, is a central, seemingly magical, device making it possible for executor to evaluate pro-
gram without noticing any information about given program.

2 Preliminaries

2.1 Notations

Suppose an homomorphic encryption scheme E , a tuple of (KeyGen, Encrypt, Decrypt, Evaluate).
Given a security parameter λ, let (pk, sk) ← KeyGen(1λ). For the simplicity, we write E(m)
for the ciphertext c such that c ← Encrypt(pk,m) for any plaintext m, and we write E−1(c)
for the plaintext m such that m ← Decrypt(sk, c) for any ciphertext c. We also write m for
E(m). We say that two ciphertexts are equivalent if their decryption results are equal: c ≡ c′

if c← Encrypt(pk,m) and c′ ← Encrypt(pk,m).

February 11, 2014 ROSAEC-2014-001 4

2.2 Semantic Security

An encryption scheme is said to be semantically secure[13], if, roughly speaking, given a ci-
phertext c that encrypts either m0 or m1, any adversary cannot decide which one is encrypted,
even if the adversary chooses m0 and m1, and furthermore their encrypted results c0 and c1 are
provided. Semantic security implies that the underlying encryption scheme should be proba-
bilistic: given plaintext, there must be many ciphertext candidates, among which encryption
algorithm should choose one randomly according to certain distribution. Therefore, the prob-
ability that c is equal to either c0 or c1 is negligibly closed to zero.3 If an encryption scheme
is deterministic, it cannot be semantically secure because an adversary can easily decide by
comparing c and ci’s.

2.3 Fully Homomorphic Encryption Scheme

An encryption scheme is said to be fully homomorphic if the encryption scheme preserves
arbitrary number of addition (modular 2) and multiplication operations, i.e., for plaintexts
m1,m2,

E(m1) + E(m2) ≡ E(m1 +m2)

E(m1)× E(m2) ≡ E(m1 ×m2)

One such possible encryption scheme is proposed by Gentry[7] and Brakerski and Vaikuntanathan[1].

3 Programs

We present our target language, a simple imperative language. It is simple yet powerful
enough to represent fundamental machine instructions: load, store, arithmetic operations,
and conditional jump. Machine code level representation is quite adequate because a program
should eventually be compiled into machine code in order to be executed.

Our target programs are given in the form of graph. For the sake of simplicity, we focus
on simple, integer arithmetic programs without complicated data structures such as pointers
or arrays. Note that it is straightforward extension to support those data structures.

Programs P = G
Control Flow Graphs G = 〈N,E,ψN , ψE〉

Nodes N
Edges E ∈ Nodes×Nodes

Basic Blocks ψN ∈ Nodes→ Statements∗

Guards ψE ∈ Edges→ Conditions

Statements s ::= x := e
Atomic Expressions i ::= x | c

Expressions e ::= i+ i | i× i
Conditions b ::= e | ¬e

Variables x
Constants c ∈ N

A program is a graph whose nodes represent basic blocks and edges represent conditional
expressions. A basic block is a series of statements; here only a single type of statement exists:
assign statement. A conditional expression that lies on a edge indicates condition for the edge

3Less than an inverse of any polynomial in the security parameter, i.e., < 1/2λ. We call such quantity just
negligible.

February 11, 2014 ROSAEC-2014-001 5

to be valid; a control flow is only established when the corresponding conditional expression is
evaluated to be true. Also, an expression consists of only atomic expressions, for the sake of
simplicity.

Example 1. The following example presents c-like program (left-hand side) and their graph
representation (right-hand side). Each edge has conditional expression. Edges with conditional
expression 1 means that the edges are always valid.

x := 10

y := 0

z := 0

while (x) {

y := y + x

x := x - 1

}

z := y

x := 10
y := 0
z := 0

1��

x��
¬x

��
y := y + x
x := x− 1

1
11

z := y

3.1 Program Execution

Execution of our target programs is defined in the usual way. Program execution is a sequence
of states, a transitive closure of transition relations. A transition corresponds to each step of
execution. A state represent current node and memory.

Transitions ↪→ ∈ States× States
States S ∈ Nodes×Memories

Memories M ∈ Variables
fin−→ Constants

Evaluations φ∗s ∈ (Memories× Statements∗)→ Memories
φs ∈ (Memories× Statements)→ Memories
φe ∈ (Memories× Expression)→ Constants
φb ∈ (Memories× Conditions)→ {0, 1}
φx ∈ (Memories×Variables)→ Constants

Evaluation algorithms for each syntactic categories are defined in the usual way. A transition
relation is defined as follows:

(N,M) ↪→ (N ′,M ′) ⇐⇒ (N,N ′) ∈ Edges and

φb(M,ψE(N,N ′)) = 1 and

φ∗s(M,ψN (N ′)) = M ′

Example 2. For the following simple sequential program:

n1 : x := 1
1 // n2 : x := 2

1 // n3 : x := 3

its execution is as follows:

(n1, {x 7→ 1}) ↪→ (n2, {x 7→ 2}) ↪→ (n3, {x 7→ 3})

We only consider a deterministic program, that is, given a state, the number of its next
states cannot be more than one.

