
B R U N O O L I V E I R A ’ S T R I P R E P O RT

About the Conference

This was an interesting year for OOPSLA since it has undergone re-branding from OOPSLA to
SPLASH (a re-arrangement of the OOPSLA letters, minus OO (because who programs with
objects any more?), and appended with “for Humanity”). A main motivation for this change was
that the conference wanted to broaden its scope to encompass essentially most of the Software
Engineering and Programming Languages field. In recent years, this change has already been visible
in OOPSLA’s research programs and, with this change, it now becomes clearer that the scope is
broader. In practical terms, this seems to have worked out well, as the conference has got 164
paper submissions (which has been a record number for the past 10 years). I believe that this
change of scope is good news for the ROSAEC center because the traditional type of research
done here (static analysis of C programs) now falls with the scope of SPLASH, which is one of the
top-tier venues in our field. So, I’d like to invite everyone to consider submitting to SPLASH next
year (specially since I’ll be a PC member!).

Another interesting point is the recent trend in PL conferences to try to accept more papers.
As Martin Rinard observed in his PC chair report, the quality of submitted papers has increased
considerably in recent years in the PL conferences. Therefore, to promote faster dissemination of
results it is important that papers do not have to go through several rounds of submissions just
because there is a limit on the number of papers that the conference can accept. So, this year’s
OOPSLA has accepted a record number of papers (45), which is much in the same line with what
other top-tier conferences such as POPL are doing (POPL accepted around 50 papers this year). I
personally view this as a good thing for the reasons that Martin mentioned. A consequence of the
increased number of papers, however, is that SPLASH also had parallel sessions for the first time,
which some may argue is not so good because you cannot see all the paper presentations.

About the Venue

This year’s SPLASH was at the Nugget Hotel in
Reno. Reno is in Nevada, which is a US state where
gambling and casinos are allowed by law. Therefore, like
any other hotels in Nevada, the Nugget is also a casino
filled with slot machines, blackjack tables and other
gambling things. Most people that I’ve talked to didn’t
really like the venue. I guess they didn’t particularly like
gambling and the crowd that usually hangs out in
casinos. Nevertheless, the obvious advantage was that
accommodation was considerably cheap because a

Nugget Hotel/Casino

casino’s businesses model is to sell cheap rooms
with the hope that people will spend their
money gambling later on.

The room was very spacious and comfortable,
so I cannot complain about that. I’ve paid more
in the past for much worse rooms.

Technical Highlights

My own paper presentation was on wednesday 1:30pm. I believe the presentation went nicely
and I had a few interesting questions from the audience; plus I had a some nice chats afterwards.

I’ll try to describe some of the papers that may be of interest for the ROSAEC center that
have also been presented in the OOPSLA technical sessions. In particular, I’ll discuss the papers on
this year’s session on heap analysis.

Symbolic heap abstraction with demand-driven axiomatization of memory invariants

This paper by Isil Dillig, Thomas Dillig and Alex Aiken, was probably the one that caught my eye
the most in this session. They propose an alternative to traditional relational analysis techniques,
which keeps most of the precision offered by relational analysis, but it is much more scalable and
efficient. The key idea is to enforce the memory invariant that every
concrete memory location stores one unique value directly on the
heap abstraction by adding constraints to the mapping between
variables and the pointed locations. Essentially, the constraints are
what ensures the unique value invariant. See the Figure on the side
for an example. They claim that their technique is good for
analyzing real-world programs with intricate use of arrays and
pointers; in particular, they verify the absence of buffer overruns,
incorrect casts, and null pointer dereferences in OpenSSH (over
26,000 lines of code). Maybe this is something worth checking out,
since there have been a few people trying to use relational analysis.

A dynamic evaluation of the precision of static heap abstractions

This paper by Percy Liang, Omer Tripp, Mayur Naik and Mooly Sagiv conducts a study on static
heap abstractions with the goal of investigating how various refinements of allocation sites can
improve precision. The abstractions considered keep track of the following information: call stack,

Slot machines

Figure 1. An exact symbolic heap

and y must have the same value, allowing the assertion to
be discharged.

To summarize, in this paper, we propose a technique that
unifies reasoning about heap contents with enforcing the
fundamental memory invariant that every concrete memory
location has a unique value until its next write. Specifically,
we extend the symbolic heap abstraction described in [4]
for reasoning about heap contents to enforce existence and
uniqueness of values stored in memory locations. Our ap-
proach combines the strengths of techniques for reasoning
about heap contents, such as [1, 6, 9] with techniques that
focus on the axiomatization of memory invariants, such as
decision procedures like the theory of arrays [10].

1.1 A Quick Overview

In this subsection we give a high-level overview of the tech-
nical sections that follow. A symbolic heap abstraction [4]
represents points-to relations in the heap as directed edges
in a graph where nodes correspond to abstract memory loca-
tions. In general, abstract locations represent a non-empty
set of concrete locations; for example, an array is repre-
sented by a single abstract location that represents all of
the concrete elements of the array. Each points-to edge in
the symbolic heap is labeled with a bracketing constraint,
�φmay,φmust�, identifying which concrete elements within a
given abstract location may and must point to which con-
crete elements in the target location. Therefore, the symbolic
heap abstraction simultaneously encodes both an over- and
an underapproximation of the concrete heap. The simultane-
ous use of over- and underapproximations is useful in multi-
ple ways, which are relevant to but not the topic of this paper.
For example, bracketing constraints are needed in sound and
precise path-sensitive analysis (and, in particular, in comput-
ing complements of path conditions) [11] and in defining a
precise location update mechanism, called a fluid update [4].
The key soundness invariant of this symbolic heap abstrac-
tion is that the disjunction of all may conditions on edges
outgoing from an abstract location A is valid, while the pair-
wise conjunction of any two must constraints on outgoing
edges from A is unsatisfiable.

