
ROSAEC MEMO

2015-01

March 19, 2015

Static Analysis with Set-closure in Secrecy

Woosuk Lee Hyunsook Hong Kwangkeun Yi Jung Hee Cheon

March 19, 2015

Abstract

We report that the homomorphic encryption scheme can unleash the possibility of
static analysis of encrypted programs. Static analysis in cipher-world is desirable in the
static-analysis-as-a-service setting, because it allows the program owners to encrypt and
upload their programs to the static analysis service while the service provider can still an-
alyze the encrypted programs without decrypting them. Only the owner of the decryption
key (the program owner) is able to decrypt the analysis result. As a concrete example,
we describe how to perform inclusion-based pointer analysis in secrecy. In our method, a
somewhat homomorphic encryption scheme of depth O(logm) is able to evaluate a simple
pointer analysis with O(logm) homomorphic matrix multiplications, for the number m
of pointer variables when the maximal pointer level is bounded. We also demonstrate the
viability of our method by implementing the pointer analysis in secrecy.

1 Introduction

We have built a static-analysis-as-a-service system [2]. The analyzer is Sparrow [3], an
industrial-strength static analyzer for C programs, implemented through our general tech-
niques for improving the precision and scalability [22, 23, 24]. But the service has not been
popular because of privacy concerns. Users are reluctant to upload their source to our analysis
server.

For more widespread use of our system, we explored a method of performing static analysis
on encrypted programs. Fig. 1 depicts the system.

Challenge Our work is based on homomorphic encryption (HE). A HE scheme enables com-
putation of arbitrary functions on encrypted data. In other words, a HE scheme provides
the functions f⊕ and f∧ that satisfy the following homomorphic properties for plaintexts
x, y ∈ {0, 1} without any secrets:

Enc(x⊕ y) = f⊕(Enc(x),Enc(y)), Enc(x ∧ y) = f∧(Enc(x),Enc(y))

A HE scheme was first shown in the work of Gentry [16]. Since then, although there have been
many efforts to improve the efficiency [5, 6, 11, 26], the cost is still too large for immediate
applications into daily computations.

Due to the high complexity of HE operation, practical deployments of HE require application-
specific techniques. Application-specific techniques are often demonstrated in other fields. Kim
et al. [10] introduced an optimization technique to reduce the depth of an arithmetic circuit
computing edit distance on encrypted DNA sequences. In addition, methods of bubble sort and
insertion sort on encrypted data have been proposed [8]. Also, private database query protocol
using somewhat homomorphic encryption has been proposed [4].

March 19, 2015 ROSAEC-2015-01 2

Bug finder

?

?
User

Program

Bug report

Figure 1: Secure static analysis is performed in 3 steps: 1) target program encryption 2) analysis
in secrecy, and 3) analysis result decryption

Our Results As a first step, we propose an inclusion-based pointer analysis in secrecy. As
many analyses depends on the pointer information, we expect our work to have significant
implications along the way to static analysis in secrecy.

We first describe a basic approach. We design an arithmetic circuit of the pointer analysis
algorithm only using operations that a HE scheme supports. Program owner encrypts some
numbers representing his program under the HE scheme. On the encrypted data, a server
performs a series of corresponding homomorphic operations referring to the arithmetic circuit
and outputs encrypted pointer analysis results. This basic approach is simple but very costly.

To decrease the cost of the basic approach, we apply two optimization techniques. One is to
exploit the ciphertext packing technique not only for performance boost but also for decreasing
the huge number of ciphertexts required for the basic scheme. The basic approach makes
ciphertexts size grow by the square to the number of pointer variables in a program, which is
far from practical. Ciphertext packing makes total ciphertexts size be linear to the number of
variables. The other technique is level-by-level analysis. We analyze the pointers of the same
level together from the highest to lowest. With this technique, the depth of the arithmetic
circuit for the pointer analysis significantly decreases: from O(m2 logm) to O(n logm) for the
number m of pointer variables and the maximal pointer level n. By decreasing the depth, which
is the most important in performance of HE schemes, the technique decreases both ciphertexts
size and the cost of each homomorphic operation.

The improvement by the two optimizations is summarized in Table 1.

Multiplicative depth # Ctxt

Basic O(m2 logm) 4m2

Improved O(n logm) (2n+ 2)m

m : the number of pointer variables in the target program

n : the maximum level of pointer in the program, which
does not exceed 5 in usual

Table 1: The comparison between the basic and the improved scheme

Although our interest in this paper is limited to inclusion-based pointer analysis, we expect
other analyses in the same family will be performed in a similar manner to our method. Analyses
in the family essentially compute a transitive closure of a graph subject to dynamic changes;
new edges may be added during the analysis. Our method computes an encrypted transitive
closure of a graph when both edge insertion queries and all the edges are encrypted. Thus, we
expect only a few modifications to our method will make other similar analyses (e.g., 0-CFA)
be in secrecy.

March 19, 2015 ROSAEC-2015-01 3

2 Background

In this section, we introduce the concept of homomorphic encryption, and describe the security
model of our static analysis in secrecy.

2.1 Homomorphic Encryption

A homomorphic encryption (HE) scheme HE=(KG, Enc, Dec, Eval) is a quadruple of proba-
bilistic polynomial-time algorithm as follows:

• (pk, evk; sk) ← HE.KG(1λ): The algorithm takes the security parameter λ as input and
outputs a public encryption key pk, a public evaluation key evk, and a secret decryption
key sk.

• c̄← HE.Encpk(µ, r): The algorithm takes the public key pk, a single message µ ∈ {0, 1}1,
and a randomizer r. It outputs a ciphertext c̄. If we have no confusion, we omit the
randomizer r.

• µ← HE.Decsk(c̄): The algorithm takes the secret key sk and a ciphertext c̄ = HE.Encpk(µ)
and outputs a message µ ∈ {0, 1}

• c̄f ← HE.Evalevk(f ; c̄1, . . . , c̄l): The algorithm takes the evaluation key evk, a function
f : {0, 1}l → {0, 1} represented by an arithmetic circuit over Z2 = {0, 1} with the
addition and multiplication gates, and a set of l ciphertexts {c̄i = HE.Enc(µi)}li=1, and
outputs a ciphertext c̄f = HE.Enc(f(µ1, · · · , µl)).

We say that a scheme HE=(KG, Enc, Dec, Eval) is f -homomorphic if for any set of inputs
(µ1, · · · , µl), and all sufficiently large λ, it holds that

Pr [HE.Decsk (HE.Evalevk(f ; c̄1, · · · , c̄l)) 6= f(µ1, · · · , µl)] = negl(λ),

where negl is a negligible function, (pk, evk; sk)← HE.KG(1λ), and c̄i ← HE.Encpk(µi).
If a HE scheme can evaluate all functions represented by arithmetic circuits over Z2 (equiva-

lently, boolean circuits with AND and XOR gates2), the HE scheme is called fully homomorphic.
To facilitate understanding of HE schemes, we introduce a simple symmetric version of the

HE scheme [13] based on approximate common divisor problems [21]:

• sk← KG(1λ): Choose an integer p and outputs the secret key sk = p.