Definition 1 (Deterministic Programs). A program is said to be deterministic if:

(N,M) ↪→ (N ′,M ′) and (N,M) ↪→ (N ′′,M ′′)

=⇒ N ′ = N ′′ and M ′ = M ′′

February 11, 2014 ROSAEC-2014-001 6

4 Secret Execution Protocol: Statements

Secret execution protocol is a tuple of algorithms: key generation, encryption, decryption, and
execution. The key generation algorithm is induced from the base encryption scheme, and the
decryption algorithm is naturally induced from the encryption algorithm. Thus, here we will
focus encryption and execution algorithm.

We first explain algorithms for statements, specifically how to handle variable assignments,
variable lookups, and arithmetic operations. After this, we will explain how to handle basic
blocks, and finally, entire control flow graphs, in Section 5.

4.1 Encryption

Base Encryption Scheme Our secret execution protocol is based on homomorphic encryp-
tion scheme E on binary bits: the message space is {0, 1}. The base encryption scheme E is
required to be: semantically secure, public key algorithm, and fully homomorphic. One such
possible encryption scheme is proposed by Gentry[22].

Constants Using the base encryption scheme, we can construct encryption algorithm for
constants, Ec, by encrypting each bit of the given constant and making it as a tuple. For some
constant c, its encryption algorithm is defined as follows:

Ec(c)
def
= (E(c1), · · · , E(cn)) where c = (c1 · · · cn)2

where n is a predefined value that is big enough for all constants appeared at a given program
(e.g., n = 32 for all programs on 32-bit machine).

Variables Encryption algorithm for variables, Ex, maps a given variable to some constant
using predefined mapping table φ, followed by encrypting the resulted constant using Ec:

Ex(x)
def
= Ec(φ(x)) given φ : Variables→ N

Note that this encryption algorithm is still secure, even if the mapping table φ is revealed,
because the base encryption scheme is semantically secure.

Atomic Expressions Given an atomic expression i, encryption algorithm for atomic expres-
sions, Ei, generates a tuple whose first element is an encrypted result of type of i, and second
element is an encrypted result of i itself:

Ei(x)
def
= (Eop(VAR), Ex(x))

Ei(c)
def
= (Eop(CON), Ec(c))

Expressions Given an expression e, encryption algorithm for expressions, Ee, generates a
tuple whose first element is an encrypted result of operation’s type (i.e., op-code) of e, and
second (and third) element is an encrypted result of first (and second, resp.) operand of e:

Ee(i1 + i2)
def
= (Eop(ADD), Ei(i1), Ei(i2))

Ee(i1 × i2)
def
= (Eop(MUL), Ei(i1), Ei(i2))

February 11, 2014 ROSAEC-2014-001 7

Conditions Encryption algorithm for conditional expressions, Eb, is defined in a similar way
with Ee:

Eb(e) = (Eop(NOP), Ee(e))
Eb(¬e) = (Eop(NEG), Ee(e))

Note that the dummy op-code, NOP, is inserted at the first case. This is because such dummy
op-code contributes to hide size information of original expression; otherwise, an attacker can
easily recognize the type of original expression from the size of the encrypted expression—the
longer encrypted conditional expressions, the more likely to be of type NEG.

Statements Encryption algorithm of statements, Es, simply generates a tuple consisting of
encrypted results of each part of assignment statement:

Es(x := e)
def
= (Ex(x), Ee(e))

Operation Codes Encryption algorithm of operation codes, Eop, is similar with the encryp-
tion algorithm of variables, Ex: mapping each operation code to some constant, followed by
encrypting the constant using Ec.

Example 3. For the following statement:

x := 1 + 2

the encrypted result is as follows: (suppose that φ(x) = 0 and φop(ADD) = 3 and φop(CON) = 0)

Es(x := 1 + 2)

=(Ex(x), (Eop(ADD), (Eop(CON), Ec(1)), (Eop(CON), Ec(2))))

=(Ec(0), (Ec(3), (Ec(0), Ec(1)), (Ec(0), Ec(2))))

=(Ec(002), (Ec(112), (Ec(002), Ec(012)), (Ec(002), Ec(102))))

=((E(0), E(0)), ((E(1), E(1)), ((E(0), E(0)), (E(0), E(1))),

((E(0), E(0)), (E(1), E(0)))))

4.2 Basic Tools for Execution

Before directly diving into execution of encrypted statements, it will be helpful to introduce
basic tools to be used in secret execution.