We say that a heap abstraction is exact if the over- and
underapproximations are identical. An exact abstract heap
describes precisely one concrete heap. Therefore, when the
over- and underapproximations encoded by the symbolic
heap are identical, the symbolic heap already encodes exis-
tence and uniqueness of values stored in memory locations.
For example, the symbolic heap shown in Figure 1 is exact

Figure 2. An inexact symbolic heap

since the may and must conditions on points-to edges are
identical. In particular, this abstract heap encodes a concrete
heap where the fifth element of an array a points to X and all
other elements point to Y . Observe that this symbolic heap
encodes that no concrete element in array a can simultane-
ously point to both X and Y because the may conditions on
the edges to X and Y are disjoint, thereby encoding unique-
ness of the value stored in any concrete element in a. Simi-
larly, this symbolic heap also encodes that every element in
a has some value (i.e., existence) since the disjunction of the
must conditions is true.

In practice, except for the simplest heaps, symbolic heaps
are rarely exact. Consider the imprecise symbolic heap in
Figure 2. This abstraction encodes that any element of array
a in the range [0, 4] may point to X , but no element must
point to X . On the other hand, any element in the array
may point to Y , but elements whose indices are not in the
range [0, 4] are guaranteed to point to Y . Such a symbolic
heap no longer encodes existence and uniqueness of concrete
elements; for example, elements in the range [0, 4] may point
to X or Y or neither. More technically, we can see that
the conjunction of the may constraints is now satisfiable
(allowing a memory location to point to two different places
simultaneously), and the disjunction of the must constraints
is not valid (allowing a memory location to possibly have no
value at all).

Hence, as illustrated by these examples, while an exact
symbolic heap, such as the one from Figure 1, encodes ex-
istence and uniqueness, the normal situation of an imprecise
symbolic heap such as the one from Figure 2 does not. Ob-
serve that the use of bracketing constraints is not the source
of this difficulty; any heap abstraction that encodes only an
over- or an underapproximation is imprecise and will suffer
from the same problem. In fact, bracketing constraints only
improve the situation by making it explicit whether the ab-
straction enforces existence and uniqueness of memory con-
tents.

To be able to reason about existence and uniqueness in-
variants in the presence of uncertainty without performing
case splits, our approach augments the symbolic heap ab-
straction with a technique we call demand-driven axiomati-
zation of memory invariants. Specifically, whenever a brack-
eting constraint on a points-to edge becomes imprecise (e.g.,
due to imprecise loop invariants or branches on values that
are not statically known), our technique replaces this impre-

399

Constraints

http://portal.acm.org/citation.cfm?id=1869494&CFID=108324663&CFTOKEN=66705127
http://portal.acm.org/citation.cfm?id=1869494&CFID=108324663&CFTOKEN=66705127
http://portal.acm.org/citation.cfm?id=1869493&CFID=108319947&CFTOKEN=42432121
http://portal.acm.org/citation.cfm?id=1869493&CFID=108319947&CFTOKEN=42432121

object recency and heap connectivity information. They used the 9 Java programs of the DaCapo
benchmark. Some of their conclusions are that for abstractions based on k-CFA the critical value
for k in which the precision no longer benefits from larger values of k is between 3 and 6. A
digression regarding this point is that someone in the audience commented that this is not very
helpful, because those values of k are still infeasible to be used in practical analysis. The authors
agreed with this, but pointed to some paper that has been accepted at POPL this year (I believe
this paper is Learning Minimal Abstractions) where apparently they devise a technique which,
instead of using a fixed k for all points in the analysis, picks higher values of k only at certain points,
retaining most of the precision of an analysis using an higher value of k, but being much more
efficient. Ending the digression, some other conclusions seem to be that recency is an important
dimension that offers the best tradeoff between precision and size.

Parallel inclusion-based points-to analysis

This paper by Mario Méndez-Lojo, Augustine Mathew and Keshav Pingali suggests a way to
parallelize inclusion-based points-to analysis. The authors observe that inclusion-based points-to
analysis can be formulated entirely in terms of graphs and graph rewrite rules, which exposes the
data-parallelism in the algorithm for the analysis. They claim that their parallel implementation
achieves speed ups up to 3x on a 8-core machine with ten large C programs. Yannis Smaragdakis
was apparently not very happy with their claims because he mentioned that his work on Strictly
Declarative Specification of Sophisticated Points-to Analyses (presented at OOPSLA’09) already
implied such result. In that work, Martin Bravenboer and Yannis, developed a framework for points-
to analysis where ponter analysis algorithms were declaratively specified using Datalog, which
allowed for agressive optimizations (I believe algorithms in Datalog can naturally be parallelized due
to Datalog’s declarative nature).

http://www.cs.tau.ac.il/~omertrip/popl11/minimal.pdf
http://www.cs.tau.ac.il/~omertrip/popl11/minimal.pdf
http://portal.acm.org/citation.cfm?id=1869495&CFID=108327830&CFTOKEN=31896634
http://portal.acm.org/citation.cfm?id=1869495&CFID=108327830&CFTOKEN=31896634
http://www.cs.umass.edu/~yannis/doop-oopsla09prelim.pdf
http://www.cs.umass.edu/~yannis/doop-oopsla09prelim.pdf
http://www.cs.umass.edu/~yannis/doop-oopsla09prelim.pdf
http://www.cs.umass.edu/~yannis/doop-oopsla09prelim.pdf