• c̄ ← Enc(µ ∈ {0, 1}): Choose a random integer q and a random noise integer r with
|r| � |p|. It outputs c̄ = pq + 2r + µ.

• µ← Decsk(c̄): Outputs µ = ((c̄ mod p) mod 2).

• c̄add ← Add(c̄1, c̄2): Outputs c̄add = c̄1 + c̄2.

• c̄mult ← Mult(c̄1, c̄2): Outputs c̄mult = c̄1 × c̄2.

For ciphertexts c̄1 ← Enc(µ1) and c̄2 ← Enc(µ2), we know each c̄i is of the form c̄i = pqi+2ri+µi
for some integer qi and noise ri. Hence ((c̄i mod p) mod 2) = µi, if |2ri + µi| < p/2. Then, the
following equations hold:

c̄1 + c̄2 = p(q1 + q2) + 2(r1 + r2) + µ1 + µ2︸ ︷︷ ︸
noise

,

c̄1 × c̄2 = p(pq1q2 + · · ·) + 2(2r1r2 + r1µ2 + r2µ1) + µ1 · µ2︸ ︷︷ ︸
noise

1For simplicity, we assume that the plaintext space is Z2 = {0, 1}, but extension to larger plaintext space is
immediate.

2AND and XOR gates are sufficient to simulate all binary circuits.

March 19, 2015 ROSAEC-2015-01 4

Based on these properties,

Decsk(c̄1 + c̄2) = µ1 + µ2 and Decsk(c̄1 × c̄2) = µ1 · µ2

if the absolute value of 2(2r1r2 +r1µ2 +r2µ1)+µ1µ2 is less than p/2. The noise in the resulting
ciphertext increases during homomorphic addition and multiplication (twice and quadratically
as much noise as before respectively). If the noise becomes larger than p/2, the decryption
result of the above scheme will be spoiled. As long as the noise is managed, the scheme is able
to potentially evaluate all boolean circuits as the addition and multiplication in Z2 corresponds
to the XOR and AND operations.

We consider somewhat homomorphic encryption (SWHE) schemes that adopt the modulus-
switching [6, 7, 12, 17] for the noise-management. The modulus-switching reduces the noise by
scaling the factor of the modulus in the ciphertext space. SWHE schemes support a limited
number of homomorphic operations on each ciphertext, as opposed to fully homomorphic en-
cryption schemes [9, 13, 16, 27] which are based on a different noise-management technique.
But SWHE schemes are more efficient to support low-degree homomorphic computations.

In this paper, we will measure the efficiency of homomorphic evaluation by the multiplicative
depth of an underlying circuit. The multiplicative depth is defined as the number of multipli-
cation gates encountered along the longest path from input to output. When it comes to the
depth of a circuit computing a function f , we discuss the circuit of the minimal depth among
any circuits computing f . For example, if a somewhat homomorphic encryption scheme can
evaluate circuits of depth L, we may maximally perform 2L multiplications on the ciphertexts
maintaining the correctness of the result. We do not consider the number of addition gates in
counting the depth of a circuit because the noise increase by additions is negligible compared
with the noise increase by multiplications. The multiplicative depth of a circuit is the most im-
portant factor in the performance of homomorphic evaluation of the circuit in the view of both
the size of ciphertexts and the cost of per-gate homomorphic computation. Thus, minimizing
the depth is the most important in performance.

2.2 The BGV-type cryptosystem

Our underlying HE scheme is a variant of the Brakerski-Gentry-Vaikuntanathan (BGV)-type
cryptosystem [6, 17]. In this section, we only provide a brief review of the cryptosystem [6].
For more details, please refer to the Appendix A.

Let Φ(X) be an irreducible polynomial over Z. The implementation of the scheme is based
on the polynomial operations in ring R = Z[X]/ (Φ(X)) which is the set of integer polynomials

of degree less than deg(Φ). Let Rp
def
= R/pR be the message space for a prime p and Rq × Rq

be the ciphertext space for an integer q. Now, we describe the BGV cryptosystem as follows:

• ((a, b); s) ← BGV.KG(1λ, σ, q): Choose a secret key s and a noise polynomial e from
a discrete Gaussian distribution over R with standard deviation σ. Choose a random
polynomial a from Rq and generate the public key (a, b = a · s + p · e) ∈ Rq ×Rq. Output
the public key pk = (a, b) and the secret key sk = s.

• c̄← BGV.Encpk(µ): To encrypt a message µ ∈ Rp, choose a random polynomial v whose
coefficients are in {0,±1} and two noise polynomials e0, e1. Output the ciphertext c =
(c0, c1) = (bv + pe0 + µ, av + pe1) mod (q,Φ(X)).

• µ ← BGV.Decsk(c̄): Given a ciphertext c̄ = (c0, c1), it outputs µ = (((c0 − c1 · s) mod
q) mod p).

• c̄add ← BGV.Addpk(c̄1, c̄2; evk): Given ciphertexts c̄1 = BGV.Enc(µ1) and c̄2 = BGV.Enc(µ2),
it outputs the ciphertext c̄add = BGV.Enc(µ1 + µ2).

• c̄mult ← BGV.Multpk(c̄1, c̄2; evk): Given ciphertexts c̄1 = BGV.Enc(µ1) and c̄2 = BGV.Enc(µ2),
it outputs the ciphertext c̄mult = BGV.Enc(µ1 · µ2).

March 19, 2015 ROSAEC-2015-01 5

2.3 Security Model

We assume that program owners and analyzer servers are semi-honest. In this model, the
analyzer runs the protocol exactly as specified, but may try to learn as much as possible
about the program information. However, in our method, since programs are encrypted under
the BGV-type cryptosystem which is secure under the hardness of the ring learning with
errors (RLWE) problem (see Appendix A for the details), analyzers cannot learn no more
information than the program size.

3 A Basic Construction of a Pointer Analysis in Secrecy

In this section, we explain how to perform an inclusion-based pointer analysis in secrecy.