Equality Test First, we need to figure out how to test equality between two encrypted data.
Conventional equality testing functions, eq and neq, are defined as follows: (for the sake of
simplicity, we consider 1 as true, and 0 as false.)

eq(x, y)
def
=

{
1 if x = y
0 if x 6= y

neq(x, y)
def
=

{
0 if x = y
1 if x 6= y

What we have to do is defining equality testing functions on encrypted data, eq and neq,
preserving original semantics of eq and neq, such that:

eq(E(x), E(y)) ≡ E(eq(x, y))

Let’s first consider the case that x and y is one bit constant—either 0 or 1. In this case, we
can easily find out neq has exactly same behavior with XOR gate, which can be simulated by

February 11, 2014 ROSAEC-2014-001 8

addition (modulo 2) operation. Therefore, we can define eq and neq for bit as follows: (where
1 is an encrypted value of 1)

eq(x, y)
def
= x+ y + 1

neq(x, y)
def
= x+ y

The above definition is correct since eq and neq for bits are defined as follows,4

eq(x, y) = NOT(XOR(x, y)) = x+2 y +2 1
neq(x, y) = XOR(x, y) = x+2 y

and the base encryption scheme E is homomorphic, preserving addition and multiplication
(modulo 2) operations.

Furthermore, we can also test equality between arbitrary bits value, by or’ing all primitive
equality testing results between each bits from two values, as follows:5 (where xi and yi are
ith elements of ~x and ~y respectively)

~eq(~x,~y)
def
= ~neq(~x,~y) + 1

~neq(~x,~y)
def
= or(· · · or(neq(x1, y1),neq(x2, y2)) · · · ,neq(xn, yn))

Note that encrypted result of multi-bits constant is represented by a tuple, such as ~x and ~y in
the above definition. Refer to encryption of constants, Ec, for details.

Case-matching We can now define case-matching operation, the most fundamental oper-
ation for program execution. A simple form of case-matching operation, ifelse, is defined as
follows: (for the sake of simplicity, we assume that all values—x, y, v, and w—are integer
constants)

ifelse(x, y, v, w)
def
=

{
v if x = y
w if x 6= y

We can define case-matching operation for encrypted values, ifelse, as follows:6

ifelse(x, y, v, w)
def
= (eq(x, y)× v) + (neq(x, y)× w)

In the above definition, if x is equal to y,7 then eq(x, y) becomes 1, which makes (eq(x, y)× v)

to be v,8 and neq(x, y) becomes 0, which makes (neq(x, y) × w) to be 0; summing up the
two results, eventually, yields v. The remaining case in which x is not equal to y is similar.
Therefore, ifelse preserves the semantics of ifelse function, as follows:

ifelse(E(x), E(y), E(v), E(w)) ≡ E(ifelse(x, y, v, w))

We can also define case-matching operation case, a simple extension of ifelse, as follows:

case(x, (ci, vi)i)
def
= (eq(x, c1)× v1) +

(eq(x, c2)× v2) +
...

(eq(x, cn)× vn)

4Note that logic gates can be simulated by addition (modulo 2) and multiplication operations, with consid-
ering 1 as true and 0 as false, such as: XOR(x, y) = x + y (mod 2), AND(x, y) = x× y, and NOT(x) = x + 1
(mod 2).

5Operator or can be defined as follows: or(x, y)
def
= (x+ y) + (x× y).

6We implicitly extend the notion of addition and multiplication for bits to one for tuples in a point-wise
fashion, as follows: x×(y1, · · · , yn) = (x×y1, · · · , x×yn), and (x1, · · · , xn)+(y1, · · · , yn) = (x1 +y1, · · · , xn+
yn).

7Strictly speaking, x is equivalent to y, that is, two values are encryptions for same original value.
8Strictly speaking, another encryption of v

February 11, 2014 ROSAEC-2014-001 9

where case(x, {(c1, v1), · · · , (cn, vn)}) means that if x is equal to c1 then result value is v1, or
if x is equal to c2 then result is v2, and so on.

4.3 Execution

Now we present how to execute encrypted statements, using the basic tools presented in Sec-
tion 4.2. Secret execution algorithm for statements, φs, consists of sub-algorithms for each
syntactic categories: φi, φe, φb, and φx. We first present how to execute encrypted op-codes—
φi, φe, and φb—and then how to execute memory operations under encryption—φx and φs.

Atomic Expressions An encrypted atomic expression is a tuple whose first element is type
of operation—opcode—and second is its operand. In order to execute an atomic expression, we
firstly identify its opcode, and carry out certain operation according to the opcode. However,
this is not the case in execution of an encrypted expression; we have no idea of the opcode—
which is encrypted. Then, how can we execute expressions without identifying their opcodes?
We only have to use the case-matching function case.

We can define execution algorithm for encrypted atomic expressions, φi, as follows:

φi(M, (OP, i)) = case(OP, {(VAR, φx(M, i)),
(CON, i)})

Given an input memory M , an opcode OP, and an operand i, function φi evaluates resulting
value—integer constant. Since secret executor cannot identify which value OP has (among VAR,
CON), secret executor first carries out all possible operations, and asks the case function to select
appropriate one among those candidates. Comparing OP with each possible operators, the case-
matching function case multiplies each comparison results with corresponding candidate values,
followed by summing up all, which leaves only one value—an encrypted result of execution.
Note that secret executor cannot notice anything about which candidate was selected. Rather,
secret executor just carries out always same series of operations regardless of its input, yet the
execution result is properly generated by itself.

Expressions We can also define execution algorithm for encrypted expressions, φe, similarly

with φi, as follows:9

φe(M, (OP, i1, i2))
= case(OP, {(ADD,ADD(φi(M, i1), φi(M, i2))),

(MUL,MUL(φi(M, i1), φi(M, i2)))})

Conditions We can also define secret execution algorithm for conditional expressions, φb,

similarly with the above, as follows:10

φb(M, OP, e) = case(OP, {(NOP, ~or(φe(e))),
(NEG, ~or(φe(e)) + 1)})

Memory Lookups In secret execution, variable lookup need to be carried out without
identifying which variable to be lookuped; thus, secret executor fetches all entries from given
memory, and asks case to select proper one. Secret execution for variable lookups, φx, is defined
as follows:

φx(M,x) = case(x, {(x′,M(x′)) | x′ ∈ Dom(M)})
9Operators ADD and MUL are logical circuits constructed by using XOR and AND gates.

10 ~or(~x)
def
= or(· · · or(x1, x2) · · · , xn) where ~x = (x1, · · · , xn).

February 11, 2014 ROSAEC-2014-001 10

Assignments Similarly, secret execution for assignments updates every entries, where newly
updated value is selected between the given value and previously stored value, by ifelse function.

φs(M,x, e)
= {x′ 7→ ifelse(x, x′, φe(M, e),M(x′)) | x′ ∈ Dom(M)}

Problem of this approach is that secret executor cannot insert a new entry, that is, number
of entries of memory does not change during execution. Therefore, initial memory M0 should
have all entries to be used for execution in advance. It is possible to enumerate all entries of
memory in advance of execution, since the number of all variables appeared in given program
is predetermined, say N . We can construct initial memory state M0 as follows:11

M0 = {Ec(i) 7→ Ec(0) | i ∈ [1, N]}

Note that all secret executor have to know is just N , total number of variables, not the whole
set of variables itself. We can even hide the number of variables by providing secret executor a
number greater than N . By doing so, we can prevent revealing any information about variables
except their maximum size.

5 Secret Execution Protocol: CFGs

Now we explain how to encrypt and execute basic blocks and entire control flow graphs.

5.1 Basic Blocks

Encryption We can easily encrypt a basic block by encrypting each statements of the basic
block.

The problem, however, is that the number of statements vary with each basic blocks. One
can distinguish very big basic block from small one, which provides some hints to an attacker.

Thus, we need to fix the number of statements of basic blocks, say n. This fixed number n
can be set to maximum number of statements among all basic blocks, or set to average number
of statements—in this case, one should split basic blocks who is bigger than the average.

As for the basic blocks who is smaller than the fixed number n, we insert dummy statements.
A dummy statement is marked with validity token 0, and an original one with 1, by which
we can distinguish which one is dummy. Of course, the validity tokens are encrypted so that
secret executor cannot find out which one is genuine. Nevertheless, secret execution yields
same result with one of executing only original statements. For example,

x1 := e1;

x2 := e2;

x3 := e3;

E
=⇒

(Ex(x1), Ee(e1), Ec(1));
(Ex(x′1), Ee(e′1), Ec(0));
(Ex(x2), Ee(e2), Ec(1));
(Ex(x′2), Ee(e′2), Ec(0));
(Ex(x3), Ee(e3), Ec(1));

Using this approach, we can make all basic blocks to have same size, which makes it impossible
for attackers to distinguish basic blocks by their size, preventing statistical attack fundamen-
tally/ultimately.

11In order to do so, we need to make the variable mapping function, φ, to map each variables to integer
constant in order starting from 1.

February 11, 2014 ROSAEC-2014-001 11

Execution Given a sequence of statements, we can easily extend the notion of φs to φ∗s.
Execution algorithm for sequence of statements φ∗s evaluates each statement in turn, passing
output memory state of current statement to next statement:

φ∗s(M, (s1; s2; · · · ; sn)) = φs(· · ·φs(φs(M, s1), s2) · · · , sn)

In this case, each execution of statement asks ifelse function to select proper behavior: updating

results or bypassing current statement.12

φ′s(M,x, e, α) = case(α,(0,M),

(1, φs(M,x, e)))

5.2 Control Flow Graphs

Encryption We can also easily encrypt a control flow graph by encrypting contents of each
nodes (i.e., basic blocks) and edges (i.e., conditional expressions).

However, this encryption method cannot hide a structure of the given control flow graph.
An attacker can easily find the number of nodes and edges, and also which nodes are connected
with.