3.1 A Brief Review of Inclusion-based Pointer Analysis

We begin with a brief review of inclusion-based pointer analysis. We consider flow- and context-
insensitive pointer analyses. To simplify our presentation, we consider a tiny language consisting
of primitive assignments involving just the operations * and &. A program P is a finite set of
assignments A:

A → x = &y | x = y | ∗x = y | x = ∗y

We present inclusion-based pointer analysis algorithm with simple resolution rules in a similar
manner to [20]. Given some program P , we construct resolution rules as specified in Table 2.
In the first rule, the side condition “if x = &y in P” indicates that there is an instance of this
rule for each occurrence of an assignment of the form x = &y in P . The side conditions in the
other rules are similarly interpreted. Intuitively, an edge x −→ &y indicates that x can point
to y. An edge x −→ y indicates that for any variable v, if y may point to v then x may point
to v. The pointer analysis is applying the resolution rules until reaching a fixpoint.

x −→ &y
(if x = &y in P)

(New)

x −→ y (if x = y in P) (Copy)

x −→ &z
y −→ z (if y = ∗x in P) (Load)

x −→ &z
z −→ y (if ∗x = y in P) (Store)

x −→ z z −→ &y

x −→ &y (Trans)

Table 2: Resolution rules for pointer analysis.

3.2 The Pointer Analysis in Secrecy

The analysis in secrecy will be performed in the following 3 steps. First, a program owner derives
numbers that represent his program and encrypt them under a HE scheme. The encrypted
numbers will be given to an analysis server. Next, the server performs homomorphic evaluation
of an underlying arithmetic circuit representing the inclusion-based pointer analysis with the
inputs from the program owner. Finally, the program owner obtains an encrypted analysis
result and recovers a set of points-to relations by decryption.

March 19, 2015 ROSAEC-2015-01 6

Before beginning, we define some notations. We assume a program owner assigns a number
to every variable using some numbering scheme. In the rest of the paper, we will denote a
variable numbered i by xi. In addition, to express the arithmetic circuit of the pointer analysis
algorithm, we define the notations δi,j and ηi,j in Z for i, j = 1, · · · ,m by

δi,j 6= 0 iff An edge xi −→ &xj is derived by the resolution rules.

ηi,j 6= 0 iff An edge xi −→ xj is derived by the resolution rules.

for variables xi and xj, and the number m of pointer variables.

3.2.1 Inputs from Client

A client (program owner) derives the following numbers that represent his program P (here,
m is the number of variables):

{(δi,j , ηi,j , ui,j , vi,j) ∈ Z× Z× {0, 1} × {0, 1} | 1 ≤ i, j ≤ m}

which are initially assigned as follows:

δi,j ←
{

1 if ∃xi = &xj
0 otherwise

ηi,j ←
{

1 if ∃xi = xj or i = j
0 otherwise

ui,j ←
{

1 if ∃xj = ∗xi
0 otherwise

vi,j ←
{

1 if ∃∗xj = xi
0 otherwise

In the assignment of δij , the side condition ∃xi = &xj indicates that there is the assignment
xi = &xj in the program P . The other side conditions are similarly interpreted.

The program owner encrypts the numbers using a HE scheme and provides them to the
server. We denote the encryption of δi,j , ηi,j , ui,j , and vi,j by δ̄i,j , η̄i,j , ūi,j , and v̄i,j , respectively.
Therefore, the program owner generates 4m2 ciphertexts where m is the number of pointer
variables.

3.2.2 Server’s Analysis

Provided the set of the ciphertexts from the program owner, the server homomorphically applies
the resolution rules. With a slight abuse of notation, we will denote + and · as homomorphic
addition and multiplication respectively to simplify the presentation.

We begin with applying the Trans rule in Table 2. For i, j = 1, · · · ,m, the server updates
δ̄i,j as follows:

δ̄i,j ←
∑m
k=1 η̄i,k · δ̄k,j

If edges xi −→ xk and xk −→ &xj are derived by the resolution rules for some variable xk, then
the edge xi −→ &xj will be derived by the Trans rule and the value δi,j will have a positive
integer. If there is no variable xk that satisfies the conditions for all k = 1, · · · ,m, there will
be no update on δi,j (∵ ηi,i = 1).

Next, we describe applying the Load rule.

η̄i,j ← η̄i,j +
∑m
k=1 ūi,k · δ̄k,j

If an edge xk −→ &xj is derived and the program P has a command xi := ∗xk and for some
integer k, then the edge xi −→ xj will be derived and ηi,j will have a positive value. If none of
variables xk satisfies the conditions, there will be no update on ηj,k.

Finally, to apply the Store rule, the server performs the following operations:

η̄i,j ← η̄i,j +
∑m
k=1 v̄j,k · δ̄k,i

March 19, 2015 ROSAEC-2015-01 7

If an edge xk −→ &xi is derived and the program P has a command ∗xk := xj for some variable
xk, then an edge xi −→ xj will be derived and ηi,j will have a non-zero value.

Note that the server must repeat applying the rules as if in the worst case since the server
cannot know whether a fixpoint is reached during the operations. The server may obtain a
fixpoint by repeating the following two steps in turn m2 times:

1. Applying the Trans rule m times

2. Applying the Load and Store rules

The reason for doing step 1 is that we may have a m-length path through edges as the longest
one in the worst case. The reason for repeating the two steps m2 times is that we may have
a new edge by applying the Load and Store rules, and we may have at most m2 edges at
termination of the analysis.

We need O(m2 logm) multiplicative depth in total. Because performing the step 1 entails
m homomorphic multiplications on each δ̄ij , and repeating the two steps m2 times performs

about mm2

homomorphic multiplications on each δ̄ij .

3.2.3 Output Determination

The client receives the updated {δ̄i,j | 1 ≤ i, j ≤ m} from the server and recovers a set of
points-to relations as follows:

{xi −→ &xj | HE.Decsk(δ̄i,j) 6= 0 and 1 ≤ i, j ≤ m}

3.2.4 Why do we not represent the algorithm by a Boolean circuit?

One may wonder why we represent the pointer analysis algorithm by an arithmetic circuit
rather than a Boolean circuit. As an example of applying the Trans rule, we might update δi,j
by the following method:

δi,j ←
∨

1≤k≤m

ηi,k ∧ δk,j

However, this representation causes more multiplicative depth than our current approach. The
OR operation consists of the XOR and AND operations as follows:

x ∨ y def
= (x ∧ y)⊕ x⊕ y

Note that the addition and multiplication in Z2 correspond to the XOR and AND operations,
respectively. Since the OR operation requires a single multiplication over ciphertexts, this
method requires m more multiplications than our current method to update δi,j once.

4 Improvement of the Pointer Analysis in Secrecy

In this section, we present three techniques to reduce the cost of the basic approach described
in the section 3.2. We begin with problems of the basic approach followed by our solutions.

4.1 Problems of the Basic Approach

The basic scheme has the following problems that make the scheme impractical.

• Huge # of homomorphic multiplications: The scheme described in the section 3.2 can be
implemented with a SWHE scheme of the depth O(m2 logm). Homomorphic evaluation
of a circuit over the hundreds depth is regarded unrealistic in usual. The depth of the
arithmetic circuit described in the section 3.2 exceeds 300 even if a program has only 10
variables.