Thus, we need to insert additional dummy nodes and dummy edges to build fully connected
graph, which hides not only the number of nodes but also entire graph’s structure—control
flows. For example, we can hide the graph structure by inserting dummy edges as follows:
(dotted lines mean dummy edges)

n0 : entry node
x

||

¬x

""

0

��

%

�

�

n1 : x := 10

1 ++

0 ..a a ` ` _ ^ ^]]
0

44
p

m k

n2 : x := 20

1ss

0

nn aa``_^^]]

0

jj
NQS

n3 : x := x+ 1

0

KK

%

�
�

0
ff

SQ
N

0
88

k m p

Execution Secret program execution is a sequence of encrypted states, a transitive closure of
encrypted transition relations. An encrypted transition relation, ↪→, corresponds to each step
of secret execution. An encrypted state, States, represents an encrypted memory of currently
executed node, and also, encrypted memories of other nodes which are results of most recent
execution of each nodes. Thus, an encrypted state is given by a map from nodes to encrypted
memories associated with encrypted activity-bit which indicates whether the associated node is
currently executed (i.e., active) or not. (Note that underlined are objects of encrypted domain.
Nodes is not encrypted.)

Transitions ↪→ ∈ States× States

States S ∈ Nodes
fin−→ (Memories×Activities)

Memories M ∈ Variables
fin−→ Constants

Activities α ∈ {0, 1}

Evaluations φ∗s ∈ (Memories× Statements∗)→ Memories

φs ∈ (Memories× Statements)→ Memories
φe ∈ (Memories× Expression)→ Constants
φb ∈ (Memories× Conditions)→ {0, 1}
φx ∈ (Memories×Variables)→ Constants

12Here, bypassing does not mean ignoring execution of the statement, instead, meaning that it executes the
statement but immediately abandons the resulting memory state. Note that if a cryptographic system allows
bypassing statements’ execution literally, then the system will not be secure any more.

February 11, 2014 ROSAEC-2014-001 12

• Objectives: Given an encrypted state S, output S′ such that S ↪→ S′.

• Algorithm: For each node n ∈ Nodes, compute (M ′, α′) such that S′(n) = (M ′, α′).

– Let S(n) = (M,α).

– For each in-edge (ni, n) ∈ Edges, compute α′i and M ′i such that:

∗ Let S(ni) = (M i, αi).

∗ α′i ← φb(M i, ψE(ni, n))× αi
∗ M ′i ←M i × α′i.

– α′ ←
∨
α′i.

– M in ← ΣM ′i.

– Mout ← φ∗s(M in, ψN (n)).

– M ′ = ifelse(α′, 1,Mout,M).

Figure 1: Algorithm of encrypted transition relation ↪→

An algorithm of encrypted transition relation is defined in Figure 1. Unlike the original pro-
gram execution at Section 3.1, the secret execution algorithm knows neither which node to
be executed (i.e., active) nor which control flow to be taken. Thus, this algorithm also use
same principle: “masking and sum”. In this case, the activity bit plays a role of a validity bit.
Coupled with a conditional expression, an activity bit guides the algorithm to take appropriate
control flow. In this way, the execution algorithm selectively updates only an active node,
even if it executes all nodes. For example, execution of the above program is follows: (for the
simplicity, we present values in unencrypted form.)

n0 {} , 1 {} , 0 {} , 0 {} , 0

n1 {} , 0 {x 7→ 10}, 1 {x 7→ 10}, 0 {x 7→ 10}, 0
n2 {} , 0 {} , 0 {} , 0 {} , 0

n3 {} , 0 {} , 0 {x 7→ 11}, 1 {x 7→ 11}, 0

Each column represents a state: a tuple of a memory and an activity bit. Note that starting
from the entry node n0, activity bit 1 is moved along execution, and is gone when execution
is finished (in the last column). Once all activity bits become 0, further execution does not
update anything. Also, note that only one single node has activity bit of 1 during execution,
if we initially have made only starting node’s activity bit to be 1.13

By the way, is it possible for secret executor to determine when to stop repeating atomic
execution? The answer is No. The stopping point should be given from external observer—
program’s owner. If secret executor can determine when to stop, the system is not secure,
revealing critical information of given program which might be used in statistical attack. There-
fore, secret executor periodically asks the program’s owner to check whether program’s execu-
tion is terminated or not. Secret executor or’ing all activity bits and send it back to owner,
and the owner decrypts the value and checks whether it is 0 or not—0 means that program’s
execution is terminated.

6 Properties

Now we present some properties of our secret execution protocol.

13More precisely, the starting node should not equal to entry node of encrypted graph—a graph with additional
dummy nodes—where the starting node means actual entry node of original graph.

February 11, 2014 ROSAEC-2014-001 13

6.1 Client Privacy

Our secret execution protocol (Gen,Enc,Dec,Exec) provides client privacy, in that the client’s
program is kept to be semantically secure, without reference to the Exec algorithm. (Indeed
Exec is a public algorithm with no secrets.)

Lemma 1 (Client privacy). The secret execution protocol, a tuple of algorithms (Gen,Enc,Dec,Exec),
described by Section 4 and Section 5, provides client privacy, that is,

• The advantage of the adversary Adv in the following game is negligible in the security
parameter λ:

– Adv chooses two programs p0 and p1, where |p0| = |p1|.
– Let b← {0, 1}, (pk, sk)← Gen(1λ), and q ← Enc(pk, pb).

– Adv is given (pk, q) and outputs b′.

• The advantage of Adv is |Pr[b′ = b]− 1/2|.

Proof. By the semantic security of the base encryption scheme.

6.2 Correctness

Our secret execution protocol preserves original execution, in that each step of secret execution
simulates each step of original execution. Before presenting simulation lemma, we need to define
state encryption and decryption.

Definition 2 (States Encryption & Decryption). Let S0 = {N 7→ (M0, 0) | N ∈ Nodes}.14
For any state S = (N,M), state encryption ES is defined as follows:

ES(S) = S0 + {N 7→ (M, 1)}

Also, state decryption E−1S is defined as follows:

E−1S (S) = (N, E−1(M)) ⇐⇒ S(N) = (M,α) and

E−1(α) = 1

Using state encryption/decryption, we can state simulation lemma as follows:

Lemma 2 (Simulation). For any state S, let S ↪→ S′, S = ES(S), and S ↪→ S′. Then
E−1S (S′) = S′.

S ↪→ S′ =⇒
S

ES
��

S′

S ↪→ S′

E−1
S

OO

Proof. By the homomorphism of the base encryption scheme.

6.3 Security Overhead

Security overhead is quadratic of program size, more specifically O(V × N), where V is the
number of variables and N is the number of nodes of the given program. Overhead comes
from memory operations and execution of CFGs. Each memory operation, either lookup or
assignment, needs to examine all entries of the memory, while normal memory operation does
not. Also, execution of CFGs (Figure 1) needs to examine all nodes of the graph, while
normal execution evaluates a single node. Finally, the computational overhead of Gentry’s
fully homomorphic encryption scheme[7] is quasi-linear of λ9.

14Refer to Section 4.3 for the definition of M0.

February 11, 2014 ROSAEC-2014-001 14

7 Feasibility Discussion

7.1 Somewhat Homomorphic Encryption Scheme

It would be more practical if our secret execution protocol is based on somewhat homomorphic
encryption scheme.

Currently, all fully homomorphic encryption scheme—basis of our protocol—are still in
“proofs of concept” stage. Here, “fully” means that arbitrary many number of addition and
multiplication is preserved. Although many improvements actively has been made[18, 2, 10, 1,
11, 21, 17, 9], it is still too heavy/expensive to be practical.

On the other hand, there exist several somewhat homomorphic encryption scheme[1, 2]15

that are already quite practical[17]. They, however, preserve only limited number of addition
and multiplication, especially more sensitive to multiplication—AND gate.

In order to adopt somewhat homomorphic encryption scheme, we need to reduce mul-
tiplication depth of our protocol. Multiplication depth is defined as the number of nested
multiplication, which is a similar concept of “depth of circuit”—the number of nested AND
gates of a given circuit. Currently, our protocol’s multiplication depth is O(n), where n is
the number of bits of ciphertext for atomic expressions (i.e., variables or constants), which
is O(word size × security parameter). This multiplication depth is too high for state-of-the-
art somewhat homomorphic encryption scheme to afford. They are currently practical up to
dozens of depth[18].

One possible way to reduce multiplication depth is to use homomorphic encryption scheme
that supports operations in Zp as well as Z2—our base encryption scheme. In that way, we
can reduce our protocol’s multiplication depth to O(1). This is because in Zp we can conduct
addition and multiplication on log p bits. For example, for p ≥ 232, multiplication depth of
32-bit machine (programs) is O(1).

7.2 Partially Homomorphic Encryption Scheme

We can also make our protocol to be more practical by using partially homomorphic encryption
scheme as an base encryption scheme. Here, “partial” means that the encryption scheme
preserves only a single operation: either addition or multiplication. There already exists many
practical partially homomorphic encryption scheme.

We can implement the “masking and sum” method, a central key concept of our protocol
(mentioned at Section 1.1), using just partially homomorphic encryption scheme. Suppose that
E is a partially homomorphic encryption scheme that preserves only addition operation.

E(m1) + E(m2) = E(m1 +m2)

Then, multiplication of two ciphertexts is derived as follows:

E(m1)× E(m2) = E(m1) + · · ·+ E(m1)︸ ︷︷ ︸
E(m2)

= E(m1 + · · ·+m1︸ ︷︷ ︸
E(m2)

)

= E(m1 × E(m2))

Note that the derived term is doubly encrypted. Based on the above equation, we can have

15Actually, fully homomorphic encryption scheme is based on somewhat homomorphic encryption scheme.
An universal technique, so-called bootstrapping[7], make a given somewhat homomorphic encryption scheme
to be fully homomorphic.