March 19, 2015 ROSAEC-2015-01 8

• Huge # of ciphertexts: The basic approach requires 4m2 ciphertexts, where m is the
number of pointer variables. When a program has 1000 variables, 4 million ciphertexts
are necessary. For instance, the size of a single ciphertext in the BGV cryptosystem is
about 2MB when the depth is 20. In this case, the scheme requires 7.6 TB memory space
for all the ciphertexts.

• Decryption error may happen: In our underlying HE scheme, the message space is the
polynomial ring over modulus p. During the operations, δi,j and ηi,j increase and may
become p which is congruent to 0 modulo p. Since we are interested in whether each
value is zero or not, incorrect results may be derived if the values become congruent to
0 modulo p by accident.

4.2 Overview of Improvement

For the number m of pointer variables and the maximal pointer level n, the followings are our
solutions.

• Level-by-level Analysis: We analyze pointers of the same level together from the high-
est to lowest in order to decrease the depth of the arithmetic circuit described in the
section 3.2. To apply the technique, program owners are required to reveal an upper
bound of the maximal pointer level. By this compromise, the depth of the arithmetic cir-
cuit significantly decreases: from O(m2 logm) to O(n logm). We expect this information
leak is not much compromise because the maximal pointer level is well known to be a
small number in usual cases.

• Ciphertext Packing: We adopt ciphertext packing not only for performance boost but
also for decreasing the huge number of ciphertexts required for the basic scheme. The
technique makes total ciphertext sizes be linear to the number of variables.

• Randomization of Ciphertexts: We randomize cipertexts to balance the probability
of incorrect results and ciphertext size. We may obtain correct results with the probability
of (1− 1

p−1)n(dlogme+3).

The following table summarizes the improvement.

Depth # Ctxt

Basic O(m2 logm) 4m2

Improved O(n logm) (2n+ 2)m

4.3 Level-by-level Analysis

We significantly decrease the multiplicative depth by doing the analysis in a level by level
manner in terms of level of pointers. The level of a pointer is the maximum level of possible
indirect accesses from the pointer, e.g., the pointer level of p in the definition “int** p” is 2.
From this point, we denote the level of a pointer variable x by ptl(x).

We assume that type-casting a pointer value to a lower or higher-level pointer is absent in
programs. For example, we do not consider a program that has type-casting from void* to
int** because the pointer level increases from 1 to 2.

On the assumption, we analyze the pointers of the same level together from the highest to
lowest. The correctness is guaranteed because lower-level pointers cannot affect pointer values
of higher-level pointers during the analysis. For example, pointer values of x initialized by
assignments of the form x = &y may change by assignments of the form x = y, x = ∗y, or
∗p = y (∵ p may point to x) during the analysis. The following table presents pointer levels of
involved variables in the assignments that affects pointer values of x.

March 19, 2015 ROSAEC-2015-01 9

Assignment Levels
x = y ptl(x) = ptl(y)
x = ∗y ptl(y) = ptl(x) + 1
∗p = y ptl(p) = ptl(x) + 1 ∧ ptl(y) = ptl(x)

Note that all the variables affect pointer values of x have higher or equal pointer level compared
to x.

Now we describe the level-by-level analysis in secrecy similarly to the basic scheme. Before

beginning, we define the notations δ
(`)
i,j and η

(`)
i,j in Z for i, j = 1, · · · ,m by

δ
(`)
i,j 6= 0 iff An edge xi −→ &xj is derived and ptl(xi) = `

η
(`)
i,j 6= 0 iff An edge xi −→ xj is derived and ptl(xi) = `.

4.3.1 Inputs from Client

For the level-by-level analysis, a program owner derives the following numbers that represent
his program P (n is the maximal level of pointer in the program):

{(δ(`)
i,j , η

(`)
ij) | 1 ≤ i, j ≤ m, 1 ≤ ` ≤ n} ∪ {(ui,j , vi,j) | 1 ≤ i, j ≤ m}

where `δi,j and `ηij are defined as follows.

δ
(`)
i,j =

{
1 if ∃xi = &xj and ptl(xi) = `
0 o.w.

η
(`)
i,j =

{
1 if (∃xi = xj or i = j) and ptl(xi) = `
0 o.w.

The definitions of uij and vij are the same as in the section 3.2. We denote the encryption of

δ
(`)
i,j and η

(`)
i,j by δ̄

(`)
i,j , η̄

(`)
i,j , respectively.

4.3.2 Server’s Analysis

Server’s analysis begins with propagating pointer values of the maximal level n by applying
the Trans rule as much as possible. In other words, for i, j = 1, · · · ,m, the server repeats the
following update m times:

δ̄
(n)
i,j ←

∑m
k=1 η̄

(n)
i,k · δ̄

(n)
k,j

Next, from the level n− 1 down to 1, the analysis at a level ` is carried out in the following
steps:

1. applying the Load rule

η̄
(`)
i,j ← η̄

(`)
i,j +

∑m
k=1 ūi,k · δ̄

(`+1)
k,j

2. applying the Store rule

η̄
(`)
i,j ← η̄

(`)
i,j +

∑m
k=1 v̄j,k · δ̄

(`+1)
k,i

3. applying the Trans rule: repeating the following update m times

δ̄
(`)
i,j ←

∑m
k=1 η̄

(`)
i,k · δ̄

(`)
k,j

Through step 1 and 2, edges of the form xi −→ xj are derived where either xi or xj is
determined by pointer values of the immediate higher level ` + 1. In step 3, pointer values of
a current level ` are propagated as much as possible.

We need O(n logm) multiplicative depth in total because repeating the above 3 steps n
times entails maximally mn homomorphic multiplications on a single ciphertext.

March 19, 2015 ROSAEC-2015-01 10

4.3.3 Output Determination

The client receives the updated {δ̄(`)
i,j | 1 ≤ i, j ≤ m, 1 ≤ ` ≤ n} from the server and recovers a

set of points-to relations as follows:

{xi −→ &xj | HE.Decsk(δ̄(`)
i,j) 6= 0, 1 ≤ i, j ≤ m, and 1 ≤ ` ≤ n}

4.4 Ciphertext Packing

Our use of ciphertext packing aims to decrease total ciphertext size by using fewer ciphertexts
than the basic scheme. Thanks to ciphertext packing, a single ciphertext can hold multiple
plaintexts rather than a single value. For given a vector of plaintexts (µ1, · · · , µm), the BGV
cryptosystem allows to obtain a ciphertext c̄← BGV.Enc(µ1, · · · , µm).

As each ciphertext holds a vector of multiple plaintexts, homomorphic operations between
such ciphertexts are performed component-wise. For given ciphetexts c̄1 = BGV.Enc(µ1,1, · · · , µ1,m)
and c̄2 = BGV.Enc(µ2,1, · · · , µ2,m), the homomorphic addition and multiplication in the BGV
scheme satisfy the following properties:

BGV.Add(c̄1, c̄2) returns a ciphertext BGV.Enc(µ1,1 + µ2,1, · · · , µ1,m + µ2,m)

BGV.Mult(c̄1, c̄2) returns a ciphertext BGV.Enc(µ1,1 · µ2,1, · · · , µ1,m · µ2,m)

The BGV scheme provides other homomorphic operations such as cyclic rotation. For example,
we can perform cyclic rotation of vector by any amount on ciphertexts (e.g., BGV.Enc(µm, µ1, · · · , µm−1)
from BGV.Enc(µ1, µ2, · · · , µm)). Using the homomorphic addition, multiplication, and other
operations, we can perform the matrix addition, multiplication and transposition operations
on encrypted matrices.

In this subsection, we describe ciphertext packing and the homomorphic matrix operations
in more detail.

Principle of Ciphertext Packing

We begin with some notations. For an integer q, Zq
def
= [−q/2, q/2) ∩ Z and x mod q denotes a

number in [−q/2, q/2)∩Z which is equivalent to x modulo q. Recall that the message space of
the BGV cryptosystem is Rp = Z[X]/ (p,Φ(X)) for a prime p and an irreducible polynomial
Φ(X). We identify the polynomial ring Rp with {a0 + a1X + · · · + adeg Φ−1X

deg Φ−1 | ai ∈
Zp and 0 ≤ i < deg Φ}.

In the basic approach, although the message space of the BGV scheme is the polynomial
ring Rp, we have used only constant polynomials (i.e., numbers) for plaintexts. Thus, if a vector
of plaintexts is represented as a single non-constant polynomial, a single ciphertext can hold
multiple plaintexts rather than a single value. Therefore we can save the total memory space
by using fewer ciphertexts than the basic scheme.

Suppose the factorization of Φ(X) modulo p is Φ(X) =
∏m
i=1 Fi(X) mod p where each Fi is

an irreducible polynomial in Zp[X]. Then a polynomial µ(X) ∈ Rp can be viewed as a vector of
m different small polynomials, (µ1(X), · · · , µm(X)) such that µi(X) = (µ(X) modulo Fi(X))
for i = 1, · · · ,m.

From this observation, we can encrypt a vector µ = (µ1, · · · , µm) of plaintexts in
∏m
i=1 Zp

into a single ciphertext by the following transitions:

Zp × · · · × Zp −→
∏m
i=1 Zp[X]/ (Fi(X)) −→ Zp[X]/ (Φ(X)) −→ Rq

(µ1, · · · , µm)
id7−→ (µ1(X), · · · , µm(X))

CRT7−→ µ(X)
BGV.Enc7−→ c̄

First, we view a component µi in a vector µ = (µ1, · · · , µm) as a contant polynomial µi ∈
Zp[X]/ (Fi(X)) for i = 1, · · · ,m. Then, we can compute the unique polynomial µ(X) ∈ Rp sat-
isfying µ(X) = µi mod (p, Fi(X)) for i = 1, · · · ,m by the Chinese Remainder Theorem (CRT)

March 19, 2015 ROSAEC-2015-01 11

Rule Integer form Matrix form

Trans δ
(`)
i,j ←

∑m
k=1 η

(`)
i,k · δ

(`)
k,j ∆` ← H` ·∆`

Load η
(`)
i,j ← η

(`)
i,j +

∑m
k=1 ui,k · δ

(`+1)
k,j H` ← H` + U ·∆`+1

Store η
(`)
i,j ← η

(`)
i,j +

∑m
k=1 vj,k · δ

(`+1)
k,i H` ← H` + (V ·∆`+1)T

Table 3: Circuit expression of the level-by-level analysis

of polynomials. Finally, to encrypt a vector µ = (µ1, · · · , µm) in
∏m
i=1 Zp, we encrypt the poly-

nomial µ(X) ∈ Rp into a ciphertext c̄ which is denoted by BGV.Enc (µ1, · · · , µm) . For more
details to the ciphertext packing, we suggest that readers see the paper [28].

4.4.1 Homomorphic Matrix Operations

Applying the resolution rules in the level-by-level analysis in the section 4.3 can be re-written in

a matrix form as shown in Table 3. In Table 3, ∆` = [δ
(`)
i,j], H` = [η

(`)
i,j], U = [ui,j], and V = [vi,j]

are m×m integer matrices. Let the i-th row of ∆` and H` be δ
(`)
i and η

(`)
i respectively. And

we denote the encryptions as δ̄
(`)
i = BGV.Enc(δ

(`)
i) and η̄

(`)
i = BGV.Enc(η

(`)
i).

We follow the methods in [18] to perform multiplication between encrypted matrices.
We use the Replicate homomorphic operation supported by the BGV scheme [18]. For a
given ciphertext c̄ = BGV.Enc(µ1, · · · , µm), the operation Replicate(c̄, i) generates a cipher-
text BGV.Enc(µi, · · · , µi) for i = 1, · · · ,m. Using the operation, we can generate an encryption
of the i-th row of (H` ·∆`) as follows:

BGV.Mult
(
Replicate(η̄

(`)
i , 1), δ̄

(`)
1

)
+ · · · + BGV.Mult

(
Replicate(η̄

(`)
i ,m), δ̄

(`)
m

)
.

Note that this method does not affect the asymptotic notation of the multiplicative depth since
the operation Replicate entails only a single multiplication.

To compute a transpose of an encrypted matrix, we use the masking and cyclic rotation
techniques described in [18]. Algorithms for the homomorphic operations on encrypted matrices
are described in Fig. 3 and 4 in Appendix B.

4.5 Randomization of Ciphertexts

During the matrix multiplications, components of resulting matrices may become p by coinci-
dence, which is congruent to 0 in Zp. In this case, incorrect results may happen. We randomize
intermediate results to decrease the failure probability.

To multiply the matrices H` = [η
(`)
i,j] and ∆` = [δ

(`)
i,j], we choose non-zero random elements

{ri,j} in Zp for i, j = 1, · · · ,m and compute H ′` = [ri,j · η(`)
i,j]. Then, each component of a

resulting matrix of the matrix multiplication (H ′` ·∆`) is almost uniformly distributed over Zp.
Thanks to the randomization, the probability for each component of H ′ ·∆ of being con-

gruent to zero modulo p is in inverse proportion to p. We may obtain a correct component
with the probability of (1− 1

p−1). Because we perform in total n(dlogme+ 3)− 2 matrix mul-
tiplications for the analysis, the probability for a component of being correct is greater than
(1− 1

p−1)n(dlogme+3). For example, in the case where n = 2,m = 1000 and p = 503, the success

probability for a component is about 95%.
Putting up altogether, we present the final protocol in Fig. 2 in Appendix B.