February 11, 2014 ROSAEC-2014-001 15

the “masking and sum” method as follows:

E(0)× E(m0) + E(1)× E(m1) = E(0× E(m0)) + E(1× E(m1))

= E(0) + E(E(m1))

= E(0 + E(m1))

= E(E(m1))

Here, E(0) and E(1) are validity tokens. By masking each validity token and summing up all,
we can choose between E(m0) and E(m1)—here, E(m1) is selected. The above method can be
described more generally as follows:

Σ(E(ai)× E(mi)) = E(E(mk)) where ai =

{
1 i = k
0 i 6= k

Note that this method is based on just partially homomorphic encryption scheme: it preserves
only addition operation.

The problem is that the result is doubly encrypted—E(E(m)); one need to decrypt it twice.
If the “masking and sum” methods are nested with depth n, one need to decrypt the result
n + 1 times, which leads to increase overhead of the client. This overhead, however, can be
reduced by using such partially homomorphic encryption scheme that its decryption algorithm
is very efficient and low-cost.

Another problem is that we have not yet found a way to implement ~eq algorithm using
partially homomorphic encryption scheme, as well as the case of somewhat homomorphic en-
cryption scheme mentioned at Section 7.1.

7.3 Partial Secret Execution

As an practical use, we can apply our secret execution protocol to only a part of program. It
would be useful to secretly execute a part of program that is very important for security, such
as a routine of checking serial key for genuine software, or a routine checking consistency of
program to see if it is not falsified. In this case, such routine is very small part of a given
program, so that secret execution of such part is affordable.

The problem is that secret execution yields an encrypted result, which is supposed to be
used by other part of program via normal execution. One possible solution is to communicate
with a server who is able to decrypt the result. For example, program’s consistency checking
routine is secretly executed and yields encrypted result: either true or false, then the result is
sent to a central server who is supposed to decrypt it and send it back to the program. In this
way, one can totally hide the underlying algorithm of consistency checking routine; otherwise,
malicious users can freely tamper with a program with the knowledge of consistency checking
algorithm.

8 Applications

8.1 One-time Execution

One of possible application of secret execution protocol is one-time execution. One-time exe-
cution is an execution strategy in which a given program is executed only once, and spoiled
so that the program cannot be executed again. One-time execution would be useful in case a
server sends a client a program to be executed only once, and never be executed again. For
example, let’s imagine a financial consulting firm who has a software that given one’s financial
standing, find optimal asset management. Suppose that customers do not want to expose their
financial standing, and the company want to protect their software from being freely used. In

February 11, 2014 ROSAEC-2014-001 16

this case, one promising solution is that the company gives a customer their software that is
one-time executable, and the customer run the software with their private information.

Our secret execution protocol enables one-time execution by constructing secret executor
for secret executor. More specifically,

• First, we design a special virtual machine that executes a given program and immediately
destroys the program. Note that this virtual machine is also a kind of program.

• Next, we write the target program which can be executed on the virtual machine.

• Finally, we encrypt both the virtual machine and the target program, and secretly execute
the encrypted virtual machine.

In this way, we can hide not only the target program, but also the virtual machine (i.e., one-
time executor), so that malicious users cannot modify the virtual machine in order to put aside
the target program.

8.2 Crash Report

Another possible application is secure crash report. You are often asked to send crash report
when you are using a computer, but you do not because the crash report may contain private
information. In this case, secret execution can be a good solution: you can send the crash report
after encrypting it, and a receiver can examine the encrypted crash report without decrypting
it. For example, a developer makes an inspection program which analyzes a given crash report,
and encrypts the inspection program. Then, the encrypted program can be secretly executed
with the encrypted crash report, and yields an encrypted inspection result.

9 Related Work

Code Obfuscation Code obfuscation [19, 12] is formalized by means of abstract interpre-
tation [5]. Attackers to code obfuscation are modeled as abstract interpreters. Potency of
code obfuscation, which means that “the obfuscated program is harder to understand than
the original one” [19, 12], is measured by comparing the most concrete preserved property or
incompleteness of abstract interpretation. In this framework, the attackers in the lattice of ab-
stract semantics. Note that we can compare abstract semantics by the amount of information
they contain and they form a lattice of which the bottom is the concrete semantics and the
top is the trivial semantics.

Code obfuscation aims to hide information of the program by a program transformation.
On the other hand, secret execution aims to hide information of input and output in addition
to that of program. Furthermore, one who hides information of the program and one who hides
information of the input and the output may be different in secret execution. Code obfuscation
requires the target language and the source language be the same and the obfuscated program
behaves observationally equal to the original program. On the other hand, secret execution
only guarantees that the plain output be recoverable from the encrypted output by decryption.

Their framework does not deal with the resilience of obfuscation, which means that mea-
suring the difficulty of breaking the obfuscation is not properly addressed. On the other hand,
attackers to secret execution are modeled as cryptographic attackers and both potency and
resilience are addressed in the cryptographic settings. Cryptographically, Semantic security of
secret execution implies the resilience of it in one of the best ways we can hope for. We think
it is a proper way to address the resilience.