March 19, 2015 ROSAEC-2015-01 12

Table 4: Experimental Result

Program LOC # Var Enc Propagation Edge addition Total Depth

toy 10 9 26s 32m 24s 5m 40s 38m 29s 37

buthead-1.0 46 17 1m 26s 7h 21m 58s 1h 4m 52s 8h 28m 17s 43

wysihtml-0.13 202 32 2m 59s 18h 11m 50s 2h 59m 38s 21h 14m 27s 49

cd-discid-1.1 259 41 3m 49s 40h 6m 42s 5h 43m 21s 45h 53m 52s 49

Enc : time for program encryption, Depth : the depth required for the analysis

Propagation : time for homomorphic applications of the Trans rule

Edge addition : time for homomorphic applications of the Load and Store rules

5 Experimental Result

In this section, we demonstrate the performance of the pointer analysis in secrecy. In our
experiment, we use HElib library [18], an implementation of the BGV cryptosystem. We test
on 4 small C example programs including tiny linux packages. The experiment was done on a
Linux 3.13 system running on 8 cores of Intel 3.2 GHz box with 24GB of main memory. Our
implementation runs in parallel on 8 cores using shared memory.

Table 4 shows the result. We set the security parameter 72 which is usually considered large
enough. It means a ciphertext can be broken in a worst case time proportional to 272. In all
the programs, the maximum pointer level is 2.

6 Discussion

Why “Basic” Algorithm?

Many optimization techniques to scale inclusion-based pointer analysis to larger programs [14,
15, 19, 20, 25] cannot be applied into our setting without exposing much information of the
program. Two key optimizations for inclusion-based pointer analysis are the cycle elimination
and the difference propagation. But neither method is applicable. The cycle elimination [14, 19,
20, 25] aims to prevent redundant computation of transitive closure by collapsing each cycle’s
components into a single node. The method cannot be applied into our setting because cycles
cannot be detected and collapsed as all the program information and intermediate analysis
results are encrypted. The other technique, difference propagation [15, 25], only propagates
new reachability facts. Also, we cannot consider the technique because analysis server cannot
determine which reachability fact is new as intermediate analysis results are encrypted.

Privacy Preserving App Reviews

Our method may be used for app store review systems. App review systems (e.g., Apple App
Store, Samsung Apps) aim to filter malicious apps before deployments. In app review systems,
a server-side analysis in secrecy may help for the following reasons:

• Analysis cannot be performed on the client-side because they may tamper with the
analysis results.

• Revealed analysis mechanism may be used to avoid the detection.

• App source codes often require privacy for copyright protection.

A prerequisite for the realization of this scenario is a threshold cryptosystem. In threshold
cryptosystems, two parties must cooperate in the decryption protocol. In our setting, the

March 19, 2015 ROSAEC-2015-01 13

secret key is shared between analysis server and program owner. This decryption mechanism
is for preventing the program owner from doing the decryption by himself and tampering with
the result. Another prerequisite is a zero-knowledge protocol by which that the program owner
did not maliciously change his original program is proved.

7 Conclusion

We report that the homomorphic encryption scheme can unleash the possibility of static anal-
ysis of encrypted programs. As a representative example, we have described an inclusion-based
pointer analysis in secrecy. In our method, a somewhat homomorphic encryption scheme of
depth O(logm) is able to evaluate the pointer analysis with O(logm) homomorphic matrix
multiplications.

We also show the viability of our work by implementing the pointer analysis in secrecy. We
expect our method will scale to larger programs thanks to new developments and advances in
HE that are constantly being made.

References

[1] On Ideal Lattices and Learning with Errors over Rings. In EUROCRYPT 2010.

[2] Software clinic service. http://rosaec.snu.ac.kr/clinic.

[3] Sparrow. http://ropas.snu.ac.kr/sparrow.

[4] D. Boneh, C. Gentry, S. Halevi, F. Wang, and D. Wu. Private Database Queries Us-
ing Somewhat Homomorphic Encryption. In M. Jacobson, M. Locasto, P. Mohassel, and
R. Safavi-Naini, editors, Applied Cryptography and Network Security, volume 7954 of Lec-
ture Notes in Computer Science, pages 102–118. Springer Berlin Heidelberg, 2013.

[5] Z. Brakerski. Fully Homomorphic Encryption without Modulus Switching from Classical
GapSVP. In CRYPTO 2012.

[6] Z. Brakerski, C. Gentry, and V. Vaikuntanathan. (Leveled) Fully Homomorphic Encryp-
tion without Bootstrapping. In ITCS ’12 Proceedings of the 3rd Innovations in Theoretical
Computer Science, pages 309–325. ACM, 2012.

[7] Z. Brakerski and V. Vaikuntanathan. Efficient fully homomorphic encryption from (stan-
dard) LWE. In Proceedings of the 2011 IEEE 52nd Annual Symposium on Foundations
of Computer Science, FOCS’11, pages 97–106. IEEE Computer Society, 2011.

[8] A. Chatterjee, M. Kaushal, and I. Sengupta. Accelerating Sorting of Fully Homomor-
phic Encrypted Data. In G. Paul and S. Vaudenay, editors, Progress in Cryptology -
INDOCRYPT 2013, volume 8250 of Lecture Notes in Computer Science, pages 262–273.
Springer International Publishing, 2013.

[9] J. H. Cheon, J.-S. Coron, J. Kim, M. S. Lee, T. Lepoint, M. Tibouchi, and A. Yun. Batch
Fully Homomorphic Encryption over the Integers. In EUROCRYPT 2013.

[10] J. H. Cheon, M. Kim, and K. Lauter. Homomorphic Computation of Edit Distance. IACR
Cryptology ePrint Archive, 2015:132, 2015. To appear in WAHC 2015.

[11] J. H. Cheon and D. Stehlé. Fully homomorphic encryption over the integers revisited. In
EUROCRYPT 2015. To appear.

March 19, 2015 ROSAEC-2015-01 14

[12] J.-S. Coron, D. Naccache, and M. Tibouchi. Public Key Compression and Modulus Switch-
ing for Fully Homomorphic Encryption over the Integers. In EUROCRYPT 2012.

[13] M. v. Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan. Fully homomorphic encryption
over the integers. In EUROCRYPT 2010.

[14] M. Fähndrich, J. S. Foster, Z. Su, and A. Aiken. Partial online cycle elimination in
inclusion constraint graphs. In PLDI ’98.

[15] C. Fecht and H. Seidl. Propagating differences: An efficient new fixpoint algorithm for
distributive constraint systems. Nord. J. Comput., 5(4):304–329, 1998.

[16] C. Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford University,
2009. http://crypto.stanford.edu/craig.

[17] C. Gentry, S. Halevi, and N. P. Smart. Homomorphic Evaluation of the AES Circuit. In
CRYPTO 2012.

[18] S. Halevi and V. Shoup. Algorithms in HElib. Cryptology ePrint Archive, Report
2014/106, 2014. http://eprint.iacr.org/.

[19] B. Hardekopf and C. Lin. The ant and the grasshopper: Fast and accurate pointer analysis
for millions of lines of code. In PLDI ’07.

[20] N. Heintze and O. Tardieu. Ultra-fast aliasing analysis using cla: A million lines of c code
in a second. In PLDI ’01.

[21] N. Howgrave-Graham. Approximate Integer Common Divisors. In CaLC, pages 51–66,
2001.

[22] H. Oh, K. Heo, W. Lee, W. Lee, and K. Yi. Design and implementation of sparse global
analyses for C-like languages. In PLDI 2012.

[23] H. Oh, W. Lee, K. Heo, H. Yang, and K. Yi. Selective context-sensitivity guided by impact
pre-analysis. In PLDI ’14.

[24] H. Oh and K. Yi. Access-based abstract memory localization in static analysis. Science
of Computer Programming, 78(9):1701–1727, 2013.

[25] D. Pearce, P. Kelly, and C. Hankin. Online cycle detection and difference propagation
for pointer analysis. In Source Code Analysis and Manipulation, 2003. Proceedings. Third
IEEE International Workshop on, pages 3–12, 2003.

[26] N. Smart and F. Vercauteren. Fully homomorphic SIMD operations. Designs, Codes and
Cryptography, 71(1):57–81, 2014.

[27] N. P. Smart and F. Vercauteren. Fully homomorphic encryption with relatively small key
and ciphertext sizes. In PKC 2010. 2010.

[28] N. P. Smart and F. Vercauteren. Fully Homomorphic SIMD Operations. IACR Cryptology
ePrint Archive, 2011:133, 2011.

March 19, 2015 ROSAEC-2015-01 15

A The BGV-type Cryptosystem

Notations.

For an integer q, we denote the ring of integers modulo q by Zq. Let Φ(X) be an irreducible
polynomial over Z. Our implementation is based on the operations in polynomial ring R =
Z[X]/ (Φ(X)) which is the set of integer polynomials of degree less than deg Φ. We identify the
quotient ring Rq := R/qR with the set of integer polynomials of degree up to deg Φ−1 reduced
modulo q for the integer q (i.e., Rq = {a0 + a1X + · · · + adeg Φ−1X

deg Φ−1 | ai ∈ Zp and 0 ≤
i < φ(N)}).

The BGV Scheme.

Our solutions are implemented with the efficient variant of the Brakerski-Gentry-Vaikuntanathan (BGV)
cryptosystem using a modulus switching technique. We recall that the BGV cryptosystem [6]
based on the hardness of the “ring learning with errors ” (RLWE) problem [1]. The RLWE
problem is to distinguish pair (ai, bi = ai · s + ei) ∈ Rq × Rq from uniformly random pairs,
where s ∈ Rq is a random “secret” polynomial which remains fixed over all pairs, the ai ∈ Rq
are uniformly random and independent, and the “noise” terms ei ∈ R are sampled from a noise
distribution that outputs polynomials whose coefficients much “smaller” than q (an example
is a discrete Gaussian distribution over R with small standard deviation).

For a polynomial ring R = Z[X]/ (Φ(X)), we set the message space to Rp for some fixed
prime p ≥ 2 and the ciphertext space to Rq ×Rq for an integer q. Then all the ciphertexts are
treated as vectors of elements in Rq. Now, we describe the BGV cryptosystem as follows:

• ((a, b), evk; s) ← BGV.KG(1λ, w, σ, q): Chooses a weight w secret key s and generates
a RLWE instance (a, b) relative to the secret key s. Compute a evaluation key for a
homomorphic evaluation of ciphertexts. Output the public key pk = (a, b), the evaluation
key evk, and the secret key sk = s.

• c̄← BGV.Encpk(µ): To encrypt a message µ ∈ Rt, choose a random polynomial v whose
coefficients are in {0,±1} and two noise polynomials e0, e1 from a discrete Gaussian
distribution over R with standard deviation σ. Outputs the ciphertext c = (c0, c1) =
(bv + pe0 + µ, av + pe1) mod q.

• µ ← BGV.Decsk(c̄): Given a ciphertext c̄ = (c0, c1), it outputs µ = ((c0 − c1 · s mod
q) mod p).

• c̄add ← BGV.Addpk(c̄1, c̄2; evk): Given ciphertext c̄1 = BGV.Enc(µ1) and c̄2 = BGV.Enc(µ2),
it outputs the ciphertext c̄add = BGV.Enc(µ1 + µ2).

• c̄mult ← BGV.Multpk(c̄1, c̄2; evk): Given ciphertext c̄1 = BGV.Enc(µ1) and c̄2 = BGV.Enc(µ2),
it outputs the ciphertext c̄mult = BGV.Enc(µ1 · µ2).

In the BGV scheme, homomorphic addition is done by simple component-wise addition of
the ciphertexts and homomorphic multiplication is by tensor product over Rq. Since the norm
of the noise and the degree of the ciphertext are increased after operations of ciphertexts,
modulus and key switching operation should be performed to reduce the norm of the noise and
the degree of the ciphertext. For more details to the homomorphic operations on the BGV-type
cryptosystem such as the key switching and modulus switching, please refer to [6, 17].

B Algorithms

In this section, we describe algorithms for the andersen’s analysis in secrecy. Fig. 2 describes
the protocol. Fig. 3 and 4 describe the homomorphic matrix operations and sub algorithms
necessary for the evaluation of the protocol respectively.

March 19, 2015 ROSAEC-2015-01 16

Main Protocol

Client Input: There m pointer variables in the client’s program with the maximal pointer

level n. The sets
{

(δ
(`)
i,j , η

(`)
i,j) | 1 ≤ i, j ≤ m, 1 ≤ ` ≤ n

}
and {(ui,j , vi,j) | 1 ≤ i, j ≤ m} are

initialized by the manner in the section 3.2 and 4.3. For a security parameter λ, the client
generates the parameters (pk, evk; sk)← BGV.KG(1λ) of the BGV scheme.

Sub-algorithms: In this protocol, we use sub-algorithms in Fig. 3 and 4.