February 11, 2014 ROSAEC-2014-001 17

Branching Program on Encrypted Data Ishai and Paskin proposed a protocol for eval-
uating length-bounded branching programs on encrypted data [16]. Given a branching program
P and an encryption c of an input x, their protocol produces a cipher text c′, an encryption
of P (x). The protocol is based on oblivious transfer and partially homomorphic public-key
encryption scheme.

Our secret execution supports more general features with respect to computation and se-
curity. While their protocol only handles length-bounded branching programs, our secret
execution deals with arbitrary programs which may contain loops. Also we supports storage
so that load and store operations are computable as well as purely mathematical functions.
Furthermore, secret execution hides the program itself in addition to the input and output.

References

[1] Z. Brakerski and V. Vaikuntanathan. Efficient fully homomorphic encryption from (stan-
dard) lwe. In Proceedings of the 2011 IEEE 52nd Annual Symposium on Foundations of
Computer Science, FOCS ’11, pages 97–106, Washington, DC, USA, 2011. IEEE Com-
puter Society.

[2] Z. Brakerski and V. Vaikuntanathan. Fully homomorphic encryption from ring-lwe and
security for key dependent messages. In Proceedings of the 31st annual conference on
Advances in cryptology, CRYPTO’11, pages 505–524, Berlin, Heidelberg, 2011. Springer-
Verlag.

[3] C. Collberg, C. Thomborson, and D. Low. Manufacturing cheap, resilient, and stealthy
opaque constructs. In IN PRINCIPLES OF PROGRAMMING LANGUAGES 1998,
POPL98, pages 184–196, 1998.

[4] C. S. Collberg and C. Thomborson. Watermarking, tamper-proofing, and obfuscation-
tools for software protection. IEEE Transactions on Software Engineering, 28:735–746,
2002.

[5] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In POPL, 1977.

[6] S. Even, O. Goldreich, and A. Lempel. A randomized protocol for signing contracts.
Commun. ACM, 28(6):637–647, June 1985.

[7] C. Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford University,
2009.

[8] C. Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings of the 41st
annual ACM symposium on Theory of computing, STOC ’09, pages 169–178, New York,
NY, USA, 2009. ACM.

[9] C. Gentry and S. Halevi. Fully homomorphic encryption without squashing using depth-3
arithmetic circuits. In FOCS, pages 107–109, 2011.

[10] C. Gentry and S. Halevi. Implementing gentry’s fully-homomorphic encryption scheme.
In Proceedings of the 30th Annual international conference on Theory and applications
of cryptographic techniques: advances in cryptology, EUROCRYPT’11, pages 129–148,
Berlin, Heidelberg, 2011. Springer-Verlag.

[11] C. Gentry, S. Halevi, and N. P. Smart. Homomorphic evaluation of the aes circuit. In
CRYPTO, pages 850–867, 2012.

February 11, 2014 ROSAEC-2014-001 18

[12] R. Giacobazzi and I. Mastroeni. Making abstract interpretation incomplete: Modeling the
potency of obfuscation. In SAS, pages 129–145, 2012.

[13] S. Goldwasser and S. Micali. Probabilistic encryption. J. Comput. Syst. Sci., 28(2):270–
299, 1984.

[14] J. R. Gosler. Software protection: Myth or reality? In Advances in Cryptology, CRYPTO
’85, pages 140–157, London, UK, UK, 1986. Springer-Verlag.

[15] K. Heffner and C. Collberg. The obfuscation executive. In K. Zhang and Y. Zheng, editors,
Information Security, volume 3225 of Lecture Notes in Computer Science, pages 428–440.
Springer Berlin Heidelberg, 2004.

[16] Y. Ishai and A. Paskin. Evaluating branching programs on encrypted data. In Proceed-
ings of the 4th conference on Theory of cryptography, TCC’07, pages 575–594, Berlin,
Heidelberg, 2007. Springer-Verlag.

[17] K. Lauter, M. Naehrig, and V. Vaikuntanathan. Can homomorphic encryption be practi-
cal? Technical Report MSR-TR-2011-61, Microsoft Research, 2011.

[18] M. Naehrig, K. Lauter, and V. Vaikuntanathan. Can homomorphic encryption be prac-
tical? In Proceedings of the 3rd ACM workshop on Cloud computing security workshop,
CCSW ’11, pages 113–124, New York, NY, USA, 2011. ACM.

[19] M. D. Preda and R. Giacobazzi. Semantics-based code obfuscation by abstract interpre-
tation. Journal of Computer Security, 17(6):855–908, 2009.

[20] M. O. Rabin. How to exchange secrets with oblivious transfer. Technical Report TR-81,
Aiken Computation Lab., Harvard University, 1981.

[21] N. Smart and F. Vercauteren. Fully homomorphic simd operations. Cryptology ePrint
Archive, Report 2011/133, 2011.

[22] M. van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan. Fully homomorphic encryption
over the integers. In Proceedings of the 29th Annual international conference on Theory
and Applications of Cryptographic Techniques, EUROCRYPT’10, pages 24–43, Berlin,
Heidelberg, 2010. Springer-Verlag.