– Program Encryption (Client’s work)

1. for ` = 1 to n and for i = 1 to m do

2. δ̄
(`)
i ← BGV.Enc(δ

(`)
i,1 , · · · , δ

(`)
i,m), η̄

(`)
i ← BGV.Enc(η

(`)
i,1 , · · · , η

(`)
i,m)

3. ūi ← BGV.Enc(ui,1, · · · , ui,m), v̄i ← BGV.Enc(vi,1, · · · , vi,m)

4. for ` = 1 to n do

5. ∆̄` ←
〈
δ̄

(`)
1 | · · · |δ̄

(`)
m

〉T
, H̄` ←

〈
η̄

(`)
1 | · · · |η̄

(`)
m

〉T
// the i-th row of ∆̄` is δ̄

(`)
i .

6. Ū ← 〈ū1| · · · |ūm〉T , V̄ ← 〈v̄1| · · · |v̄m〉T // the i-th row of Ū is ūi.

7. Client sends the sets
{

(∆̄`, H̄`) | 1 ≤ ` ≤ n
}

and
{

(Ū , V̄)
}

to server.

– Analysis in Secrecy (Server’s work)

1. ∆̄n ← HE.MatMult
(
HE.MatPower(H̄n,m), ∆̄n

)
2. for ` = n− 1 to 1 do

3. Ā← HE.MatMult(Ū , ∆̄`+1), B̄ ← HE.MatTrans
(
HE.MatMult(V̄ , ∆̄`+1)

)
4. H̄` ← HE.MatAdd

(
HE.MatAdd(H̄`, Ā), B̄

)
// apply Load and Store rules

5. ∆̄` ← HE.MatMult
(
HE.MatPower(H̄`,m), ∆̄`

)
// apply Trans rule

6. Server sends the ciphertext set
{
δ̄

(`)
i | 1 ≤ ` ≤ n and 1 ≤ i ≤ m

}
to client.

– Output Determination (Client’s work)

1. for i = 1 to m and for ` = 1 to n do

2. Client computes (δ
(`)
i,1 , · · · , δ

(`)
i,m)← BGV.Dec(δ̄

(`)
i).

3. Client determines the set
{
xi −→ &xj | δ(`)

i,j 6= 0, 1 ≤ i, j ≤ m, 1 ≤ ` ≤ n
}

.

Figure 2: The pointer analysis in secrecy

March 19, 2015 ROSAEC-2015-01 17

// We assume that m is the same as the number of plaintext slots in the BGV scheme.
// A prime p is the modulus of message space in the BGV-type cryptosystem.
// We denote the encryption of the matrix A = [ai,j] ∈ Zm×mp by Ā.
// The i-th row āi of Ā is the ciphertext BGV.Enc(ai,1, · · · , ai,m) for i = 1, · · · ,m.

// For ciphertexts c̄1, · · · , c̄m, we denote the matrix whose rows are c̄i by 〈c̄1| · · · |c̄m〉T

HE.MatAdd(Ā, B̄)
// Input : Ā, B̄ are encryptions of A = [ai,j], B = [bi,j].
// Output : A+B is an encryption of A+B = [ai,j + bi,j].

1 for i = 1 to m do
2 z̄i ← BGV.Add(āi, b̄j)

3 return Z̄ ← 〈z̄1|z̄2| · · · |z̄m〉T // the i-th row of Z̄ is z̄i

HE.MatMult(Ā, B̄)
// Input : Ā, B̄ are encryptions of A = [ai,j], B = [bi,j].
// Output : RA ·B is an encryption of RA ·B = [

∑m
k=1 ri,k · (ai,kbk,j)],

// where ri,j
$←− [−p/2, p/2) ∩ Z with ri,j 6= 0.

1 R̄← HE.MatRandomize(Ā)
2 for i = 1 to m do
3 z̄i ←

∑m
j=1 BGV.Mult

(
HE.Replicate(r̄i, j), b̄j

)
// ciphertext additions

4 return Z̄ ← 〈z̄1|z̄2| · · · |z̄m〉T // the i-th row of Z̄ is z̄i

HE.MatPower(Ā, k)
// Input : Ā is an encryption of A.
// Output : Aw is an encryption of Aw, where w = 2dlog ke.

1 Z̄ ← Ā
2 for i = 1 to dlog ke do
3 Z̄ ← HE.MatrixMult

(
Z̄, Z̄

)
3 return Z̄

HE.MatTrans(Ā)
// Input : Ā is an encryption of A = [ai,j].

// Output : AT is an encryption of AT = [aj,i].
1 for i = 1 to m do
2 for j = 1 to m do
3 z̄i,j ← HE.Masking(āj , i)

5 z̄i ←
∑i−1
j=1 HE.Rotate(z̄i,j , j − i+m) +

∑m
j=i HE.Rotate(z̄i,j , j − i)

// M ciphertext additions

6 return Z̄ ← 〈z̄1|z̄2| · · · |z̄m〉T // the i-th row of Z̄ is z̄i

HE.MatRandomize(Ā)
// Input : Ā is an encryption of A = [ai,j].

// Output : RA is an encryption of RA = [ri,j · ai,j], where ri,j
$←− Zp with ri,j 6= 0.

1 for i = 1 to m do

2 Choose a vector ri = (ri,1, · · · , ri,m)
$←− Zmp with ri,j 6= 0 mod p.

3 z̄i ← BGV.multByConst(ri, āi)

3 return Z̄ ← 〈z̄1|z̄2| · · · |z̄m〉T // the i-th row of Z̄ is z̄i

Figure 3: Pseudocode for the Homomorphic Matrix Operations

March 19, 2015 ROSAEC-2015-01 18

// The following algorithms are in the library HElib.
// Here, we only give preview of the algorithms.

HE.Replicate(c̄, k)
// The ciphertext c̄ is the encryption of (µ1, · · · , µm)
return the ciphertext BGV.Enc(µk, · · · , µk)

HE.Masking(c̄, k)
// The ciphertext c̄ is the encryption of (µ1, · · · , µm)
return the ciphertext BGV.Enc(0, · · · , 0, µk, 0 · · · , 0) // k-th of plaintext slots is µk

HE.Rotate(c̄, k)
// The ciphertext c̄ is the encryption of (µ1, · · · , µm)
// This operation is the right rotation as a linear array
return the ciphertext BGV.Enc(µm−k+2, · · · , µm, µ1, · · · , µm−k+1)

BGV.multByConst(r, c̄)
// The operation of the multiply-by-constant induces “moderate” noise-growth,
// while a multiplication of ciphertexts induces “expensive” noise-growth.
// The constant vector r = (r1, · · · , rm) ∈ Zp × · · · × Zp
// The ciphertext c̄ is the encryption of (µ1, · · · , µm)
return the ciphertext BGV.Enc(r1µ1, · · · , rmµm)

Figure 4: Pseudocode for Some Homomorphic Algorithms

